Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = aluminized film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2180 KiB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 (registering DOI) - 5 Aug 2025
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

14 pages, 1911 KiB  
Article
Dielectric and Interface Properties of Aluminum-Laminated Lanthanum Oxide on Silicon for Nanoscale Device Applications
by Hei Wong, Weidong Li, Jieqiong Zhang and Jun Liu
Nanomaterials 2025, 15(13), 963; https://doi.org/10.3390/nano15130963 - 21 Jun 2025
Viewed by 330
Abstract
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties [...] Read more.
By embedding an aluminum-laminated layer within La2O3 thin films and subjecting them to high-temperature rapid thermal annealing, a La2O3/LaAlxOy/La2O3 sandwich dielectric was formed. This structure enhances the interface properties with both the silicon substrate and the metal gate electrode, improving current conduction. Comprehensive analysis using X-ray Photoelectron Spectroscopy (XPS) revealed that this novel process not only facilitates the formation of a high-quality lanthanum aluminate layer, as indicated with Al 2p peak at 74.5 eV, but also effectively suppresses silicate layer growth, as supported by the weak Si-O signal from both the Si 2s (153.9 eV) and O 1s (533 eV) peaks at the dielectric/Si interface in the Al-laminated samples. Fourier Transform Infrared (FTIR) spectroscopy revealed a significant reduction in the OH absorption peak at 3608 cm−1 OH-related band centered at 3433 cm−1. These improvements are attributed to the aluminum-laminated layer, which blocks oxygen and hydroxyl diffusion, the LaAlxOy layer scavenging interface silicon oxide, and the consumption of oxygen during LaAlxOy formation under thermal annealing. Electrical measurements confirmed that the dielectric films exhibited significantly lower interface and oxide trap densities compared to native La2O3 samples. This approach provides a promising method for fabricating high-quality lanthanum-based gate dielectric films with controlled dielectric/substrate interactions, making it suitable for nano-CMOS and memristive device applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

11 pages, 2922 KiB  
Article
Producing Freestanding Single-Crystal BaTiO3 Films through Full-Solution Deposition
by Guoqiang Xi, Hangren Li, Dongfei Lu, Xudong Liu, Xiuqiao Liu, Jie Tu, Qianqian Yang, Jianjun Tian and Linxing Zhang
Nanomaterials 2024, 14(17), 1456; https://doi.org/10.3390/nano14171456 - 7 Sep 2024
Viewed by 1841
Abstract
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material’s inherent water solubility, the methods [...] Read more.
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material’s inherent water solubility, the methods used for the preparation of epitaxial films have mainly been limited to high-vacuum techniques, which greatly limits these films’ development. In this study, we prepared freestanding single-crystal perovskite oxide thin films on strontium aluminate using a simple, easy-to-develop, and low-cost chemical full-solution deposition technique. We demonstrate that a reasonable choice of solvent molecules can effectively reduce the damage to the strontium aluminate layer, allowing successful epitaxy of perovskite oxide thin films, such as 2-methoxyethanol and acetic acid. Molecular dynamics simulations further demonstrated that this is because of their stronger adsorption capacity on the strontium aluminate surface, which enables them to form an effective protective layer to inhibit the hydration reaction of strontium aluminate. Moreover, the freestanding film can still maintain stable ferroelectricity after release from the substrate, which provides an idea for the development of single-crystal perovskite oxide films and creates an opportunity for their development in the field of flexible electronic devices. Full article
Show Figures

Figure 1

13 pages, 3316 KiB  
Article
Enhancement of Polypropylene Adhesion through Acetylated Kraft Lignin Incorporation
by Manuel Patricio da Silva Bisneto, Rogerio Ramos de Sousa Junior, Guilherme Elias Saltarelli Garcia and Demetrio Jackson dos Santos
Biomass 2024, 4(3), 920-932; https://doi.org/10.3390/biomass4030051 - 2 Sep 2024
Cited by 1 | Viewed by 1496
Abstract
Lignin, one of Earth’s most abundant biopolymers, is rich in phenolic and aliphatic functional groups, offering significant potential for chemical modification. Technical lignin, a byproduct of the kraft process, is produced in large quantities annually and can be used to enhance the properties [...] Read more.
Lignin, one of Earth’s most abundant biopolymers, is rich in phenolic and aliphatic functional groups, offering significant potential for chemical modification. Technical lignin, a byproduct of the kraft process, is produced in large quantities annually and can be used to enhance the properties of polymer matrices such as polypropylene (PP). PP, a widely used nonpolar polymer, suffers from low surface free energy, leading to poor adhesion properties. Combining PP with polar, renewable-source polymers like lignin can improve these properties. This study investigates the direct acetylation of kraft lignin (KL) to improve its dispersion in the PP matrix and enhance wettability and adhesion. The acetylation of KL was confirmed through FTIR and DSC analyses. PP and acetylated KL (AKL) were combined and processed via continuous extrusion. The blends’ thermal and mechanical properties, lignin dispersion, and wettability were evaluated. Additionally, PP and PP–lignin films were bonded to aluminized biaxially oriented polypropylene (BOPP) for peel tests. Results showed increased surface free energy and improved adhesion, particularly in samples with AKL due to better dispersion. This direct acetylation route significantly enhances PP’s surface free energy and adhesion, presenting a sustainable alternative to fossil-based materials and promoting the use of lignin, a renewable and low-cost polymer. Full article
Show Figures

Figure 1

19 pages, 10726 KiB  
Article
Study on the Performance of Nano-Zinc Oxide/Basalt Fiber Composite Modified Asphalt and Mixture
by Chaojie Li, Zhenxia Li, Tengteng Guo, Yuanzhao Chen, Junying Ma, Jing Wang and Lihui Jin
Coatings 2024, 14(1), 23; https://doi.org/10.3390/coatings14010023 - 25 Dec 2023
Cited by 4 | Viewed by 1423
Abstract
In order to improve the service quality of roads and resolve the problem of defects in the conventional asphalt pavement in service, this paper uses a 5.3% aluminate coupling agent to modify the surface of nano-ZnO and prepares a composite-modified asphalt with nano-ZnO [...] Read more.
In order to improve the service quality of roads and resolve the problem of defects in the conventional asphalt pavement in service, this paper uses a 5.3% aluminate coupling agent to modify the surface of nano-ZnO and prepares a composite-modified asphalt with nano-ZnO and basalt fiber (BF) as modifiers. First, the basic performance of different types of asphalt was investigated by means of a rotary film oven experiment. Then, a dynamic shear rheology experiment was carried out to analyze the high-temperature anti-rutting performance of the composite-modified asphalt at different temperatures and frequencies. Then, using a bending creep stiffness test, the low-temperature properties of the composite-modified asphalt were investigated. Finally, the microstructure and modification mechanisms of the composite-modified asphalt were analyzed with scanning electron microscopy and infrared spectroscopy. The results indicate that the anti-aging performance of the nano-ZnO/BF composite-modified asphalt is significantly improved after adding fibers to the modified asphalt. The average mass loss ratio is only 0.192%. At 46 °C, the rutting coefficient of the composite-modified asphalt was increased by 62.3%. The frequency master curve is always at the highest position and continues to rise, indicating a significant improvement in the high-temperature anti-rutting performance of the composite-modified asphalt. At 24 °C, the creep stiffness modulus S value of the composite-modified asphalt increased by 24.9%; moreover, there is no obvious effect of improving low temperature, but the variation range of creep tangent slope m of the modified asphalt after aging is decreased, which further shows that the addition of a modifier can decrease the influence of aging on asphalt. Nanoparticles are uniformly dispersed in the asphalt and form a three-dimensional interconnected structure with BF, which effectively improves the overall performance of the asphalt. Nano-ZnO and fibers have weak chemical reactions in matrix asphalt, but they are physically dispersed and compatible. Full article
(This article belongs to the Special Issue Recent Development in Novel Green Asphalt Materials for Pavement)
Show Figures

Figure 1

18 pages, 7858 KiB  
Article
Effects of Electrolyte Compositions and Electrical Parameters on Micro-Arc Oxidation Coatings on 7075 Aluminum Alloy
by Aqeel Abbas, Ting-Yi Wang and Hsin-Chih Lin
J. Compos. Sci. 2023, 7(11), 472; https://doi.org/10.3390/jcs7110472 - 11 Nov 2023
Cited by 10 | Viewed by 2185
Abstract
Aluminum alloys are widely used in a variety of industries nowadays for their high strength-to-weight ratio, good formability, low density, and recyclability. However, their poor corrosion and wear resistance properties restrict their applications. This study investigated the effects of electrical parameters and electrolyte [...] Read more.
Aluminum alloys are widely used in a variety of industries nowadays for their high strength-to-weight ratio, good formability, low density, and recyclability. However, their poor corrosion and wear resistance properties restrict their applications. This study investigated the effects of electrical parameters and electrolyte compositions on the microstructures of micro-arc oxidation (MAO) film on a 7075 Al alloy substrate. The morphology, microstructure, and compositions of the MAO coatings were characterized using a scanning electron microscope (SEM), X-ray diffraction (XRD), and an electron probe micro-analyzer (EPMA). Furthermore, measurements of microhardness, corrosion resistance, and wear resistance were also conducted. The cathodic current and duty ratio are proportional to film thickness, which consequently improves the wear and corrosion resistance. The microstructural observations of the aluminate-based coatings revealed that increasing cathodic current reduces the pancake-like structures, and a lot of small pores appear on the top of the coatings, which makes the surface smoother. Moreover, the aluminate-based coatings are mainly composed of α-Al2O3 and γ-Al2O3, while the silicate-based coatings mainly consist of γ-Al2O3 and a small amount of α-Al2O3 phase. Due to the phase compositions, the microhardness of the aluminate-based coatings can reach 1300~1500 HV and exhibit better wear resistance than silicate-based coatings. Full article
(This article belongs to the Special Issue Multifunctional Composites, Volume III)
Show Figures

Figure 1

16 pages, 4658 KiB  
Article
Preparation and Innovative Design Applications of Paper-Based Aluminized Film
by Yi Zhou, Wei Zhou and Guobin Xia
Coatings 2023, 13(10), 1751; https://doi.org/10.3390/coatings13101751 - 10 Oct 2023
Viewed by 1735
Abstract
The growing demand for sustainable and innovative materials in product design has spurred interest in unconventional resources. Despite this, a gap persists in the effective utilization of paper-based materials, particularly with metallic coatings, for creative applications. This study aims to address this by [...] Read more.
The growing demand for sustainable and innovative materials in product design has spurred interest in unconventional resources. Despite this, a gap persists in the effective utilization of paper-based materials, particularly with metallic coatings, for creative applications. This study aims to address this by exploring the technical methods for applying Aluminum (Al) coatings to paper substrates. We developed paper-based aluminum coatings and combined them with corrugated cardboard to create a novel material for product development. Utilizing high-strength specialty paper as the substrate, an orthogonal experiment was conducted to identify key process parameters. Factors such as target–substrate distance, working pressure, current intensity, and coating duration were evaluated for their impact on the properties of the Al film. Our research culminated in the production of high-quality Al-plated corrugated cardboard. Capitalizing on its unique attributes, we employed a design approach that led to the creation of innovative furniture featuring structural forms like folding and insertion. This study not only introduces a new range of Al-plated corrugated cardboard products but also expands the potential applications of paper-based aluminized film in material-based product design. Full article
(This article belongs to the Special Issue Advanced Surface Technology and Application)
Show Figures

Figure 1

20 pages, 18394 KiB  
Article
Laser-Induced Ignition and Combustion of Single Micron-Sized Al-Li Alloy Particles in High Pressure Air/N2
by Dunhui Xu, Fang Wang, Shengji Li, Xuefeng Huang, Heping Li and Yanhui Guo
Aerospace 2023, 10(3), 299; https://doi.org/10.3390/aerospace10030299 - 17 Mar 2023
Cited by 26 | Viewed by 3261
Abstract
To solve the problems associated with micron-sized aluminum (Al), including sintering, agglomeration, and slag deposition during the combustion of aluminized propellants, aluminum–lithium (Al-Li) alloy, prepared by introducing a small amount of Li (1.0 wt.%) into Al, was used in place of Al. Then, [...] Read more.
To solve the problems associated with micron-sized aluminum (Al), including sintering, agglomeration, and slag deposition during the combustion of aluminized propellants, aluminum–lithium (Al-Li) alloy, prepared by introducing a small amount of Li (1.0 wt.%) into Al, was used in place of Al. Then, the ignition and combustion characteristics of single micron-sized Al-Li alloy particles were investigated in detail using a self-built experimental apparatus and multiple characterization methods. The ignition probability, ignition delay time, flame propagation rate, burn time, combustion temperature, flame radiation spectra, and microexplosion characteristics were obtained. The TG-DSC results demonstrated that, as compared to the counterpart Al, the Al-Li alloy had a lower ignition temperature. The emission lines of AlO revealed the gas-phase combustion of the Al-Li alloy, and thus the Al-Li alloy exhibited a mixed combustion mode, including surface combustion and gas-phase combustion. Moreover, during combustion, a microexplosion occurred, which increased the combustion rate and reduced the burn lifetime. The ambient pressure had a significant effect on the ignition and combustion characteristics of the Al-Li alloy, and the ignition delay time and burn time exponentially decreased as the ambient pressure enhanced. The combustion temperature of the Al-Li alloy at atmospheric pressure was slightly higher than those at elevated pressures. The Al-Li alloy burned in N2, but no microexplosion was observed. Finally, the ignition and combustion mechanism of the Al-Li alloy in air was demonstrated by combining SEM, EDS, and XRD analyses of the material and residues. The results suggest that the addition of Li promoted the combustion performance of Al by changing the surface structure of the oxide film and the combustion mode. Full article
(This article belongs to the Special Issue Combustion Evaluation and Control of Solid Rocket Motors)
Show Figures

Figure 1

14 pages, 5082 KiB  
Article
Construction Sheets Made of High-Performance Flame-Retardant Nonwoven Fabrics and Combustion-Resistant Polyurethane Foam: Preparation Process and Property Evaluations
by Bing-Chiuan Shiu, Chen-Hung Huang, Hua-Lin Yang, Yueh-Sheng Chen, Ching-Wen Lou and Jia-Horng Lin
Polymers 2023, 15(4), 953; https://doi.org/10.3390/polym15040953 - 15 Feb 2023
Cited by 3 | Viewed by 2982
Abstract
In this study, nonwoven fabrics, rigid polyurethane foam (RPUF), Basalt woven fabrics, and an aluminum foil film mold are used to produce multi-functional composite sheets with flame-retardant, sound-absorbing, and electromagnetic-shielding functions. The nonwoven layer is composed of Nomex fibers, flame-retardant PET fibers, and [...] Read more.
In this study, nonwoven fabrics, rigid polyurethane foam (RPUF), Basalt woven fabrics, and an aluminum foil film mold are used to produce multi-functional composite sheets with flame-retardant, sound-absorbing, and electromagnetic-shielding functions. The nonwoven layer is composed of Nomex fibers, flame-retardant PET fibers, and low-melting-point (LMPET) fibers via the needle rolling process. The optimal Nomex fiber/flame-retardant PET fiber/LMPET fiber (N/F/L) nonwoven fabrics are then combined with rigid polyurethane (PU) foam, Basalt woven fabric, and an aluminum foil film mold, thereby producing nonwoven/rigid polyurethane foam/Basalt woven fabric composite sheets that are wrapped in the aluminized foil film. The test results indicate that formed with a foaming density of 60 kg/m3 and 10 wt% of a flame retardant, the composite sheets exhibit electromagnetic interference shielding efficacy (EMI SE) that exceeds 40 dB and limiting oxygen index (LOI) that is greater than 26. The efficient and highly reproducible experimental design proposed in this study can produce multifunctional composite sheets that feature excellent combustion resistance, sound absorption, and EMI SE and are suitable for use in the transportation, industrial factories, and building wall fields. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

11 pages, 3667 KiB  
Article
A Two-Dimensional Guidance Strategy to Fabricate Perovskite Gadolinium Aluminate Ceramic Film
by Tao Zhang, Lu Chen, Jing Yao and Qi Zhu
Coatings 2022, 12(12), 1927; https://doi.org/10.3390/coatings12121927 - 8 Dec 2022
Cited by 1 | Viewed by 2080
Abstract
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this [...] Read more.
Gadolinium aluminate is an effective host for doping with various ions, and it can emit various colors. However, it is not easy to prepare transparent ceramics of gadolinium aluminate using traditional methods, although transparent ceramics are very suitable for solid lighting. In this work, a two-dimensional guidance strategy has been successfully carried out for perovskite-structured aluminate ceramic film. Through the two-dimensional interfacial reaction, GdAlO3:Eu3+ (GAP:Eu3+) transparent ceramic films were successfully fabricated using nanosheets exfoliated from layered gadolinium hydroxide, a rare earth source. The final films were tested by characterization techniques, including XRD, SEM, TEM, FT-IR, PLE/PL spectroscopy, temperature-dependent PL spectroscopy, and luminescence decay analysis. The perovskite film of transparent ceramics can be obtained by calcining LRH nanosheets on the substrate of amorphous alumina at 1550 °C in air with a reaction time of 2 h. During the interface reaction, temperature-dependent element diffusion takes the dominant role, and increased reactants take in the reaction with increasing calcination temperature. The grain for ceramic film is only 2–5 μm, which is much smaller than that for bulk ceramic. This is mainly due to the lower temperature and the interface diffusion. Ceramic film has a high transmittance larger than 90% at the visible range. Upon UV excitation at 254 nm, the film exhibits intense emission at the red wavelength range. The outcomes described in this work may have wide implications for transparent ceramics and layered rare-earth hydroxides. Full article
(This article belongs to the Special Issue Ceramic Films and Coatings: Properties and Applications)
Show Figures

Figure 1

21 pages, 3949 KiB  
Article
Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers
by Fausto Zamparini, Carlo Prati, Paola Taddei, Andrea Spinelli, Michele Di Foggia and Maria Giovanna Gandolfi
Int. J. Mol. Sci. 2022, 23(22), 13914; https://doi.org/10.3390/ijms232213914 - 11 Nov 2022
Cited by 63 | Viewed by 7844
Abstract
The aim of the study was to analyze the chemical–physical properties and bioactivity (apatite-forming ability) of three recently introduced premixed bioceramic root canal sealers containing varied amounts of different calcium silicates (CaSi): a dicalcium and tricalcium silicate (1–10% and 20–30%)-containing sealer with zirconium [...] Read more.
The aim of the study was to analyze the chemical–physical properties and bioactivity (apatite-forming ability) of three recently introduced premixed bioceramic root canal sealers containing varied amounts of different calcium silicates (CaSi): a dicalcium and tricalcium silicate (1–10% and 20–30%)-containing sealer with zirconium dioxide and tricalcium aluminate (CERASEAL); a tricalcium silicate (5–15%)-containing sealer with zirconium dioxide, dimethyl sulfoxide and lithium carbonate (AH PLUS BIOCERAMIC) and a dicalcium and tricalcium silicate (10% and 25%)-containing sealer with calcium aluminate, tricalcium aluminate and tantalite (NEOSEALER FLO). An epoxy resin-based sealer (AH PLUS) was used as control. The initial and final setting times, radiopacity, flowability, film thickness, open pore volume, water absorption, solubility, calcium release and alkalizing activity were tested. The nucleation of calcium phosphates and/or apatite after 28 days aging in Hanks balanced salt solution (HBSS) was evaluated by ESEM-EDX, vibrational IR and micro-Raman spectroscopy. The analyses showed for NeoSealer Flo and AH Plus the longest final setting times (1344 ± 60 and 1300 ± 60 min, respectively), while shorter times for AH Plus Bioceramic and Ceraseal (660 ± 60 and 720 ± 60 min, respectively). Radiopacity, flowability and film thickness complied with ISO 6876/12 for all tested materials. A significantly higher open pore volume was observed for NeoSealer Flo, AH Plus Bioceramic and Ceraseal when compared to AH Plus (p < 0.05), significantly higher values were observed for NeoSealer Flo and AH Plus Bioceramic (p < 0.05). Ceraseal and AH Plus revealed the lowest solubility. All CaSi-containing sealers released calcium and alkalized the soaking water. After 28 days immersion in HBSS, ESEM-EDX analyses revealed the formation of a mineral layer that covered the surface of all bioceramic sealers, with a lower detection of radiopacifiers (Zirconium for Ceraseal and AH Plus Bioceramic, Tantalum for NeoSealer Flo) and an increase in calcium, phosphorous and carbon. The calcium phosphate (CaP) layer was more evident on NeoSealer Flo and AH Plus Bioceramic. IR and micro-Raman revealed the formation of calcium carbonate on the surface of all set materials. A thin layer of a CaP phase was detected only on AH Plus Bioceramic and NeoSealer Flo. Ceraseal did not show CaP deposit despite its highest calcium release among all the tested CaSi-containing sealers. In conclusion, CaSi-containing sealers met the required chemical and physical standards and released biologically relevant ions. Slight/limited apatite nucleation was observed in relation to the high carbonation processes. Full article
(This article belongs to the Special Issue Advances in Dental Bio-Nanomaterials (II))
Show Figures

Figure 1

12 pages, 2743 KiB  
Article
Synthesis of Cobalt–Nickel Aluminate Spinels Using the Laser-Induced Thermionic Vacuum Arc Method and Thermal Annealing Processes
by Rodica Vladoiu, Aurelia Mandes, Virginia Dinca, Elena Matei and Silviu Polosan
Nanomaterials 2022, 12(21), 3895; https://doi.org/10.3390/nano12213895 - 4 Nov 2022
Cited by 3 | Viewed by 1790
Abstract
To obtain highly homogeneous cobalt–nickel aluminate spinels with small crystallite sizes, CoNiAl alloy thin films were primarily deposited using Laser-induced Thermionic Vacuum Arc (LTVA) as a versatile method for performing processing of multiple materials, such as alloy/composite thin films, at a nanometric scale. [...] Read more.
To obtain highly homogeneous cobalt–nickel aluminate spinels with small crystallite sizes, CoNiAl alloy thin films were primarily deposited using Laser-induced Thermionic Vacuum Arc (LTVA) as a versatile method for performing processing of multiple materials, such as alloy/composite thin films, at a nanometric scale. Following thermal annealing in air, the CoNiAl metallic thin films were transformed into ceramic oxidic (Co,Ni)Al2O4 with controlled composition and crystallinity suitable for thermal stability and chemical resistance devices. Structural analysis revealed the formation of (Co,Ni)Al2O4 from the amorphous CoNiAl alloys. The mean crystallite size of the spinels was around 15 nm. Thermal annealing induces a densification process, increasing the film thickness together with the migration process of the aluminum toward the surface of the samples. The sheet resistance changed drastically from 200–240 Ω/sq to more than 106 Ω/sq, revealing a step-by-step conversion of the metallic character of the thin film to a dielectric oxidic structure. These cermet materials can be used as inert anodes for the solid oxide fuel cells (SOFCs), which require not only high stability with respect to oxidizing gases such as oxygen, but also good electrical conductivity. These combination metal–ceramics are known as bi-layer anodes. By controlling the crystallite size and the interplay between the oxide/metal composite, a balance between stability and electrical conductivity can be achieved. Full article
(This article belongs to the Special Issue Applied Physics and Nanomaterials)
Show Figures

Figure 1

11 pages, 4327 KiB  
Article
Novel Composite Planks Made of Shape Memory Polyurethane Foaming Material with Two-Step Foaming Process
by Jan-Yi Lin, Mei-Chen Lin, Bing-Chiuan Shiu, Ching-Wen Lou, Jia-Horng Lin and Yueh-Sheng Chen
Polymers 2022, 14(2), 275; https://doi.org/10.3390/polym14020275 - 11 Jan 2022
Cited by 5 | Viewed by 2557
Abstract
In this study, shape memory polyurethane (SMP) foaming material is used as the main material that is incorporated with carbon fiber woven fabrics via two-step foaming method, forming sandwich-structured composite planks. The process is simple and efficient and facilitates any composition as required. [...] Read more.
In this study, shape memory polyurethane (SMP) foaming material is used as the main material that is incorporated with carbon fiber woven fabrics via two-step foaming method, forming sandwich-structured composite planks. The process is simple and efficient and facilitates any composition as required. The emphasis of this study is protection performances, involving puncture resistance, buffer absorption, and electromagnetic wave shielding effectiveness. The proposed soft PU foam composite planks consist of the top and bottom PU foam layers and an interlayer of carbon fiber woven fabric. Meanwhile, PU foam is incorporated with carbon staple fibers and an aluminized PET film for reinforcement requirements and electromagnetic wave shielding effectiveness, respectively. Based on the test results, the two-step foaming process can provide the PU foam composite planks with excellent buffer absorption, puncture resistance, and electromagnetic wave shielding effectiveness; therefore, the proposed composite planks contribute a novel structure composition to SMP, enabling it to be used as a protective composite. In addition, the composites contain conductive material and thus exhibit a greater diversity of functions. Full article
Show Figures

Graphical abstract

18 pages, 6905 KiB  
Review
Aluminate-Based Nanostructured Luminescent Materials: Design of Processing and Functional Properties
by Rocío Estefanía Rojas-Hernandez, Fernando Rubio-Marcos, José Francisco Fernandez and Irina Hussainova
Materials 2021, 14(16), 4591; https://doi.org/10.3390/ma14164591 - 16 Aug 2021
Cited by 6 | Viewed by 3794
Abstract
Interest in luminescent materials has been continuously growing for several decades, looking for the development of new systems with optimized optical properties. Nowadays, research has been focused on the development of materials that satisfy specific market requirements in optoelectronics, radioelectronics, aerospace, bio-sensing, pigment [...] Read more.
Interest in luminescent materials has been continuously growing for several decades, looking for the development of new systems with optimized optical properties. Nowadays, research has been focused on the development of materials that satisfy specific market requirements in optoelectronics, radioelectronics, aerospace, bio-sensing, pigment applications, etc. Despite the fact that several efforts have made in the synthesis of organic luminescent materials, their poor stability under light exposure limits their use. Hence, luminescent materials based on inorganic phosphors are considered a mature topic. Within this subject, glass, glass-ceramics and ceramics have had great technological relevance, depending on the final applications. Supposing that luminescent materials are able to withstand high temperatures, have a high strength and, simultaneously, possess high stability, ceramics may be considered promising candidates to demonstrate required performance. In an ongoing effort to find a suitable synthesis method for their processing, some routes to develop nanostructured luminescent materials are addressed in this review paper. Several ceramic families that show luminescence have been intensively studied in the last few decades. Here, we demonstrate the synthesis of particles based on aluminate using the methods of sol-gel or molten salts and the production of thin films using screen printing assisted by a molten salt flux. The goal of this review is to identify potential methods to tailor the micro-nanostructure and to tune both the emission and excitation properties, focusing on emerging strategies that can be easily transferred to an industrial scale. Major challenges, opportunities, and directions of future research are specified. Full article
(This article belongs to the Special Issue Collection of Papers in Materials Science from Estonia)
Show Figures

Figure 1

12 pages, 9546 KiB  
Article
Initial Corrosion Behavior of 12Cr1MoV Steel in Thiosulfate-Containing Sodium Aluminate Solution
by Jingjiu Yuan, Chaoyi Chen, Junqi Li, Bianli Quan, Yuanpei Lan, Linzhu Wang, Hui Fu and Jiaxuan Gai
Metals 2020, 10(10), 1283; https://doi.org/10.3390/met10101283 - 25 Sep 2020
Cited by 13 | Viewed by 2258
Abstract
When alumina is produced by the Bayer process with high-sulfur bauxite, the sulfur would strongly corrode the 12Cr1MoV steel made heat exchanger. This study investigated the initial corrosion behavior of the 12Cr1MoV steel exposed to a thiosulfate-containing sodium aluminate (TCSA) solution under the [...] Read more.
When alumina is produced by the Bayer process with high-sulfur bauxite, the sulfur would strongly corrode the 12Cr1MoV steel made heat exchanger. This study investigated the initial corrosion behavior of the 12Cr1MoV steel exposed to a thiosulfate-containing sodium aluminate (TCSA) solution under the evaporation conditions of alumina production. The obtained corrosion rate equation is V = 6.306·exp(−0.71). As corrosion progressed, with the corrosion product film growing, the corrosion current density declines slowly, and the corrosion resistance of the steel is increased. At 1–3 days, the corrosion product film consisted of FeO, Fe2O3, and FeOOH. S2O32− lead to corrosion in local areas of the steel and pits appeared. AlO2 is transformed into Al(OH)3 and filled in the corrosion pits. At 4 and 5 days, Fe3O4 is generated in the outermost layer, and Al(OH)3 is shed from the corrosion pits. The corrosion mechanism of 12Cr1MoV steel in a TCSA solution is proposed based on the experimental results. Full article
Show Figures

Figure 1

Back to TopTop