Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = aluminum thin film on silicon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2813 KiB  
Article
The Effect of Doping with Aluminum on the Optical, Structural, and Morphological Properties of Thin Films of SnO2 Semiconductors
by Isis Chetzyl Ballardo Rodriguez, U. Garduño Terán, A. I. Díaz Cano, B. El Filali and M. Badaoui
J. Compos. Sci. 2025, 9(7), 358; https://doi.org/10.3390/jcs9070358 - 9 Jul 2025
Viewed by 333
Abstract
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating [...] Read more.
There is considerable interest in broadband nanomaterials, particularly transparent semiconductor oxides, within both fundamental research and technological applications. Historically, it has been considered that the variation in dopant concentration during the synthesis of semiconductor materials is a crucial factor in activating and/or modulating the optical and structural properties, particularly the bandgap and the parameters of the unit cell, of semiconductor oxides. Recently, tin oxide has emerged as a key material due to its excellent structural properties, optical transparency, and various promising applications in optoelectronics. This study utilized the ultrasonic spray pyrolysis technique to synthesize aluminum-doped tin oxide (ATO) thin films on quartz and polished single-crystal silicon substrates. The impact of varying aluminum doping levels (0, 2, 5, and 10 at. %) on morphology and structural and optical properties was examined. The ATO thin films were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmittance spectroscopy. SEM images demonstrated a slight reduction in the size of ATO nanoparticles as the aluminum doping concentration increased. XRD analysis revealed a tetragonal crystalline structure with the space group P42/mnm, and a shift in the XRD peaks to higher angles was noted with increasing aluminum content, indicating a decrease in the crystalline lattice parameters of ATO. The transmittance of the ATO films varied between 75% and 85%. By employing the transmittance spectra and the established Tauc formula the optical bandgap values of ATO films were calculated, showing an increase in the bandgap with higher doping levels. These findings were thoroughly analyzed and discussed; additionally, an effort was made to clarify the contradictory analyses present in the literature and to identify a doping range that avoids the onset of a secondary phase. Full article
(This article belongs to the Special Issue Optical–Electric–Magnetic Multifunctional Composite Materials)
Show Figures

Graphical abstract

14 pages, 1911 KiB  
Article
Dielectric and Interface Properties of Aluminum-Laminated Lanthanum Oxide on Silicon for Nanoscale Device Applications
by Hei Wong, Weidong Li, Jieqiong Zhang and Jun Liu
Nanomaterials 2025, 15(13), 963; https://doi.org/10.3390/nano15130963 - 21 Jun 2025
Viewed by 336
Abstract
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties [...] Read more.
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties with both the silicon substrate and the metal gate electrode, improving current conduction. Comprehensive analysis using X-ray Photoelectron Spectroscopy (XPS) revealed that this novel process not only facilitates the formation of a high-quality lanthanum aluminate layer, as indicated with Al 2p peak at 74.5 eV, but also effectively suppresses silicate layer growth, as supported by the weak Si-O signal from both the Si 2s (153.9 eV) and O 1s (533 eV) peaks at the dielectric/Si interface in the Al-laminated samples. Fourier Transform Infrared (FTIR) spectroscopy revealed a significant reduction in the OH absorption peak at 3608 cm−1 OH-related band centered at 3433 cm−1. These improvements are attributed to the aluminum-laminated layer, which blocks oxygen and hydroxyl diffusion, the LaAlxOy layer scavenging interface silicon oxide, and the consumption of oxygen during LaAlxOy formation under thermal annealing. Electrical measurements confirmed that the dielectric films exhibited significantly lower interface and oxide trap densities compared to native La2O3 samples. This approach provides a promising method for fabricating high-quality lanthanum-based gate dielectric films with controlled dielectric/substrate interactions, making it suitable for nano-CMOS and memristive device applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

15 pages, 9567 KiB  
Article
Characterization of Zno:Al Nanolayers Produced by ALD for Clean Energy Applications
by Marek Szindler, Magdalena Szindler, Krzysztof Matus, Błażej Tomiczek and Barbara Hajduk
Energies 2025, 18(11), 2860; https://doi.org/10.3390/en18112860 - 30 May 2025
Viewed by 462
Abstract
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like [...] Read more.
The rising demand for sustainable energy solutions has spurred the development of advanced materials for photovoltaic devices. Among these, transparent conductive oxides (TCOs) play a pivotal role in enhancing device efficiency, particularly in silicon-based solar cells. However, the reliance on indium-based TCOs like ITO raises concerns over cost and material scarcity, prompting the search for more abundant and scalable alternatives. This study focuses on the fabrication and characterization of aluminum-doped zinc oxide (ZnO:Al, AZO) thin films deposited via Atomic Layer Deposition (ALD), targeting their application as transparent conductive oxides in silicon solar cells. The ZnO:Al thin films were synthesized by alternating supercycles of ZnO and Al2O3 depositions at 225 °C, allowing precise control of composition and thickness. Structural, optical, and electrical properties were assessed using Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Transmission Electron Microscopy (TEM), Raman spectroscopy, spectroscopic ellipsometry, and four-point probe measurements. The results confirmed the formation of uniform, crack-free ZnO:Al thin films with a spinel-type ZnAl2O4 crystalline structure. Optical analyses revealed high transparency (more than 80%) and tunable refractive indices (1.64 ÷ 1.74); the energy band gap was 2.6 ÷ 3.07 eV, while electrical measurements demonstrated low sheet resistance values, reaching 85 Ω/□ for thicker films. This combination of optical and electrical properties underscores the potential of ALD-grown AZO thin films to meet the stringent demands of next-generation photovoltaics. Integration of Zn:Al thin films into silicon solar cells led to an optimized photovoltaic performance, with the best cell achieving a short-circuit current density of 36.0 mA/cm2 and a power conversion efficiency of 15.3%. Overall, this work highlights the technological relevance of ZnO:Al thin films as a sustainable and cost-effective alternative to conventional TCOs, offering pathways toward more accessible and efficient solar energy solutions. Full article
Show Figures

Figure 1

10 pages, 2701 KiB  
Article
Ultra-Thin Al2O3 Grown by PEALD for Low-Power Molybdenum Disulfide Field-Effect Transistors
by Shiwei Sun, Dinghao Ma, Boxi Ye, Guanshun Liu, Nanting Luo and Hao Huang
J. Low Power Electron. Appl. 2025, 15(2), 26; https://doi.org/10.3390/jlpea15020026 - 30 Apr 2025
Viewed by 935
Abstract
The lack of ultra-thin, controllable dielectric layers poses challenges for reducing power consumption in 2D FETs. In this study, plasma-enhanced atomic layer deposition was employed to fabricate a highly reliable, ultra-thin aluminum oxide (Al2O3) dielectric layer with a thickness [...] Read more.
The lack of ultra-thin, controllable dielectric layers poses challenges for reducing power consumption in 2D FETs. In this study, plasma-enhanced atomic layer deposition was employed to fabricate a highly reliable, ultra-thin aluminum oxide (Al2O3) dielectric layer with a thickness of 4 nm. The Al2O3 film grown on highly conductive silicon substrates demonstrated a maximum breakdown field of 5.98 MV/cm and a leakage current density as low as 2.48 × 10−7 A/cm2 at 1 MV/cm. MoS2 FETs incorporating this Al2O3 gate dielectric exhibited high-performance n-type characteristics at a low operating voltage of 1 V, achieving a subthreshold swing (SS) of 65 mV/dec, a threshold voltage (Vth) of −0.96 V, a high carrier mobility (μ) of 34.85 cm2·V−1·s−1, and an on/off current ratio exceeding 106. These results highlight the potential of Al2O3 in enabling low-power 2D electronic devices for post-Moore applications. Full article
Show Figures

Figure 1

15 pages, 4112 KiB  
Article
Carbon-Coated CF-Si/Al Anodes for Improved Lithium-Ion Battery Performance
by Liangliang Zeng, Peng Li, Mi Ouyang, Shujuan Gao and Kun Liang
Batteries 2025, 11(3), 114; https://doi.org/10.3390/batteries11030114 - 18 Mar 2025
Viewed by 990
Abstract
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling [...] Read more.
Despite their high specific capacity, magnetron-sputtered Si/Al thin films face rapid capacity decay due to stress-induced cracking, delamination, and detrimental electrolyte reactions. This study introduces a carbon-coated composite anode that overcomes these limitations, delivering superior reversible capacity, exceptional rate capability, and stable cycling performance. An electrochemical evaluation reveals that the CF-Si/Al@C-500-1h composite exhibits marked enhancements in capacity retention (43.5% after 100 cycles at 0.6 A·g−1) and rate capability, maintaining 579.1 mAh·g−1 at 3 A·g−1 (1 C). The carbon layer enhances electrical conductivity, buffers volume expansion during lithiation/delithiation, and suppresses silicon aggregation and electrolyte side reactions. Coupled with an aluminum framework, this architecture ensures robust structural integrity and efficient lithium-ion transport. These advancements position CF-Si/Al@C-500-1h as a promising anode material for next-generation lithium-ion batteries, while insights into scalable fabrication and carbon integration strategies pave the way for practical applications. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Battery Applications)
Show Figures

Figure 1

17 pages, 7824 KiB  
Article
Early Strength and Microscopic Mechanisms of Alkali-Metal Hydroxide-Activated Tungsten Tailings
by Shanmei Li, Lei Wang, Zhikui Liu and Kai Shou
Solids 2024, 5(4), 544-560; https://doi.org/10.3390/solids5040037 - 12 Nov 2024
Viewed by 1043
Abstract
The excellent mechanical properties of alkaline-activated tailings are essential for their increased use in building materials. While numerous studies have been conducted on activated tailings, the strength of alkaline-activated tungsten slag has not been extensively explored due to the low reactivity of silicon [...] Read more.
The excellent mechanical properties of alkaline-activated tailings are essential for their increased use in building materials. While numerous studies have been conducted on activated tailings, the strength of alkaline-activated tungsten slag has not been extensively explored due to the low reactivity of silicon and aluminum in these tailings. This research delves into the early unconfined compressive strength of tungsten tailings activated by two alkali solutions (NaOH and KOH) at three different alkali concentrations (mass ratio of alkali to tungsten tailings), cured at 80 °C over periods of one day, three days, and seven days. The study finds significant improvements in the stability of tungsten tailings when forming (C, N)-A-S-H or (C, K)-A-S-H gels with both alkalis. Scanning Electron Microscope (SEM) results show that the morphology of the (C, N)-A-S-H gels transitions from membranous to flocculated and then to a three-dimensional network as the NaOH content and curing time increase. Conversely, the (C, K)-A-S-H gels primarily exhibit thin-film morphology with some three-dimensional network structures. The presence of flocculation and three-dimensional mesh in the gels fosters the formation of a robust skeletal structure, enhancing the strength of the samples. Furthermore, specimens treated with NaOH solution exhibit a higher gel content compared to those treated with KOH solution. These factors contribute to the superior efficacy of sodium hydroxide in enhancing the strength of tungsten tailings compared to potassium hydroxide. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) results identify the formation of new phases such as pirssonite, buetschliite, potassium bicarbonate, and potassium carbonate. The first new phase results from the carbonization of excess NaOH solution, while the latter phases arise from the carbonization of excess KOH solution. These carbonization processes negatively impact the strength of the materials. Full article
Show Figures

Figure 1

11 pages, 3907 KiB  
Article
The Influence of Deposition Temperature on the Microscopic Process of Diamond-like Carbon (DLC) Film Deposition on a 2024 Aluminum Alloy Surface
by Li Yang, Tong Li, Baihui Shang, Lili Guo, Tong Zhang and Weina Han
Crystals 2024, 14(11), 950; https://doi.org/10.3390/cryst14110950 - 31 Oct 2024
Viewed by 1140
Abstract
In this experiment, plasma-enhanced chemical vapor deposition technology was used to deposit diamond-like carbon thin films on the surface of a 2024 aluminum alloy. The effects of deposition temperature on the microstructure, carbon, silicon, and aluminum element distribution, and film substrate adhesion of [...] Read more.
In this experiment, plasma-enhanced chemical vapor deposition technology was used to deposit diamond-like carbon thin films on the surface of a 2024 aluminum alloy. The effects of deposition temperature on the microstructure, carbon, silicon, and aluminum element distribution, and film substrate adhesion of diamond-like carbon thin films were studied using field emission scanning electron microscopy, energy-dispersive spectroscopy, XRD, scratch gauge, and ultra-depth-of-field microscopy. The results showed that with the increase in deposition temperature, the thickness of DLC film decreased from 8.72 μm to 5.37 μm, and the film bonded well with the substrate. There is a clear transition layer containing silicon elements between the DLC film and the aluminum alloy substrate. The transition layer is a solid solution formed by aluminum and silicon elements, which increases the bonding strength between the film and substrate. C-Si and C-C exist in the form of covalent bonds and undergo orbital hybridization, making the DLC film more stable. When the deposition temperature exceeds the aging temperature of a 2024 aluminum alloy, it will affect the properties of the aluminum alloy substrate. Therefore, the deposition temperature should be below the aging temperature of the 2024 aluminum alloy for coating. At a deposition temperature of 100 °C, the maximum membrane substrate bonding force is 14.45 N. When a continuous sound signal appears and the friction coefficient is the same as that of the substrate, the film is completely damaged. From the super-depth map of the scratch morphology, it can be seen that, at a deposition temperature of 100 °C, a small amount of thin film detachment appears around the scratch. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 3591 KiB  
Article
Evaluation of the Influence of Lorentz Forces on the Natural Frequencies of a Dual-Microcantilever Sensor for Ultralow Mass Detection
by Luca Banchelli, Georgi Todorov, Vladimir Stavrov, Borislav Ganev and Todor Todorov
Micro 2024, 4(4), 572-584; https://doi.org/10.3390/micro4040035 - 12 Oct 2024
Cited by 1 | Viewed by 1432
Abstract
In this paper, the impact of Lorentz forces and temperature on the natural frequencies of a piezoresistive sensor composed of two microcantilevers with integrated U-shaped thin-film aluminum heaters are investigated. Two types of experiments were performed. In the first, the sensor was placed [...] Read more.
In this paper, the impact of Lorentz forces and temperature on the natural frequencies of a piezoresistive sensor composed of two microcantilevers with integrated U-shaped thin-film aluminum heaters are investigated. Two types of experiments were performed. In the first, the sensor was placed in a magnetic field so that the current flowing in the heater, in addition to raising the temperature, produced Lorentz forces, inducing normal stresses in the plane of one of the microcantilevers. In the second, which were conducted without magnetic fields, only the temperature variation of the natural frequency was left. In processing of the results, the thermal variations were subtracted from the variations due to both Lorentz forces and temperature in the natural frequency, resulting in the influence of the Lorentz forces only. Theoretical relations for the Lorentz frequency offsets were derived. An indirect method of estimating the natural frequency of one of the cantilevers, through a particular cusp point in the amplitude–frequency response of the sensor, was used in the investigations. The findings show that for thin microcantilevers with silicon masses on the order of 4 × 10−7 g and currents of 25 µA, thermal eigenfrequency variations are dominant. The results may have applications in the design of similar microsensors with vibrational action. Full article
Show Figures

Figure 1

12 pages, 3583 KiB  
Article
A Micro Capacitive Humidity Sensor Based on Al-Mo Electrodes and Polyimide Film
by Wenhe Zhou, Jiafeng Wei and Liangbi Wang
Polymers 2024, 16(13), 1916; https://doi.org/10.3390/polym16131916 - 5 Jul 2024
Cited by 6 | Viewed by 4352
Abstract
Quickly sensing humidity changes is required in some fields, such as in fuel cell vehicles. The micro humidity sensor used for the relative humidity (RH) measurement with fast response characteristics, and its numerical model and method are rare. This paper firstly presents a [...] Read more.
Quickly sensing humidity changes is required in some fields, such as in fuel cell vehicles. The micro humidity sensor used for the relative humidity (RH) measurement with fast response characteristics, and its numerical model and method are rare. This paper firstly presents a numerical model and method for a parallel plate capacitor and a numerical analysis of its dynamic characteristics. The fabrication of this sensor was carried out based on the numerical results, and, the main characteristics of its moisture-sensitive element are shown. This parallel plate capacitor is made using complementary metal-oxide semiconductor (CMOS)-compatible technology, with a P-type monocrystalline silicon wafer used as the substrate, a thin polyimide film (PI) between the upper grid electrode and the lower parallel plate electrode, and electrodes with a molybdenum–aluminum bilayer structure. The shape of the micro sensor is square with 3 mm on the side of the source field. The humidity sensor has a linearity of 0.9965, hysteresis at 7.408% RH, and a sensitivity of 0.4264 pF/%RH. The sensor displays an average adsorption time of 1 s and a minimum adsorption time of 850 ms when the relative humidity increases from 33.2% RH to 75.8% RH. The sensor demonstrates very good stability during a 240 h test in a 25 °C environment. The numerical model and method provided by this study are very useful for predicting the performance of a parallel plate capacitor. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

15 pages, 417 KiB  
Article
Enhancing Silicon Solar Cell Performance Using a Thin-Film-like Aluminum Nanoparticle Surface Layer
by Mirjam D. Fjell, John Benjamin Lothe, Naomi J. Halas, Mali H. Rosnes, Bodil Holst and Martin M. Greve
Nanomaterials 2024, 14(4), 324; https://doi.org/10.3390/nano14040324 - 6 Feb 2024
Cited by 3 | Viewed by 2941
Abstract
Solar cells play an increasing role in global electricity production, and it is critical to maximize their conversion efficiency to ensure the highest possible production. The number of photons entering the absorbing layer of the solar cell plays an important role in achieving [...] Read more.
Solar cells play an increasing role in global electricity production, and it is critical to maximize their conversion efficiency to ensure the highest possible production. The number of photons entering the absorbing layer of the solar cell plays an important role in achieving a high conversion efficiency. Metal nanoparticles supporting localized surface plasmon resonances (LSPRs) have for years been suggested for increasing light in-coupling for solar cell applications. However, most studies have focused on materials exhibiting strong LSPRs, which often come with the drawback of considerable light absorption within the solar spectrum, limiting their applications and widespread use. Recently, aluminum (Al) nanoparticles have gained increasing interest due to their tuneable LSPRs in the ultraviolet and visible regions of the spectrum. In this study, we present an ideal configuration for maximizing light in-coupling into a standard textured crystalline silicon (c-Si) solar cell by determining the optimal Al nanoparticle and anti-reflection coating (ARC) parameters. The best-case parameters increase the number of photons absorbed by up to 3.3%. We give a complete description of the dominating light–matter interaction mechanisms leading to the enhancement and reveal that the increase is due to the nanoparticles optically exhibiting both particle- and thin-film characteristics, which has not been demonstrated in earlier works. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

18 pages, 2927 KiB  
Article
An Exploratory Study of Laser Scribing Quality through Cross-Section Scribing Profiles
by Ruqi Chen, Shing Chang and Shuting Lei
Micromachines 2023, 14(11), 2020; https://doi.org/10.3390/mi14112020 - 30 Oct 2023
Cited by 3 | Viewed by 2093
Abstract
This article presents a novel approach for evaluating laser scribing quality through cross-section profiles generated from a three-dimensional optical profiler. Existing methods for assessing scribing quality only consider the width and depth of a scribe profile. The proposed method uses a cubic spline [...] Read more.
This article presents a novel approach for evaluating laser scribing quality through cross-section profiles generated from a three-dimensional optical profiler. Existing methods for assessing scribing quality only consider the width and depth of a scribe profile. The proposed method uses a cubic spline model for cross-section profiles. Two quality characteristics are proposed to assess scribing accuracy and consistency. Accuracy is measured by the ratio of the actual laser-scribed area to the target area (RA), which reflects the deviation from the desired profile. The mean square error (MSE) is a measure of how close each scribed cross-section under the same scribing conditions is to the fitted cubic spline model. Over 1370 cross-section profiles were generated under 171 scribing conditions. Two response surface polynomial models for RA and MSE were built with 18 scribing conditions with acceptable scribing depth and RA values. Both RA and MSE were considered simultaneously via contour plots. A scatter plot of RA and MSE was then used for Pareto optimization. It was found that the cross-sectional profile of a laser scribe could be accurately represented by a cubic spline model. A multivariate nonlinear regression model for RA and MSE identified pulse energy and repetition rate as the two dominant laser parameters. A Pareto optimization analysis further established a Pareto front, where the best compromised solution could be found. Full article
(This article belongs to the Special Issue High Power Fiber Laser Technology)
Show Figures

Figure 1

12 pages, 2641 KiB  
Article
In Vitro Study of Zirconia Surface Modification for Dental Implants by Atomic Layer Deposition
by Tatsuhide Hayashi, Masaki Asakura, Shin Koie, Shogo Hasegawa, Akimichi Mieki, Koki Aimu and Tatsushi Kawai
Int. J. Mol. Sci. 2023, 24(12), 10101; https://doi.org/10.3390/ijms241210101 - 14 Jun 2023
Cited by 6 | Viewed by 2447
Abstract
Zirconia is a promising material for dental implants; however, an appropriate surface modification procedure has not yet been identified. Atomic layer deposition (ALD) is a nanotechnology that deposits thin films of metal oxides or metals on materials. The aim of this study was [...] Read more.
Zirconia is a promising material for dental implants; however, an appropriate surface modification procedure has not yet been identified. Atomic layer deposition (ALD) is a nanotechnology that deposits thin films of metal oxides or metals on materials. The aim of this study was to deposit thin films of titanium dioxide (TiO2), aluminum oxide (Al2O3), silicon dioxide (SiO2), and zinc oxide (ZnO) on zirconia disks (ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn, respectively) using ALD and evaluate the cell proliferation abilities of mouse fibroblasts (L929) and mouse osteoblastic cells (MC3T3-E1) on each sample. Zirconia disks (ZR; diameter 10 mm) were fabricated using a computer-aided design/computer-aided manufacturing system. Following the ALD of TiO2, Al2O3, SiO2, or ZnO thin film, the thin-film thickness, elemental distribution, contact angle, adhesion strength, and elemental elution were determined. The L929 and MC3T3-E1 cell proliferation and morphologies on each sample were observed on days 1, 3, and 5 (L929) and days 1, 4, and 7 (MC3T3-E1). The ZR-Ti, ZR-Al, ZR-Si, and ZR-Zn thin-film thicknesses were 41.97, 42.36, 62.50, and 61.11 nm, respectively, and their average adhesion strengths were 163.5, 140.9, 157.3, and 161.6 mN, respectively. The contact angle on ZR-Si was significantly lower than that on all the other specimens. The eluted Zr, Ti, and Al amounts were below the detection limits, whereas the total Si and Zn elution amounts over two weeks were 0.019 and 0.695 ppm, respectively. For both L929 and MC3T3-E1, the cell numbers increased over time on ZR, ZR-Ti, ZR-Al, and ZR-Si. Particularly, cell proliferation in ZR-Ti exceeded that in the other samples. These results suggest that ALD application to zirconia, particularly for TiO2 deposition, could be a new surface modification procedure for zirconia dental implants. Full article
(This article belongs to the Special Issue Advances in Materials and Biomaterials in Dental Implantology)
Show Figures

Figure 1

15 pages, 5747 KiB  
Communication
A High-Sensitivity MEMS Accelerometer Using a Sc0.8Al0.2N-Based Four Beam Structure
by Zhenghu Zhang, Linwei Zhang, Zhipeng Wu, Yunfei Gao and Liang Lou
Micromachines 2023, 14(5), 1069; https://doi.org/10.3390/mi14051069 - 18 May 2023
Cited by 11 | Viewed by 4058
Abstract
In this paper, a high-sensitivity microelectromechanical system (MEMS) piezoelectric accelerometer based on a Scandium-doped Aluminum Nitride (ScAlN) thin film is proposed. The primary structure of this accelerometer is a silicon proof mass fixed by four piezoelectric cantilever beams. In order to enhance the [...] Read more.
In this paper, a high-sensitivity microelectromechanical system (MEMS) piezoelectric accelerometer based on a Scandium-doped Aluminum Nitride (ScAlN) thin film is proposed. The primary structure of this accelerometer is a silicon proof mass fixed by four piezoelectric cantilever beams. In order to enhance the sensitivity of the accelerometer, the Sc0.2Al0.8N piezoelectric film is used in the device. The transverse piezoelectric coefficient d31 of the Sc0.2Al0.8N piezoelectric film is measured by the cantilever beam method and found to be −4.7661 pC/N, which is approximately two to three times greater than that of a pure AlN film. To further enhance the sensitivity of the accelerometer, the top electrodes are divided into inner and outer electrodes; then, the four piezoelectric cantilever beams can achieve a series connection by these inner and outer electrodes. Subsequently, theoretical and finite element models are established to analyze the effectiveness of the above structure. After fabricating the device, the measurement results demonstrate that the resonant frequency of the device is 7.24 kHz and the operating frequency is 56 Hz to 2360 Hz. At a frequency of 480 Hz, the sensitivity, minimum detectable acceleration, and resolution of the device are 2.448 mV/g, 1 mg, and 1 mg, respectively. The linearity of the accelerometer is good for accelerations less than 2 g. The proposed piezoelectric MEMS accelerometer has demonstrated high sensitivity and linearity, making it suitable for accurately detecting low-frequency vibrations. Full article
(This article belongs to the Special Issue Design, Fabrication and Testing of MEMS/NEMS, 2nd Edition)
Show Figures

Figure 1

13 pages, 4113 KiB  
Article
Modal-Transition-Induced Valleys of K2 in Piezoelectric Bilayer Laterally Vibrating Resonators
by Zihao Xie, Jiabao Sun and Jin Xie
Micromachines 2023, 14(5), 1022; https://doi.org/10.3390/mi14051022 - 10 May 2023
Cited by 2 | Viewed by 1778
Abstract
Piezoelectric Laterally Vibrating Resonators (LVRs) have attracted significant attention as a potential technology for next-generation wafer-level multi-band filters. Piezoelectric bilayer structures such as Thin-film Piezoelectric-on-Silicon (TPoS) LVRs which aim to increase the quality factor (Q) or aluminum nitride and silicon dioxide [...] Read more.
Piezoelectric Laterally Vibrating Resonators (LVRs) have attracted significant attention as a potential technology for next-generation wafer-level multi-band filters. Piezoelectric bilayer structures such as Thin-film Piezoelectric-on-Silicon (TPoS) LVRs which aim to increase the quality factor (Q) or aluminum nitride and silicon dioxide (AlN/SiO2) composite membrane for thermal compensation have been proposed. However, limited studies have investigated the detailed behaviors of the electromechanical coupling factor (K2) of these piezoelectric bilayer LVRs. Herein, AlN/Si bilayer LVRs are selected as an example, we observed notable degenerative valleys in K2 at specific normalized thicknesses using two-dimensional finite element analysis (FEA), which has not been reported in the previous studies of bilayer LVRs. Moreover, the bilayer LVRs should be designed away from the valleys to minimize the reduction in K2. Modal-transition-induced mismatch between electric and strain fields of AlN/Si bilayer LVRs are investigated to interpret the valleys from energy considerations. Furthermore, the impact of various factors, including electrode configurations, AlN/Si thickness ratios, the Number of Interdigitated Electrode (IDT) Fingers (NFs), and IDT Duty Factors (DFs), on the observed valleys and K2 are analyzed. These results can provide guidance for the designs of piezoelectric LVRs with bilayer structure, especially for LVRs with a moderate K2 and low thickness ratio. Full article
(This article belongs to the Special Issue Micro and Smart Devices and Systems, 2nd Edition)
Show Figures

Figure 1

10 pages, 3404 KiB  
Communication
Al2O3 Ultra-Thin Films Deposited by PEALD for Rubidium Optically Pumped Atomic Magnetometers with On-Chip Photodiode
by Florival M. Cunha, Manuel F. Silva, Nuno M. Gomes and José H. Correia
Coatings 2023, 13(3), 638; https://doi.org/10.3390/coatings13030638 - 17 Mar 2023
Cited by 3 | Viewed by 3097
Abstract
This communication shows the recipe for plasma-enhanced atomic layer deposition (PEALD) Al2O3 ultra-thin films with thicknesses below 40 nm. Al2O3 ultra-thin films were deposited by PEALD to improve the rubidium optically pumped atomic magnetometers’ (OPMs) cell lifetime. [...] Read more.
This communication shows the recipe for plasma-enhanced atomic layer deposition (PEALD) Al2O3 ultra-thin films with thicknesses below 40 nm. Al2O3 ultra-thin films were deposited by PEALD to improve the rubidium optically pumped atomic magnetometers’ (OPMs) cell lifetime. This requirement is due to the consumption of the alkali metal (rubidium) inside the vapor cells. Moreover, as a silicon wafer was used, an on-chip photodiode was already integrated into the fabrication of the OPM. The ALD parameters were achieved with a GPC close to 1.2 Å/cycle and the ALD window threshold at 250 °C. The PEALD Al2O3 ultra-thin films showed a refractive index of 1.55 at 795 nm (tuned to the D1 transition of rubidium for spin-polarization of the atoms). The EDS chemical elemental analysis showed an atomic percentage of 58.65% for oxygen (O) and 41.35% for aluminum (Al), with a mass percentage of 45.69% for O and 54.31% for Al. A sensitive XPS surface elemental composition confirmed the formation of the PEALD Al2O3 ultra-thin film with an Al 2s peak at 119.2 eV, Al 2p peak at 74.4 eV, and was oxygen rich. The SEM analysis presented a non-uniformity of around 3%. Finally, the rubidium consumption in the coated OPM was monitored. Therefore, PEALD Al2O3 ultra-thin films were deposited while controlling their optical refractive index, crystalline properties, void fraction, surface roughness and thickness uniformity (on OPM volume 1 mm × 1 mm × 0.180 mm cavity etched by RIE), as well as the chemical composition for improving the rubidium OPM lifetime. Full article
(This article belongs to the Special Issue Advanced Films and Coatings Based on Atomic Layer Deposition)
Show Figures

Figure 1

Back to TopTop