Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = aluminum MMC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1711 KiB  
Review
Hybridization of Lignocellulosic Biomass into Aluminum-Based Materials: Comparing the Cases of Aluminum Matrix Composites and Fiber Metal Laminates
by Cristiano Fragassa and Carlo Santulli
J. Compos. Sci. 2025, 9(7), 356; https://doi.org/10.3390/jcs9070356 - 8 Jul 2025
Viewed by 434
Abstract
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with [...] Read more.
Introducing and compacting lignocellulosic biomass in aluminum structures, though recommendable in terms of higher sustainability, the potential use of agro-waste and significant weight reduction, still represents a challenge. This is due to the variability of biomass performance and to its limited compatibility with the metal. Another question may concern possible moisture penetration in the structure, which may reduce environmental resistance and result in local degradation, such as wear or even corrosion. Despite these limitations, this hybridization enjoys increasing success. Two forms are possibly available for this: introduction into metal matrix composites (MMCs), normally in the form of char from biomass combustion, or laminate reinforcement as the core for fiber metal laminates (FMLs). These two cases are treated alongside each other in this review, first because they may represent two combined options for recycling the same biomass into high-profile structures, aimed primarily at the aerospace industry. Moreover, as discussed above, the effect on the aluminum alloy can be compared and the forces to which they are subjected might be of a similar type, most particularly in terms of their hardness and impact. Both cases considered, MMCs and FMLs involved over time many lignocellulosic residues, starting from the most classical bast species, i.e., flax, hemp, sisal, kenaf, etc., and extending also to less diffuse ones, especially in view of the introduction of biomass as secondary, or residual, raw materials. Full article
Show Figures

Figure 1

12 pages, 756 KiB  
Article
Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
by Yogesh S. Sable, Hanumant M. Dharmadhikari, Sunil A. More and Ioannis E. Sarris
J. Compos. Sci. 2025, 9(6), 259; https://doi.org/10.3390/jcs9060259 - 25 May 2025
Cited by 1 | Viewed by 558
Abstract
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The [...] Read more.
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The experiment used a stir casting aluminum alloy with a 7.5% silicon carbide metal matrix composite (MMC), adjusting parameters like the wire tension (WT), servo voltage (SV), peak current (IP), pulse on time (TON), and pulse off time (TOFF). An ANN model was created to forecast the surface roughness. The study developed an ANN model to forecast surface roughness in Al/SiC composites during WEDM, demonstrating its accuracy in identifying the link between surface finish and input parameters, thereby improving the surface quality. The ANN model accurately predicted the surface roughness based on WEDM parameters, with strong correlations between predictions and actual data, demonstrating its ability to estimate surface quality accurately. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 49232 KiB  
Article
Tribological Study of Multi-Walled Carbon Nanotube-Reinforced Aluminum 7075 Using Response Surface Methodology and Multi-Objective Genetic Algorithm
by Endalkachew Mosisa Gutema, Mahesh Gopal and Hirpa G. Lemu
J. Compos. Sci. 2025, 9(3), 137; https://doi.org/10.3390/jcs9030137 - 14 Mar 2025
Cited by 1 | Viewed by 623
Abstract
Aluminum metal matrix composites (AlMMCs) are widely employed in the aerospace and automotive industries due to their greater qualities in comparison to the base alloy. Adding nanocomposites like multi-walled carbon nanocomposites (MWCNTs) to aluminum enhances its mechanical properties. In the current research, aluminum [...] Read more.
Aluminum metal matrix composites (AlMMCs) are widely employed in the aerospace and automotive industries due to their greater qualities in comparison to the base alloy. Adding nanocomposites like multi-walled carbon nanocomposites (MWCNTs) to aluminum enhances its mechanical properties. In the current research, aluminum 7075 with MWCNT particles was prepared and characterized to study its tribological behaviors, such as its hardness and specific wear rate. The experiment was designed with varying weight percentages of MWCNTs of 0.5, 1.0, and 1.5, and these were fabricated using powder metallurgy, employing compacting pressures of 300, 400, and 500 MPa and sintering temperatures of 400, 450, and 500 °C. Further, the experimental setup was designed using Design-Expert V13 to examine the impact of influencing parameters. A second-order mathematical model was developed via central composite design (CCD) using a response surface methodology (RSM), and the performance characteristics were analyzed using an analysis of variance (ANOVA). The hardness (HV) and specific wear rate (SWR) were measured using a hardness tester and pin-on-disk apparatus. From the results thus obtained, it was observed that an increase in compacting pressure and sintering temperature tends to increase the hardness and specific wear rate. An increasing weight percentage of MWCNTs increased their hardness, while the SWR was less between the weight percentages 0.9 and 1.3. A multi-objective genetic algorithm (MOGA) was trained and evaluated to provide the best feasible solutions. The MOGA suggested sixteen sets of non-dominated Pareto optimal solutions that had the best and lowest predicted values. The confirmatory analytical results and predicted characteristics were found to be excellent and consistent with the experiential values. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

15 pages, 5550 KiB  
Article
Microstructure of Neutron-Irradiated Al3Hf-Al Thermal Neutron Absorber Materials
by Donna Post Guillen, Janelle Wharry, Yu Lu, Michael Wu, Jeremy Sharapov and Matthew Anderson
Materials 2025, 18(4), 833; https://doi.org/10.3390/ma18040833 - 14 Feb 2025
Cited by 1 | Viewed by 1104
Abstract
A thermal neutron-absorbing metal matrix composite (MMC) comprised of Al3Hf particles in an aluminum matrix was developed to filter out thermal neutrons and create a fast flux environment for material testing in a mixed-spectrum nuclear reactor. Intermetallic Al3Hf particles [...] Read more.
A thermal neutron-absorbing metal matrix composite (MMC) comprised of Al3Hf particles in an aluminum matrix was developed to filter out thermal neutrons and create a fast flux environment for material testing in a mixed-spectrum nuclear reactor. Intermetallic Al3Hf particles capture thermal neutrons and are embedded in a highly conductive aluminum matrix that provides conductive cooling of the heat generated due to thermal neutron capture by the hafnium. These Al3Hf-Al MMCs were fabricated using powder metallurgy via hot pressing. The specimens were neutron-irradiated to between 1.12 and 5.38 dpa and temperatures ranging from 286 °C to 400 °C. The post-irradiation examination included microstructure characterization using transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy. This study reports the microstructural observations of four irradiated samples and one unirradiated control sample. All the samples showed the presence of oxide at the particle–matrix interface. The irradiated specimens revealed needle-like structures that extended from the surface of the Al3Hf particles into the Al matrix. An automated segmentation tool was implemented based on a YOLO11 computer vision-based approach to identify dislocation lines and loops in TEM images of the irradiated Al-Al3Hf MMCs. This work provides insight into the microstructural stability of Al3Hf-Al MMCs under irradiation, supporting their consideration as a novel neutron absorber that enables advanced spectral tailoring. Full article
(This article belongs to the Special Issue Advanced Characterization Techniques on Nuclear Fuels and Materials)
Show Figures

Figure 1

18 pages, 10593 KiB  
Article
Characterization and Sliding Wear Behavior of Low-Pressure Cold-Spray Al-Al2O3 and Al-Al2O3/TiN Composite Coatings
by Pudsadee Chupong, Mahathep Sukpat and Karuna Tuchinda
Metals 2025, 15(1), 51; https://doi.org/10.3390/met15010051 - 8 Jan 2025
Viewed by 889
Abstract
Low-pressure cold-spray (LPCS) aluminum is widely used for coating depositions in various engineering applications but is limited by its low hardness and poor wear resistance. To improve these properties, ceramic particles are added to form metallic matrix composites (MMCs). High-pressure processes can achieve [...] Read more.
Low-pressure cold-spray (LPCS) aluminum is widely used for coating depositions in various engineering applications but is limited by its low hardness and poor wear resistance. To improve these properties, ceramic particles are added to form metallic matrix composites (MMCs). High-pressure processes can achieve effective MMC coatings but are costly and energy intensive. LPCS has been studied to develop an Al-based MMC at a lower cost. To ensure the adaptation of developed LPCS coating in engineering applications, the behavior of the coating under certain loads needs to be established. This study investigates the sliding wear behavior, friction characteristics, hardness, and microstructure of Al-Al2O3 and Al-Al2O3/TiN composite coatings deposited using LPCS at 1 MPa and 450 °C. The effect of adding 25 wt% TiN to the Al-Al2O3 composite was explored. Although the addition of TiN did not significantly enhance the hardness of the coating, SEM analysis revealed notable differences in wear behavior between the two coatings. The Al-Al2O3/TiN composite exhibited better wear resistance, which was attributed to the reduced formation of powdery wear debris and improved crack suppression. These findings highlight the potential of TiN reinforcement to enhance the tribological performance of LPCS aluminum-based coatings, offering a promising solution for improving wear resistance in engineering applications. Full article
(This article belongs to the Special Issue Metal Composite Materials and Their Interface Behavior)
Show Figures

Figure 1

40 pages, 49163 KiB  
Article
Investigations on Microstructure, Mechanical, and Wear Properties, with Strengthening Mechanisms of Al6061-CuO Composites
by Subrahmanya Ranga Viswanath Mantha, Gonal Basavaraja Veeresh Kumar, Ramakrishna Pramod and Chilakalapalli Surya Prakasha Rao
J. Manuf. Mater. Process. 2024, 8(6), 245; https://doi.org/10.3390/jmmp8060245 - 5 Nov 2024
Cited by 5 | Viewed by 1441
Abstract
Metal matrix composites (MMCs) reinforced with Copper Oxide (CuO) and Aluminum (Al) 6061 (Al6061) alloys are being studied to determine their mechanical, physical, and dry sliding wear properties. The liquid metallurgical stir casting method with ultrasonication was employed for fabricating Al6061-CuO microparticle-reinforced composite [...] Read more.
Metal matrix composites (MMCs) reinforced with Copper Oxide (CuO) and Aluminum (Al) 6061 (Al6061) alloys are being studied to determine their mechanical, physical, and dry sliding wear properties. The liquid metallurgical stir casting method with ultrasonication was employed for fabricating Al6061-CuO microparticle-reinforced composite specimens by incorporating 2–6 weight percent (wt.%) CuO particles into the matrix. Physical, mechanical, and dry sliding wear properties were investigated in Al6061-CuO MMCs, adopting ASTM standards. The experimental results show that adding CuO to an Al6061 alloy increases its density by 7.54%, hardness by 45.78%, and tensile strength by 35.02%, reducing percentage elongation by 40.03%. Dry wear measurements on a pin-on-disc apparatus show that Al6061-CuO MMCs outperform the Al6061 alloy in wear resistance. Al6061-CuO MMCs’ strength has been predicted using many strengthening mechanism models and its elastic modulus through several models. The strengthening of Al6061-CuO MMCs is predominantly influenced by thermal mismatch, more so than by Hall–Petch, Orowan strengthening, and load transfer mechanisms. As the CuO content in the composite increases, the strengthening effects due to dislocation interactions between the matrix and reinforcement particles, the coefficient of thermal expansion (CTE) difference, grain refinement, and load transfer consistently improve. The Al6061-CuO MMCs were also examined using an optical microscope (OM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscopy (SEM) before and after fracture and wear tests. The investigation shows that an Al6061-CuO composite material with increased CuO reinforcement showed higher mechanical and tribological characteristics. Full article
Show Figures

Figure 1

19 pages, 6447 KiB  
Article
Effects of Input Parameters on the Hole Quality During the Drilling of Al Metal Matrix Composites
by Alokesh Pramanik and Animesh Kumar Basak
Designs 2024, 8(6), 111; https://doi.org/10.3390/designs8060111 - 31 Oct 2024
Cited by 3 | Viewed by 1396
Abstract
The extensive industrial applications of aluminum (Al) metal matrix composites (MMCs) require optimal drilling conditions in the manufacturing industries. The effects of drilling variables, for instance, the point angle, spindle speed and feed rate on torque, thrust force, burr, surface quality, and dimensional [...] Read more.
The extensive industrial applications of aluminum (Al) metal matrix composites (MMCs) require optimal drilling conditions in the manufacturing industries. The effects of drilling variables, for instance, the point angle, spindle speed and feed rate on torque, thrust force, burr, surface quality, and dimensional errors were analysed while producing holes in MMC. The results showed that the torque and thrust force decreased with an increase in point angle and speed but increased with the rise in feed rate. Similar trends were also noticed for the chip thickness as these parameters vary. The burr height, circularity, and diameter error at the exit and entrance of the workpiece material were highly impacted by the point angle. In addition, the feed rate showed a strong influence on torque, burr height at the exit of the workpiece, and chip thickness. Thrust force and circularity as well as the diameter error at the exit of the workpieces were highly affected by the feed rate. The variation in surface roughness was not significant with the variations in the parameters considered in this investigation. Full article
Show Figures

Figure 1

22 pages, 6645 KiB  
Article
Comparative Analysis of Boron-Al Metal Matix Composite and Aluminum Alloy in Enhancing Dynamic Performance of Vertical-Axis Wind Turbine
by Abhishek Agarwal and Linda Mthembu
Processes 2024, 12(10), 2288; https://doi.org/10.3390/pr12102288 - 18 Oct 2024
Cited by 4 | Viewed by 1299
Abstract
This study aims to assess the dynamic performance of the vertical-axis wind turbine (VAWT) with the help of conventional aluminum (Al) and the boron Al metal matrix composite (MMC). The simulations were conducted using ANSYS software and involved natural frequencies, mode shapes, a [...] Read more.
This study aims to assess the dynamic performance of the vertical-axis wind turbine (VAWT) with the help of conventional aluminum (Al) and the boron Al metal matrix composite (MMC). The simulations were conducted using ANSYS software and involved natural frequencies, mode shapes, a mass participation factor, and Campbell plots. The results of static structural analysis show that the boron Al MMC is vastly superior to the aluminum alloy because there is a 65% reduction of equivalent stress with a 70% reduction of deformation compared to the aluminum alloy. These results show that boron Al MMC can withstand higher loads with lesser stress; the structure remains compact and rigid in its working conditions. From the findings, it can be ascertained that employing boron Al MMC improves VAWT power, efficiency, and robustness. However, the critical speed that was established in the dynamic analysis of boron Al MMC requires extraordinary control and the use of dampening systems, thereby avoiding resonance. Overall, boron Al MMC contributes to significant enhancements in the VAWTs’ mechanical and operational characteristics; however, the material’s complete potential can be achieved only with proper maintenance and employing the correct damping techniques. Information about these two materials will allow for a better understanding of their comparative efficacy and their potential application in the further development of VAWTs. Full article
(This article belongs to the Special Issue Processing, Manufacturing and Properties of Metal and Alloys)
Show Figures

Figure 1

24 pages, 11628 KiB  
Article
A Comprehensive Evaluation of Electrochemical Performance of Aluminum Hybrid Nanocomposites Reinforced with Alumina (Al2O3) and Graphene Oxide (GO)
by Muhammad Faizan Khan, Abdul Samad Mohammed and Ihsan-ul-Haq Toor
Metals 2024, 14(9), 1057; https://doi.org/10.3390/met14091057 - 16 Sep 2024
Cited by 1 | Viewed by 1341
Abstract
The electrochemical performance of in-house developed, spark plasma-sintered, Aluminum metal–matrix composites (MMCs) was evaluated using different electrochemical techniques. X-ray diffraction (XRD) and Raman spectra were used to characterize the nanocomposites along with FE-SEM and EDS for morphological, structural, and elemental analysis, respectively. The [...] Read more.
The electrochemical performance of in-house developed, spark plasma-sintered, Aluminum metal–matrix composites (MMCs) was evaluated using different electrochemical techniques. X-ray diffraction (XRD) and Raman spectra were used to characterize the nanocomposites along with FE-SEM and EDS for morphological, structural, and elemental analysis, respectively. The highest charge transfer resistance (Rct), lowest corrosion current density, lowest electrochemical potential noise (EPN), and electrochemical current noise (ECN) were observed for GO-reinforced Al-MMC. The addition of honeycomb-like structure in the Al matrix assisted in blocking the diffusion of Cl or SO4−2. However, poor wettability in between Al matrix and Al2O3 reinforcement resulted in the formation of porous interface regions, leading to a degradation in the corrosion resistance of the composite. Post-corrosion surface analysis by optical profilometer indicated that, unlike its counterparts, the lowest surface roughness (Ra) was provided by GO-reinforced MMC. Full article
Show Figures

Figure 1

20 pages, 53035 KiB  
Article
Effect of Diffusion on the Ultimate Axial Load of Complex-Shaped Al-SiC Samples: A Molecular Dynamics Study
by Mostafa Fathalian, Eligiusz Postek, Masoud Tahani and Tomasz Sadowski
Molecules 2024, 29(14), 3343; https://doi.org/10.3390/molecules29143343 - 16 Jul 2024
Cited by 3 | Viewed by 1336
Abstract
Metal matrix composites (MMCs) combine metal with ceramic reinforcement, offering high strength, stiffness, corrosion resistance, and low weight for diverse applications. Al-SiC, a common MMC, consists of an aluminum matrix reinforced with silicon carbide, making it ideal for the aerospace and automotive industries. [...] Read more.
Metal matrix composites (MMCs) combine metal with ceramic reinforcement, offering high strength, stiffness, corrosion resistance, and low weight for diverse applications. Al-SiC, a common MMC, consists of an aluminum matrix reinforced with silicon carbide, making it ideal for the aerospace and automotive industries. In this work, molecular dynamics simulations are performed to investigate the mechanical properties of the complex-shaped models of Al-SiC. Three different volume fractions of SiC particles, precisely 10%, 15%, and 25%, are investigated in a composite under uniaxial tensile loading. The tensile behavior of Al-SiC composites is evaluated under two loading directions, considering both cases with and without diffusion effects. The results show that diffusion increases the ultimate tensile strength of the Al-SiC composite, particularly for the 15% SiC volume fraction. Regarding the shape of the SiC particles considered in this research, the strength of the composite varies in different directions. Specifically, the ultimate strength of the Al-SiC composite with 25% SiC reached 11.29 GPa in one direction, and 6.63 GPa in another, demonstrating the material’s anisotropic mechanical behavior when diffusion effects are considered. Young’s modulus shows negligible change in the presence of diffusion. Furthermore, diffusion improves toughness in Al-SiC composites, resulting in higher values compared to those without diffusion, as evidenced by the 25% SiC volume fraction composite (2.086 GPa) versus 15% (0.863 GPa) and 10% (1.296 GPa) SiC volume fractions. Full article
(This article belongs to the Special Issue Advances in Computational and Theoretical Chemistry—2nd Edition)
Show Figures

Graphical abstract

25 pages, 31123 KiB  
Article
Empirical Investigation of Properties for Additive Manufactured Aluminum Metal Matrix Composites
by Shuang Bai and Jian Liu
Appl. Mech. 2024, 5(3), 450-474; https://doi.org/10.3390/applmech5030026 - 11 Jul 2024
Cited by 1 | Viewed by 1612
Abstract
Laser additive manufacturing with mixed powders of aluminum alloy and silicon carbide (SiC) or boron carbide (B4C) is investigated in this experiment. With various mixing ratios of SiC/Al to form metal matrix composites (MMC), their mechanical and physical properties are empirically [...] Read more.
Laser additive manufacturing with mixed powders of aluminum alloy and silicon carbide (SiC) or boron carbide (B4C) is investigated in this experiment. With various mixing ratios of SiC/Al to form metal matrix composites (MMC), their mechanical and physical properties are empirically investigated. Parameters such as laser power, scan speed, scan pattern, and hatching space are optimized to obtain the highest density for each mixing ratio of SiC/Al. The mechanical and thermal properties are systematically investigated and compared with and without heat treatment. It shows that 2 wt% of SiC obtained the highest strength and Young’s modulus. Graded composite additive manufacturing (AM) of MMC is also fabricated and characterized. Various types of MMC devices, such as heat sink using graded SiC MMC and grid type three-dimensional (3D) neutron collimators using boron carbide (B4C), were also fabricated to demonstrate their feasibility for applications. Full article
Show Figures

Figure 1

13 pages, 6528 KiB  
Article
On the Possibility of Using Secondary Alloys in the Production of Aluminum-Based Metal Matrix Composite
by Lucia Lattanzi, Anders E. W. Jarfors and Samuel A. Awe
Crystals 2024, 14(4), 333; https://doi.org/10.3390/cryst14040333 - 31 Mar 2024
Viewed by 1434
Abstract
Aluminum-based composites provide tribological performance and thermophysical properties that, combined with being lightweight, are suitable for their application in automotive brake discs. Aluminum alloys allow the use of secondary materials to produce composites, with the drawback of several elements, impurities, and oxides that [...] Read more.
Aluminum-based composites provide tribological performance and thermophysical properties that, combined with being lightweight, are suitable for their application in automotive brake discs. Aluminum alloys allow the use of secondary materials to produce composites, with the drawback of several elements, impurities, and oxides that can harm the mechanical and thermophysical properties. This preliminary study explored the mechanical and thermophysical performance of a composite material produced with a secondary matrix alloy. Overall, the results are promising, with a minimal decrease in mechanical and thermophysical properties despite clustered silicon carbide particles in the composite with the secondary matrix. The challenges in effectively dispersing carbides in the melt seem linked to aluminum oxides, and future microstructural investigations will aim to clarify this aspect. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

16 pages, 7375 KiB  
Article
A Finite-Element-Analysis-Based Feasibility Study for Optimizing Pantograph Performance Using Aluminum Metal Matrix Composites
by Masengo Ilunga and Abhishek Agarwal
Processes 2024, 12(3), 445; https://doi.org/10.3390/pr12030445 - 22 Feb 2024
Cited by 5 | Viewed by 2033
Abstract
A pantograph is a key component on the tops of trains that allows them to efficiently tap electricity from power lines and propel them. This study investigates the possibility of using metal matrix composites (MMCs), specifically aluminum MMCs, as a material for making [...] Read more.
A pantograph is a key component on the tops of trains that allows them to efficiently tap electricity from power lines and propel them. This study investigates the possibility of using metal matrix composites (MMCs), specifically aluminum MMCs, as a material for making pantograph parts regarding the dynamics of the train’s movement and external meteorological conditions. In this study, a computer-aided design (CAD) model is created using PTC Creo design software and moves to detailed finite element analysis (FEA) simulations executed by the ANSYS software suite. These simulations are important in examining how the dynamic performance of pantographs can vary. The incorporation of Al MMC materials into the structure of the pantograph resulted in significant improvements in structural robustness, with equal stress reduced by up to 0.18%. Similarly, aluminum MMC materials reduced the strain energy by 0.063 millijoules. The outcomes not only give a new perspective to the implementation of modern materials but also provide a breakthrough concept to improve efficiency and increase the service life of pantographs. This study marks a significant milestone in the theoretical development of essential train systems, furnishing eminent perspectives toward the tactical development of transportation infrastructure by suggesting new avenues for the smooth incorporation of smart materials in railway transportation, which would contribute to a more sustainable and reliable future. Full article
(This article belongs to the Special Issue Recent Advances in Functional Materials Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 6726 KiB  
Article
Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al2O3 Sinter
by Paweł Szymański, Paweł Popielarski, Dorota Czarnecka-Komorowska, Robert Sika and Katarzyna Gawdzińska
Materials 2023, 16(18), 6106; https://doi.org/10.3390/ma16186106 - 7 Sep 2023
Cited by 1 | Viewed by 1660
Abstract
Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of [...] Read more.
Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known for having excellent abrasive properties, which makes them an attractive material in certain fields of technology. The biggest problem in their production process is their low ability to infiltrate ceramics with alloys and consequently the difficulty of filling a ceramic preform. The castability of such composites has not yet been researched in detail. The aim of this study was to create aluminum metal matrix composite castings based on aluminum alloys (AlSi11) reinforced with an Al2O3 sinter preform using a Castability Trials spiral mold, and then to determine the degree of saturation with the liquid metal of the produced ceramic shaped body (Castability Trials spiral). For the selected AlSi11 alloy, the liquidus (Tl) and solidus (Ts) temperatures were determined by performing thermal-derivation analysis during cooling, which is Tl—579.3 °C and Ts—573.9 °C. The resultant pressure necessary for the infiltration process was estimated for the reinforcement capillaries with the following dimensions: 10, 15, 20, 25, 30 and 35 microns. The following values were used to determine the capillary pressure (Pk): surface tension of the alloy—σ = 840 mN/m; the extreme wetting angle of the reinforcement by the metal—θ = 136°. It has been experimentally confirmed that for the vacuum saturation process, the estimated resultant pressure enables saturation of reinforcement with capillaries larger than 25 microns, provided that the alloy temperature does not drop lower than the infiltration temperature. After the experiment, the time and route of the liquid metal flow in the spiral were determined. On the basis of the obtained values, a simulation was developed and initial assumptions such as saturation time, alloy temperature, reinforcement and mold temperature were verified. The energy balance showed that the saturation limit temperature was Tk = 580.7 °C for the reinforcement temperature of 575 °C. In contrast to the above, the assumption that the temperature of the metal after equalizing the temperature of the composite components must be higher than the liquidus temperature (Tliq = 579.3 °C) for the aluminum alloy used must be fulfilled. After the experiment, the time and path of the liquid metal flow in the spiral were determined. Then, on the basis of the obtained values, a simulation was developed, and the initial assumptions (saturation time and temperature) were verified. Full article
(This article belongs to the Special Issue Modern Foundry Materials and Technologies)
Show Figures

Figure 1

21 pages, 10067 KiB  
Article
Ductile Fracture Prediction in Hole Hemming of Aluminum and Magnesium Sheets
by Mohammad Mehdi Kasaei, José A. C. Pereira, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Metals 2023, 13(9), 1559; https://doi.org/10.3390/met13091559 - 6 Sep 2023
Cited by 9 | Viewed by 1646
Abstract
The present work proposes a suitable approach for predicting ductile fracture in a new joining process by plastic deformation called hole hemming. This process creates a combined form- and force-fit joint and enables the joining of lightweight materials with varying formability without requiring [...] Read more.
The present work proposes a suitable approach for predicting ductile fracture in a new joining process by plastic deformation called hole hemming. This process creates a combined form- and force-fit joint and enables the joining of lightweight materials with varying formability without requiring heating or auxiliary elements. In this process, the joinability of materials is limited by the occurrence of fracture in the outer sheet, highlighting the crucial need to accurately predict its damage during the process design phase. In this study, five different fracture criteria, including the McClintock, Rice–Tracey, Normalized Cockroft–Latham, and Brozzo and Modified Mohr–Coulomb (MMC) criteria, are examined during the joining of a challenging combination of lightweight materials (aluminum AA6082-T4 and magnesium AZ31). These criteria are calibrated by a hybrid experimental–numerical method using three tests with distinct stress states. These criteria are then implemented into the finite element model of the hole hemming process, utilizing an appropriate user subroutine. The results show that the flange edge of the outer sheet is the most prone region to fracture during the joining process, and a criterion must be able to model the fracture behavior of the material from uniaxial tension to shear to accurately predict fracture in this area. Among the examined criteria, only the MMC criterion was capable of such modeling and accurately predicted the critical displacement of the punch in the hemming stage with a negligible error (about 1%). On the other hand, the prediction accuracy of the other criteria varied significantly depending on the calibration test, resulting in errors ranging from 8.6% to 75.5%. The error of 8.6% was achieved with the Normalized Cockroft–Latham criterion calibrated by a uniaxial tension test. Thus, based on the results, the MMC criterion is recommended for ductile fracture prediction in the hole hemming process, offering valuable insights to assist in process design. Full article
(This article belongs to the Special Issue Advances in Mechanical Joining Technologies)
Show Figures

Figure 1

Back to TopTop