Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = amorphous Ni-B nanoparticle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2895 KiB  
Communication
Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction
by Shuai Geng, Bo Hai and Heping Shi
Catalysts 2025, 15(7), 612; https://doi.org/10.3390/catal15070612 - 21 Jun 2025
Viewed by 502
Abstract
Transition metal-based catalysts designed for efficient urea oxidation reactions (UOR) are essential for hydrogen production via urea-assisted water electrolysis. A series of amorphous nickel–cobalt boride catalysts supported on nickel foam were in situ synthesized via a stepwise chemical deposition method (SCDM). The systematic [...] Read more.
Transition metal-based catalysts designed for efficient urea oxidation reactions (UOR) are essential for hydrogen production via urea-assisted water electrolysis. A series of amorphous nickel–cobalt boride catalysts supported on nickel foam were in situ synthesized via a stepwise chemical deposition method (SCDM). The systematic investigation focused on the relationships between synthesis parameters (deposition cycles, reactant feed ratio), morphological characteristics, and UOR performance. Notably, the optimized Co-NiB@NF catalyst exhibits a porous hierarchical architecture composed of metallic nanoparticles encapsulated by surface-wrinkled nanosheets, forming abundant exposed active sites. Electrochemical measurements demonstrate that this catalyst requires a low cell potential of 1.29 V to achieve a current density of 10 mA cm−2. Moreover, it maintains 83% of the initial current density after 10 h of continuous electrolysis, highlighting its superior durability. The structural-property relationship revealed here provides valuable insights into the rational design of efficient amorphous boride catalysts for urea-assisted hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

13 pages, 5253 KiB  
Article
Microwave Absorption Properties of Graphite Nanosheet/Carbon Nanofiber Hybrids Prepared by Intercalation Chemical Vapor Deposition
by Yifan Guo, Junhua Su, Qingfeng Guo, Ling Long, Jinlong Xie and Ying Li
Nanomaterials 2025, 15(5), 406; https://doi.org/10.3390/nano15050406 - 6 Mar 2025
Viewed by 824
Abstract
Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi3 nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to [...] Read more.
Carbon-based microwave absorption materials have garnered widespread attention as lightweight and efficient wave absorbers, emerging as a prominent focus in the field of functional materials research. In this work, FeNi3 nanoparticles, synthesized in situ within graphite interlayers, were employed as catalysts to grow carbon nanofibers in situ via intercalation chemical vapor deposition (CVD). We discovered that amorphous carbon nanofibers (CNFs) can exfoliate and separate highly conductive graphite nanosheets (GNS) from the interlayers. Meanwhile, the carbon nanofibers eventually intertwine and encapsulate the graphite nanosheets, forming porous hybrids. This process induces significant changes in the electrical conductivity and electromagnetic parameters of the resulting GNS/CNF hybrids, enhancing the impedance matching between the hybrids and free space. Although this process slightly reduces the microwave loss capability of the hybrids, the balance between these effects significantly enhances their microwave absorption performance, particularly in the Ku band. Specifically, the optimized GNS/CNF hybrids, when mixed with paraffin at a 30 wt% ratio, exhibit a maximum microwave reflection loss of −44.1 dB at 14.6 GHz with a thickness of 1.5 mm. Their effective absorption bandwidth, defined as the frequency range with a reflection loss below −10 dB, spans the 12.5–17.4 GHz range, covering more than 80% of the Ku band. These results indicate that the GNS/CNF hybrids prepared via intercalation CVD are promising candidates for microwave absorption materials. Full article
Show Figures

Figure 1

11 pages, 4845 KiB  
Article
Magnetorheological and Viscoelastic Behaviors in an Fe-Based Amorphous Magnetic Fluid
by Chuncheng Yang, Teng Li, Xiangyu Pei, Jiaxin Li, Zhao Yuan, Yan Li and Xiufang Bian
Materials 2023, 16(5), 1967; https://doi.org/10.3390/ma16051967 - 28 Feb 2023
Cited by 4 | Viewed by 2006
Abstract
A novel magnetic fluid was obtained using a colloidal dispersion of amorphous magnetic Fe-Ni-B nanoparticles into water. Its magnetorheological and viscoelastic behaviors were all investigated. Results showed that the generated particles were spherical amorphous particles 12–15 nm in diameter. The saturation magnetization of [...] Read more.
A novel magnetic fluid was obtained using a colloidal dispersion of amorphous magnetic Fe-Ni-B nanoparticles into water. Its magnetorheological and viscoelastic behaviors were all investigated. Results showed that the generated particles were spherical amorphous particles 12–15 nm in diameter. The saturation magnetization of Fe-based amorphous magnetic particles could reach 49.3 emu/g. The amorphous magnetic fluid exhibited shear shinning behavior under magnetic fields and showed strong magnetic responsiveness. The yield stress increased with the rising magnetic field strength. A crossover phenomenon was observed from the modulus strain curves due to the phase transition under applied magnetic fields. The storage modulus G′ was higher than the loss modulus G″ at low strains, while G′ was lower than G″ at high strains. The crossover points shifted to higher strains with increasing magnetic field. Furthermore, G′ decreased and fell off in a power law relationship when the strain exceeded a critical value. However, G″ showed a distinct maximum at a critical strain, and then decreased in a power law fashion. The magnetorheological and viscoelastic behaviors were found to be related to the structural formation and destruction in the magnetic fluids, which is a joint effect of magnetic fields and shear flows. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

15 pages, 3415 KiB  
Article
Abrasive and Erosive Wear of TI6Al4V Alloy with Electrospark Deposited Coatings of Multicomponent Hard Alloys Materials Based of WC and TiB2
by Todor Penyashki, Georgi Kostadinov, Mara Kandeva, Valentin Kamburov, Antonio Nikolov and Rayna Dimitrova
Coatings 2023, 13(1), 215; https://doi.org/10.3390/coatings13010215 - 16 Jan 2023
Cited by 10 | Viewed by 2444
Abstract
In the present work, abrasive and erosive wear of wear-resistant composite coatings with a complex structure and different phase compositions deposited on titanium surfaces was studied. The coatings were obtained by electrospark deposition (ESD) using two types of hard-alloy compositions: WC–TiB2–B [...] Read more.
In the present work, abrasive and erosive wear of wear-resistant composite coatings with a complex structure and different phase compositions deposited on titanium surfaces was studied. The coatings were obtained by electrospark deposition (ESD) using two types of hard-alloy compositions: WC–TiB2–B4C–Co–Ni–Cr–Si–B and TiB2–TiAl reinforced with dispersed nanoparticles of ZrO2 and NbC. The influence of the ESD process parameters on the roughness, thickness, composition, structure and coefficient of friction of the coated surfaces was investigated, and their role in protecting the titanium surfaces from wear was clarified. Dense coatings with the presence of newly formed wear-resistant phases and crystalline-amorphous structures were obtained, with roughness, thickness and microhardness that can be varied by the ESD modes in the range Ra = 2.5 ÷ 4.5 µm, δ = 8 ÷ 30 µm and HV 8.5 ÷ 14.0 GPa. The new coatings were found to reduce the abrasive and erosive wear of the coated surfaces by up to four times. The influence of the geometric characteristics, composition and structure of coatings on the wear intensity and wear resistance of coatings was studied. Full article
(This article belongs to the Special Issue Coatings and Surface Modification for Tribological Applications)
Show Figures

Figure 1

17 pages, 6929 KiB  
Article
Mechanical Behavior of Fe- and Co-Based Amorphous Alloys after Thermal Action
by Inga Permyakova and Alex Glezer
Metals 2022, 12(2), 297; https://doi.org/10.3390/met12020297 - 9 Feb 2022
Cited by 8 | Viewed by 2652
Abstract
The effect of heat treatment on the structure and mechanical properties of Co-Fe-Cr-Si-B/Fe-Cr-B/Fe-Ni-B amorphous alloys has been studied systematically. Melt-quenching (spinning method) was used for production of investigated amorphous alloys. The transmission electron microscopy (TEM) was used to study the structure transformations. The [...] Read more.
The effect of heat treatment on the structure and mechanical properties of Co-Fe-Cr-Si-B/Fe-Cr-B/Fe-Ni-B amorphous alloys has been studied systematically. Melt-quenching (spinning method) was used for production of investigated amorphous alloys. The transmission electron microscopy (TEM) was used to study the structure transformations. The effect of temperature on deformation behavior (plasticity, microhardness, crack resistance, and the density and average length of shear bands) of the amorphous alloys was studied by bending and microindentation. It is shown that the ductile–brittle transition, which occurs at the stage of structure relaxation in amorphous alloys, is caused by two factors: a decrease in the susceptibility of the amorphous matrix to plastic flow and an abrupt decrease in the resistance to the development of quasibrittle cracks. It is established that the transition to a two-phase amorphous–nanocrystalline state upon annealing leads to substantial strengthening of the alloys and a partial recovery of their plasticity. It is proved that the strengthening of amorphous alloys at the initial stages of crystallization can be initiated by the difference in the elastic moduli of the amorphous matrix and the precipitated nanocrystals, as well as by the specific features of the interaction between nanocrystalline phase particles and shear bands propagating under external actions. It is established that the phenomenon of plasticization in amorphous alloys (the crack resistance can increase after annealing in a certain temperature range) is due to the effective retardation of cracks on nanoparticles. Full article
(This article belongs to the Special Issue Research on Metallic Glasses)
Show Figures

Graphical abstract

23 pages, 4780 KiB  
Article
New Insights into the Electrocatalytic Mechanism of Methanol Oxidation on Amorphous Ni-B-Co Nanoparticles in Alkaline Media
by Fanhua Wu, Zhonglin Zhang, Fusheng Zhang, Donghong Duan, Yu Li, Guoqiang Wei, Shibin Liu, Qinbo Yuan, Enzhi Wang and Xiaogang Hao
Catalysts 2019, 9(9), 749; https://doi.org/10.3390/catal9090749 - 5 Sep 2019
Cited by 19 | Viewed by 4414
Abstract
Despite an increased interest in sustainable energy conversion systems, there have been limited studies investigating the electrocatalytic reaction mechanism of methanol oxidation on Ni-based amorphous materials in alkaline media. A thorough understanding of such mechanisms would aid in the development of amorphous catalytic [...] Read more.
Despite an increased interest in sustainable energy conversion systems, there have been limited studies investigating the electrocatalytic reaction mechanism of methanol oxidation on Ni-based amorphous materials in alkaline media. A thorough understanding of such mechanisms would aid in the development of amorphous catalytic materials for methanol oxidation reactions. In the present work, amorphous Ni-B and Ni-B-Co nanoparticles were prepared by a simple chemical reduction, and their electrocatalytic properties were investigated by cyclic voltammetry measurements. The diffusion coefficients (D0) for Ni-B, Ni-B-Co0.02, Ni-B-Co0.05, and Ni-B-Co0.1 nanoparticles were calculated to be 1.28 × 10−9, 2.35 × 10−9, 4.48 × 10−9 and 2.67 × 10−9 cm2 s−1, respectively. The reaction order of methanol in the studied transformation was approximately 0.5 for all studied catalysts, whereas the reaction order of the hydroxide ion was nearly 1. The activation energy (Ea) values of the reaction were also calculated for the Ni-B and Ni-B-Co nanoparticle systems. Based on our kinetic studies, a mechanism for the methanol oxidation reaction was proposed which involved formation of an electrocatalytic layer on the surface of amorphous Ni–B and Ni-B-Co nanoparticles. And methanol and hydroxide ions could diffuse freely through this three-dimensional porous conductive layer. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

16 pages, 3928 KiB  
Article
Physico-Chemical and Electrochemical Properties of Nanoparticulate NiO/C Composites for High Performance Lithium and Sodium Ion Battery Anodes
by Amaia Iturrondobeitia, Aintzane Goñi, Izaskun Gil de Muro, Luis Lezama and Teófilo Rojo
Nanomaterials 2017, 7(12), 423; https://doi.org/10.3390/nano7120423 - 2 Dec 2017
Cited by 15 | Viewed by 4803
Abstract
Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well [...] Read more.
Nanoparticulate NiO and NiO/C composites with different carbon proportions have been prepared for anode application in lithium and sodium ion batteries. Structural characterization demonstrated the presence of metallic Ni in the composites. Morphological study revealed that the NiO and Ni nanoparticles were well dispersed in the matrix of amorphous carbon. The electrochemical study showed that the lithium ion batteries (LIBs), containing composites with carbon, have promising electrochemical performances, delivering specific discharge capacities of 550 mAh/g after operating for 100 cycles at 1C. These excellent results could be explained by the homogeneity of particle size and structure, as well as the uniform distribution of NiO/Ni nanoparticles in the in situ generated amorphous carbon matrix. On the other hand, the sodium ion battery (NIB) with the NiO/C composite revealed a poor cycling stability. Post-mortem analyses revealed that this fact could be ascribed to the absence of a stable Solid Electrolyte Interface (SEI) or passivation layer upon cycling. Full article
Show Figures

Graphical abstract

Back to TopTop