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Abstract: In this paper, a high-sensitivity microelectromechanical system (MEMS) piezoelectric
accelerometer based on a Scandium-doped Aluminum Nitride (ScAlN) thin film is proposed. The
primary structure of this accelerometer is a silicon proof mass fixed by four piezoelectric cantilever
beams. In order to enhance the sensitivity of the accelerometer, the Sc0.2Al0.8N piezoelectric film is
used in the device. The transverse piezoelectric coefficient d31 of the Sc0.2Al0.8N piezoelectric film is
measured by the cantilever beam method and found to be −4.7661 pC/N, which is approximately
two to three times greater than that of a pure AlN film. To further enhance the sensitivity of
the accelerometer, the top electrodes are divided into inner and outer electrodes; then, the four
piezoelectric cantilever beams can achieve a series connection by these inner and outer electrodes.
Subsequently, theoretical and finite element models are established to analyze the effectiveness of the
above structure. After fabricating the device, the measurement results demonstrate that the resonant
frequency of the device is 7.24 kHz and the operating frequency is 56 Hz to 2360 Hz. At a frequency of
480 Hz, the sensitivity, minimum detectable acceleration, and resolution of the device are 2.448 mV/g,
1 mg, and 1 mg, respectively. The linearity of the accelerometer is good for accelerations less than
2 g. The proposed piezoelectric MEMS accelerometer has demonstrated high sensitivity and linearity,
making it suitable for accurately detecting low-frequency vibrations.

Keywords: MEMS; piezoelectric accelerometers; ScAlN; sensitivity

1. Introduction

Microelectromechanical system (MEMS) accelerometers are the crucial inertial sen-
sors that find extensive applications in fields such as inertial navigation [1–4], vibration
measurement [5–7], medical diagnosis [8–10], health monitoring [11–13], and disaster warn-
ing [14–16]. Presently, there is a growing demand for MEMS accelerometers with small
sizes, high sensitivity, and superior stability [17]. MEMS accelerometers can be classified
based on their principles of operation, including capacitive [9,18], piezoresistive, reso-
nant [19,20], and piezoelectric types [21–24]. Piezoelectric MEMS accelerometers exhibit
several advantages over other types, including a wider operating frequency range, along
with low power consumption, low-temperature dependence, and high sensitivity [25,26].

In recent years, many researchers have investigated the aspect of increasing the sensi-
tivity of piezoelectric MEMS accelerometers. Gerfers et al. [27] presented the design of an
accelerometer with a balanced bar structure that enhanced output sensitivity without requir-
ing an increase in device size. The sensitivity of the device was experimentally determined
to be 5.2 pC/g. Hui Zhou et al. [28] developed a piezoelectric MEMS accelerometer with the
d33 mode based on a PZT piezoelectric film. The design of this accelerometer incorporated
an interdigital transducer (IDT) electrode deposited on the cantilever beam to mitigate
the impact of piezoelectric layer thickness on sensitivity, rather than the conventional
sandwich structure. This approach resulted in an improved sensitivity of the accelerometer.
The accelerometer demonstrated a voltage sensitivity of up to 4.55 mV/g. Shuzheng Shi
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et al. [29] designed a piezoelectric MEMS accelerometer with four L-shaped beam center
proof mass based on a PZT piezoelectric film. The device incorporated a longer L-shaped
beam, in contrast to the conventional straight beam structure, which increased the working
area of the piezoelectric film and enhanced the sensitivity of the device, which reached
28.14 mV/g at 500 Hz. Yang et al. [17] presented a novel microelectromechanical system
(MEMS) accelerometer designed using AlN piezoelectric material and polygonal topology.
The device consisted of six topologies of electrodes that were connected in parallel, which
resulted in an improved sensitivity of the device. The final sensitivity achieved by the
device was 1.553 mV/g at 400 Hz. In summary, piezoelectric MEMS accelerometers are
mainly used to improve sensitivity through the beam structure, operating mode, additional
mass, and electrode connection.

Piezoelectric MEMS accelerometers generally use lead zirconate titanate (PZT), zinc
oxide (ZnO), and aluminum nitride (AlN) as micromachined piezoelectric thin film materi-
als [30]. AlN has gained significant interest due to its lead-free composition, low dielectric
loss, low cost of fabrication, and compatibility with CMOS process technologies compared
to ZnO and PZT. In Table 1, the main parameters of these three piezoelectric materials
are compared. Despite its advantages, a drawback of using AlN films as a piezoelectric
material is the lower piezoelectric coefficient. This lower coefficient can be a disadvantage
for applications that require high sensitivity or large output signals.

Table 1. Parameters of common piezoelectric materials [31].

Material PZT ZnO AlN

Dielectric constant 300~1300 10.9 8.5~10.5
d33 (pC/N) 60~233 5.9~12.4 3.4~6.4
d31 (pC/N) −40 −5.57 −0.98~−3.18

tanδ (105 Vm−1) 0.01~0.03 0.01~0.1 0.003
Compatible with CMOS process No Yes Yes

In this paper, a piezoelectric MEMS accelerometer with high sensitivity is proposed.
The sensitivity of the device is improved by using a ScAlN piezoelectric film, connecting
the inner and outer electrodes of four cantilever beams in series and adding the proof
mass. The addition of scandium (Sc) to AlN has emerged as a promising strategy to
enhance the value of the piezoelectric coefficient [32]. The main structure of the device has
a highly symmetrical four-beam structure with a single proof mass. Compared with single-
cantilever beam and double-cantilever beam structures, a four-cantilever beam symmetrical
structure has higher bandwidth and structural stability [33–35]. The top electrodes of the
four beams are divided into inner and outer electrodes, which are connected in series to
improve the voltage sensitivity. The size of the device is 2200 × 2200 µm2. Subsequently,
theoretical and finite element models are established to analyze the effectiveness of the
above structure. Then, the manufacturing process of the piezoelectric accelerometer is
briefly introduced. Finally, the sensitivity, linearity, and resolution of the fabricated device
are tested and discussed. The results show that the proposed accelerometer has great
sensitivity and linearity.

2. Device Design and Simulation
2.1. Design

The piezoelectric MEMS accelerometer is composed of three fundamental components:
the cantilever beam, the proof mass, and the silicon substrate. The proof mass is supported
by four beams. Figure 1a shows the three-dimensional model of the accelerometer. The
cantilever beam is comprised of five layers of SiO2, Si, Mo, ScAlN, and Mo materials
arranged from bottom to top. Figure 1b provides a top view of the device and exhibits
chamfers on the proof mass and cavity edges to facilitate processing. The dimensional
specifications of the device are presented in Table 2.
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Figure 1. (a) Three-dimensional and (b) top view of the designed piezoelectric MEMS accelerometer.
Schematic diagram of (c) the charge distribution and (d) the force on a single beam when Z-axis
acceleration is applied.

Table 2. The structure parameters of the proposed MEMS accelerometer.

Parameters Physical Descriptions Values (µm)

L1 Length of the whole device 2200
L2 Length of the single-cantilever beam 350
LM Length of the proof mass 700
C Length of the chamfered edge of the proof mass 100
W Width of the single-cantilever beam 350
tso Thickness of the SiO2 layer 1
ts Thickness of the Si layer 4
tp Thickness of the Sc0.2Al0.8N layer 0.8
te Thickness of the Mo layer 0.2
tm Thickness of the proof mass 400

According to the principles of piezoelectricity and mechanical vibration, the piezo-
electric MEMS accelerometer in this study is activated by an external force applied to the
proof mass, which causes the cantilever beam to vibrate. The resulting vibration creates a
change in polarization within the piezoelectric film of the cantilever beam, generating a
voltage signal on the film’s surface. The cantilever beam exhibits opposite deformations
in its two sections, resulting in a charge distribution that is illustrated in Figure 1c, where
the red sphere represents a positive charge and the gray sphere represents a negative
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charge. To enhance the sensitivity of the piezoelectric accelerometer, the electrodes on
the single-cantilever beam are divided into two parts, the inner and outer electrodes, and
the device uses a series connection between the inner and outer electrodes to amplify the
voltage output signal.

Structural analysis of the accelerometer reveals that, when subjected to acceleration “a”
along the Z-axis, the central mass block undergoes vertical movement. Due to the highly
symmetrical structure of the device, the four cantilever beams deform uniformly. As a
result, the support reaction force at the root of the cantilever beam is distributed uniformly
and is one-fourth of the force caused by the proof mass [29,33]. This phenomenon is shown
in Figure 1d. Under the assumption that the mass of the beam is negligible and the bending
of the proof mass can be treated as a point mass, we obtain Equation (1).

EIw′′ (x) = F1x−M0 (1)

where E and I denote the Young’s modulus and extreme moment of inertia of the cantilever
beam, respectively. The deflection curve of the cantilever beam is expressed as w(x). The
support reaction force at the fixed end of the cantilever beam is denoted by F1, F1 = Ma/4.
Additionally, the limiting moment M0 needs to be determined.

EIw′(x) =
1
2

F1x2 −M0x + H (2)

EIw(x) =
1
6

F1x3 − 1
2

M0x2 + Cx + J (3)

where H and J are constants.
The deflection equation of the cantilever beam must satisfy the boundary condition,

Equation (4):
w(0) = 0, w′(0) = 0, w′(L1) = 0 (4)

In light of the fact that the beam of the accelerometer is a composite beam, comprising
multiple layers of different materials, it is necessary to take into account the material
properties and dimensions of each layer in the analysis of its deflection behavior under
external forces.

EI = ∑
i

Ei

(
Ii + AiZi

2
)

(5)

Ii =
1

12
witi

3 (6)

where Ei and ti are the Young’s modulus and thickness of the i-th layer material, Ai is
the cross-sectional area of the i-th layer, Zi is the distance from the center of the i-th layer
material to the neutral plane, and wi and ti are the width and thickness of the i-th layer in
the multilayer cantilever beam.

Based on Equations (1)–(6), we are able to derive the following:

M0 =
1
8

MaL2 (7)

w(x) =

(
1
24 Max3 − 1

16 MaL2x2
)

∑
i

Ei(Ii + AiZi
2)

(8)

M(x) =
1
4

Ma
(

x− 1
2

L2

)
(9)

Equation (9) reveals that the sign of the bending moment alters at the midpoint of the
cantilever beam. This implies that the stress divides the beam into two parts at the middle
point, and generates different charges at the internal and external ends of the beam, taking
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the center of the beam as the dividing point. These findings lend support to the previously
suggested hypothesis.

D = d31σ (10)

The formula for calculating the electrical displacement D of the piezoelectric accelerom-
eter can be derived as shown in Equation (10). The parameter d31 represents the transverse
piezoelectric coefficient of the piezoelectric film and σ denotes the normal stress in the
X direction.

σ =
EpZp

R
=

M(x)EpZp

∑
i

Ei(Ii + AiZi
2)

(11)

where Ep is the Young’s modulus of the piezoelectric film, 1/R is the bending curvature
of the cantilever beam when subjected to a bending moment M(x), and Zp is the distance
between the center of the piezoelectric layer and the neutral plane.

The neutral plane can be obtained by the following empirical formula:

Zn =

∑
i

Eitizi

∑
i

Eiti
(12)

where zi is the distance from the intermediate axis of the i-layer material to the reference axis.
Therefore, the charge generated by a single electrode is:

Q =
∫

Dwedl =
d31EpZP M(x)(LM + L2)L2

2∑
i

Ei

(
1

12 ti
3 + tiZi

2
) (13)

where we and dl are the width and length of the electrode.
The two electrodes, which are separated by piezoelectric materials, can be considered

as the upper and lower plates of a parallel plate capacitor. Therefore, the capacitance C can
be determined using Equation (14).

C = ε33
A
d

=
ε33weL2

2tp
(14)

where ε33 is the dielectric constant of piezoelectric material. The voltage sensitivity of a
single-cantilever beam connected in series with internal and external electrodes can be
expressed as [36]:

S =
V
a
=

2Q
aC

(15)

The first resonant frequency of the device can be determined by using the Rayleigh–
Ritz method [34,37].

f =
1

2π

√√√√48∑
i

Ei(Ii + AiZi
2)

M · L23 (16)

2.2. Acquisition of d31 of Sc0.2Al0.8N

The transverse piezoelectric coefficients d31 of piezoelectric membranes are fundamen-
tal to the design and simulation of piezoelectric devices. The cantilever beam technique
has gained widespread acceptance as the predominant method for evaluating the trans-
verse piezoelectric coefficient of piezoelectric thin films, primarily owing to its inherent
advantages of ease of measurement and structural simplicity [38,39]. To obtain an accu-
rate assessment of the transverse piezoelectric coefficient of ScAlN films integrated into
piezoelectric devices, the present study employed the cantilever beam method founded
on the inverse piezoelectric effect to conduct the measurements. In summary, the princi-
ple of the cantilever beam method is based on the inverse piezoelectric effect, where the
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application of a DC voltage to a piezoelectric cantilever beam results in the generation
of stress within the piezoelectric layer, leading to a bending of the beam. The transverse
piezoelectric coefficient d31 can be directly determined by measuring the tip displacement
of the piezoelectric cantilever beam under varying DC voltage excitations and utilizing the
equation that describes the relationship between the excitation voltage and displacement.
The transverse piezoelectric coefficient d31 can be calculated by Equation (17) [40]:

d31 =

(
Es

2ts
4 + EsEp

(
4ts

3tp + 6ts
2tp

2 + 4tstp
3)+ Ep

2tp
)
c

3ts
(
ts + tp

)
EsEpl2V

(17)

where, in the given context, the parameters Es, EP and ts, tp represent the Young’s modulus
and thickness of the support layer and piezoelectric layer, respectively. The length of
the cantilever beam is denoted by l, while the voltage applied at both ends of the piezo-
electric layer is represented by V. Additionally, c refers to the tip displacement of the
cantilever beam.

The experimental process involved the rigid connection of a piezoelectric cantilever
beam, processed with the same technique as the MEMS accelerometer, to a PCB. The
cantilever beam is electrically connected to the device by leading out gold wires using a
wire-bonding machine and connecting the cantilever beam’s electrodes to the solder pads
of the PCB via the gold wires. The PCB module is then placed in the measuring position of
the confocal microscope (OLYMPUS OLS5000, Münster, Germany), as shown in Figure 2.
Subsequently, a DC power supply is connected to the cantilever beam via wires, and a DC
voltage is applied to the piezoelectric layer, ranging from −30 V to 30 V, with a step size
of 5 V. The experimental results, which are presented in Figure 2, show that the cantilever
beam exhibited initial bending due to residual stress generated during the processing. The
length of the piezoelectric cantilever beam used in the experiment is 900 µm. By inputting
the experimental data and main parameters from Table 3 into Equation (17), the d31 of the
Sc0.2Al0.8N piezoelectric film is calculated to be −4.7661 pC/N.
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Figure 2. Cantilever beam method actual measurement results.

Table 3. Main parameters of the materials used in the simulation [25,26,41].

Materials Young’s
Modulus (GPa) Poisson’s Ratio Density (kg/m3)

Relative
Permittivity

Si 130 0.28 2329 -
Mo 312 0.31 10,200 -

Sc0.2Al0.8N 230 0.31 3318 13.7
SiO2 70 0.17 2200 -
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2.3. Simulation

In this study, the simulation of the resonance frequency and voltage sensitivity of
the designed MEMS accelerometer is conducted using COMSOL Multiphysics 5.6. The
first natural frequencies obtained from both theoretical calculations and simulations are
7766.7 Hz and 7846 Hz, respectively. These results demonstrate a high level of agreement
between the theoretical model and the simulated device. Under 1 g acceleration excitation,
the voltage sensitivity of the four-cantilever beams connected in a series the electrodes
is found to be 2.02 mV/g at 480 Hz, whereas the voltage sensitivity of the single-ended
cantilever beam inside and outside the electrodes is 0.502 mV/g, as shown in Figure 3. It
is observed that the voltage sensitivity of the four-cantilever beams connected in series is
higher than that of the single-ended cantilever beam, exhibiting a four-fold relationship.
The simulation results are in good agreement with the theoretical calculations, indicating
that it is feasible to increase the sensitivity of the sensor by connecting the inner and outer
electrodes in series. The material parameters used in the simulation are shown in Table 3.
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3. Fabrication and Characterization

The present study details the fabrication process of a MEMS accelerometer on an SOI
wafer, requiring six masks. The fabrication process is depicted through the A-A cross-
sectional view and top view shown in Figure 4. Initially, an 8-inch SOI wafer is utilized
as a silicon substrate, with a polished top silicon layer of 4 µm thickness, a buried oxygen
layer of SiO2 of 1 µm thickness, and a bottom Si substrate of 400 µm thickness (Figure 4a).
Magnetron sputtering is used to sequentially deposit a 0.2 µm thick Mo lower electrode
layer, a 0.8 µm thick Sc0.2Al0.8N piezoelectric layer, and a 0.2 µm thick upper electrode layer
on the polished top surface (Figure 4b). Dry etching is utilized by first patterning the top
Mo electrode and the formation of an isolation layer by depositing SiO2 with a thickness of
0.2 µm (Figure 4c). To establish an electrical connection from the bottom electrode layer
to the surface layer, followed by etching the Sc0.2Al0.8N piezoelectric layer and etching
through-holes at the location connecting the top and bottom electrodes (Figure 4d). Excess
SiO2, Sc0.2Al0.8N and Mo are etched to form a specific structure (Figure 4e). A 1 µm thick Al
is deposited, etched, and patterned to align the electrodes and subsequent pads to enable
electrical connection with the PCB (Figure 4f). Plasma etching is employed to remove the
frontal Sc0.2Al0.8N piezoelectric layer, Mo electrode, and Si substrate to facilitate frontal
etching (Figure 4g). Finally, a deep reactive-ion etching (DRIE) process is conducted to etch
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the Si structure layer from the back side of the SOI wafer, and buffered oxide etchant (BOE)
of the buried oxygen layer is conducted to release the cantilever beam (Figure 4h).
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The MEMS accelerometer designed in this study is fabricated by Shanghai Industrial
µTechnology Research Institute (SITRI). The structural characterization is presented in
Figure 5a through scanning electron microscopy (SEM). The image demonstrates that there
is a distinct height variation between the electrodes and the surrounding layer, indicating
the electrodes’ favorable electrical connectivity. The physical dimensions of the device are
consistent with the design values, as confirmed by direct measurement from the scale on
the figure. Moreover, the proof mass in the center of the device is clearly visible when tilted.

The processed real object is analyzed by cross-sectional scanning electron microscopy.
The resulting image is presented in Figure 5b. The image displays the layers of the object,
which are arranged as follows, from top to bottom: a SiO2 protective layer of 184.5 nm,
a Mo top electrode layer of 180.4 nm, a ScAlN piezoelectric layer of 808.7 nm, and a Mo
bottom electrode layer of 191.3 nm. The thickness of each layer is slightly different from the
design value, as the deviations in the deposition process during the processing lead to small
discrepancies in the accelerometer performance characterization from the design value.

In Figure 5c, the MEMS piezoelectric accelerometer affixed to a printed circuit board
(PCB) is shown. The designed MEMS accelerometer is securely bonded to the PCB board
with an adhesive material. Furthermore, a cavity exists directly beneath the device on the
PCB board to facilitate the unrestricted movement of the structure in the Z-axis direction.
The device surface contains multiple pads, with labels corresponding to serial numbers
1, 4, 7, and 10, connected to the cantilever beam’s outer electrical stage. Additionally,
the device surface contains pads with labels corresponding to serial numbers 2, 5, 8, and
11, which are connected to the cantilever beam’s inner electrode. The connectivity of the
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inner and outer electrodes of adjacent cantilever beams enables the series connection of
the four cantilever beams in the accelerometer. The figure reveals the electrode connection
sequence of the device, which follows the pattern of 4-5-7-8-10-11-1-2. Notably, number
2 and 4 pads are connected to the PCB pads through gold wires to enable subsequent
performance characterization.
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Figure 5. (a) Main view and (b) cross-sectional SEM images of the device. (c) Series connection
diagram of the real device: inner electrodes 2, 5, 8, 11 and outer electrodes 1 4 7 10.

The impedance and static capacitances of the piezoelectric MEMS accelerometer are
analyzed using an impedance analyzer (Keysight E4990A, Beijing, China). The measure-
ment results of the device in the air are obtained when driven by a 100 mV peak-to-peak
voltage, as shown in Figure 6. The resonant frequency of the device is found to be 7.24 kHz
with a static capacitance of 6.91 pF. Furthermore, the orange dotted line encircling part A
represents the distorted portion, which might attribute to the ringdown effect due to the
inertia of the proof mass of the MEMS accelerometer causing significant displacement at the
resonant frequency point. To further characterize the performance of the proposed MEMS
accelerometer, an amplitude–frequency response and first-order mode analysis are carried
out using a laser Doppler vibrometer (LDV, Polytec UHF-120, Irvine, CA, USA). Figure 7
depicts the device’s measurement results in air when driven by a 1 V peak-to-peak voltage.
The piezoelectric MEMS accelerometer’s resonant frequency is found to be 7.24 kHz, with a
point displacement of 42.7 nm at the resonant point. The resonant frequency of the device
exhibits a discrepancy when compared to the simulation and theoretical calculation value,
which is attributed to the presence of residual stress induced in the device during the
fabrication process.
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4. Results

The experimental study involving the calibration of the accelerometer is conducted
using a measurement system depicted in Figure 8. The vibration testing apparatus com-
prises a single-axis shaker (PMG50, Metron Technology, Suzhou, China), power amplifier
(DPM200A, Metron Technology, Suzhou, China), dynamic signal analyzer (SPIDER-80X,
Metron Technology, Suzhou, China), and reference accelerometer (PCB-320C02). The ac-
celerometer sensitivity characteristics are experimentally calibrated using the measurement
system illustrated in Figure 8 over a frequency range spanning from 5 Hz to 5 kHz. Firstly,
the SPIDER-80X is used to generate the excitation signal, which is then amplified by a
power amplifier and transmitted to the shaker for excitation. Then, the MEMS accelerom-
eter is fixed to the shaker, thereby subjecting the device to the same acceleration as the
reference accelerometer connected back-to-back with the MEMS accelerometer. The refer-
ence accelerometer maintains the set acceleration value of the shaker output, resulting in
a closed-loop controlled system. Finally, the accelerometer test signals are captured and
transmitted to a PC for further performance analysis of the proposed sensor.
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Figure 8. Experimental procedure for testing sensitivity.

The measurement of sensitivity, linearity, operating frequency range, and minimum
resolution are crucial to evaluating accelerometer performance. In this study, the frequency
response curve of the proposed piezoelectric MEMS accelerometer is measured from
56 Hz to 5 kHz under 1 g acceleration excitation and is shown in Figure 9. Typically, the
operating frequency range for piezoelectric MEMS accelerometers is limited to a sensitivity
fluctuation of no more than 10% within this frequency range. As such, the maximum
vibration frequency that can be accurately measured is roughly one-third of the resonant
frequency of the accelerometer. The operating frequency is in the range of 56–2360 Hz and
with a sensitivity range of 2.430–2.673 mV/g.
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Figure 9. The frequency response curve of the accelerometer.

Figure 10 illustrates the linearity of the proposed accelerometer in this study, which
shows the relationship curve between the output voltage and acceleration values. The
test is conducted by gradually increasing the acceleration excitation from 0.1 g to 2 g
at a frequency of 480 Hz with a step size of 0.1 g. The voltage output is measured at
each acceleration value for a period of 30 s. The sensitivity of the device is evaluated by
calculating the slope of the linearly fitted curve, which is found to be 2.448 mV/g. The
results indicate that the designed device exhibits good linearity over the range of 0.1 g to 2 g.
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In the proposed accelerometer, at low vibration accelerations, the device’s output is no
longer linear, which is shown in Figure 11. The minimum detectable acceleration of the
accelerometer is 1 mg. For accelerations below this value, the output exhibits a significant
deviation from linearity.
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Figure 11. The minimum detectable acceleration of the accelerometer is proposed in this paper.

Figure 12 represents the response of the proposed accelerometer to acceleration at
approximately 0.2 g and a frequency of 480 Hz under different scanning step sizes. The
results of the study demonstrate that the proposed accelerometer is capable of detecting the
change in acceleration at a minimum resolution of 1 mg, as depicted in Figure 12a, where
the output voltage response displays good linearity. However, as illustrated in Figure 12b,
when the scanning step size is reduced to 0.5 mg, the output response of the device becomes
partially distorted, leading to imprecise measurements of the acceleration. Therefore, it
can be inferred that the proposed accelerometer has a minimum resolution of 1 mg. In this
study, the thermal noise of the proposed accelerometer is reported to be 85.6 nV/

√
Hz at

480 Hz and room temperature.
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Figure 12. The output voltage of the piezoelectric MEMS accelerometer is found to have a relationship
with acceleration at a frequency of 480 Hz. Sweep step size of excitation acceleration: (a) 1 mg;
(b) 0.5 mg.

The piezoelectric MEMS accelerometer presented in this study demonstrates superior
features including compact size and high sensitivity as compared to the results reported
by other research groups (refer to Table 4). The voltage sensitivity of the device can
be improved by connecting the inner and outer electrodes on the upper surface of the
cantilever beam in series. These findings suggest that the proposed sensor can be utilized
for accurate acceleration measurements and effectively used in low-frequency applications
below 2.36 kHz.

Table 4. Comparison of the main parameters of accelerometers.

Author Chen, Z.-H. et al. [42] Hu, B. et al. [25] Yang, C. et al. [17] This Work

Materials AlN AlN/ScAlN AlN ScAlN
Sensitivity (mV/g) 1.49 7.95 1.533 2.448

Resonance frequency (kHz) 7.2 1.29 98 7.24

Device structure Annular Trapezoidal-with-corners-shaped
cantilever

Polygon topological
cantilevers Trampoline

Moving part size (mm2) 63.62 14.25 0.723 0.97

5. Conclusions

This paper details the design, fabrication, and testing of ScAlN-based MEMS ac-
celerometers with a trampoline structure produced using MEMS technology. The cantilever
beam method is employed to measure the transverse sensitivity d31 of the Sc0.2Al0.8N film,
yielding a value of −4.7661 pC/g, which is two to three times that of the pure AlN film d31.
An acceleration of 1g is used to obtain the frequency response curve of the accelerometer.
The resulting resonant frequency of the accelerometer with four cantilever beams and inner
and outer electrodes in series is found to be 7.24 kHz, with a sensitivity of 2.448 mV/g at
480 Hz, operating in a bandwidth of 56 Hz to 2360 Hz. The proposed accelerometer exhibits
good linearity at accelerations less than 2 g and has a minimum detected acceleration of
1 mg and a minimum resolution of 1 mg. The proposed piezoelectric accelerometer has the
potential in high-sensitivity accelerometer applications.
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