Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = altimetry Cal/Val

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 7057 KiB  
Article
Local Gravity and Geoid Improvements around the Gavdos Satellite Altimetry Cal/Val Site
by Georgios S. Vergos, Ilias N. Tziavos, Stelios Mertikas, Dimitrios Piretzidis, Xenofon Frantzis and Craig Donlon
Remote Sens. 2024, 16(17), 3243; https://doi.org/10.3390/rs16173243 - 1 Sep 2024
Cited by 1 | Viewed by 2641
Abstract
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The [...] Read more.
The isle of Gavdos, and its wider area, is one of the few places worldwide where the calibration and validation of altimetric satellites has been carried out during the last, more than, two decades using dedicated techniques at sea and on land. The sea-surface calibration employed for the determination of the bias in the satellite altimeter’s sea-surface height relies on the use of a gravimetric geoid in collocation with data from tide gauges, permanent global navigation satellite system (GNSS) receivers, as well as meteorological and oceanographic sensors. Hence, a high-accuracy and high-resolution gravimetric geoid model in the vicinity of Gavdos and its surrounding area is of vital importance. The existence of such a geoid model resides in the availability of reliable, in terms of accuracy, and dense, in terms of spatial resolution, gravity data. The isle of Gavdos presents varying topographic characteristics with heights larger than 400 m within small spatial distances of ~7 km. The small size of the island and the significant bathymetric variations in its surrounding marine regions make the determination of the gravity field and the geoid a challenging task. Given the above, the objective of the present work was two-fold. First, to collect new land gravity data over the isle of Gavdos in order to complete the existing database and cover parts of the island where voids existed. Relative gravity campaigns have been designed to cover as homogenously as possible the entire island of Gavdos and especially areas where the topographic gradient is large. The second focus was on the determination of a high-resolution, 1×1, and high-accuracy gravimetric geoid for the wider Gavdos area, which will support activities on the determination of the absolute altimetric bias. The relative gravity campaigns have been designed and carried out employing a CG5 relative gravity meter along with geodetic grade GNSS receivers to determine the geodetic position of the acquired observations. Geoid determination has been based on the newly acquired and historical gravity data, GNSS/Leveling observations, and topography and bathymetry databases for the region. The modeling was based on the well-known remove–compute–restore (RCR) method, employing least-squares collocation (LSC) and fast Fourier transform (FFT) methods for the evaluation of the Stokes’ integral. Modeling of the long wavelength contribution has been based on EIGEN6c4 and XGM2019e global geopotential models (GGMs), while for the contribution of the topography, the residual terrain model correction has been employed using both the classical, space domain, and spectral approaches. From the results achieved, the final geoid model accuracy reached the ±1–3 cm level, while in terms of the absolute differences to the GNSS/Leveling data per baseline length, 28.4% of the differences were below the 1cmSij [km] level and 55.2% below the 2cmSij [km]. The latter improved drastically to 52.8% and 81.1%, respectively, after deterministic fit to GNSS/Leveling data, while in terms of the relative differences, the final geoid reaches relative uncertainties of 11.58 ppm (±1.2 cm) for baselines as short as 0–10 km, which improves to 10.63 ppm (±1.1 cm) after the fit. Full article
Show Figures

Figure 1

42 pages, 18118 KiB  
Article
The ESA Permanent Facility for Altimetry Calibration in Crete: Advanced Services and the Latest Cal/Val Results
by Stelios P. Mertikas, Craig Donlon, Costas Kokolakis, Dimitrios Piretzidis, Robert Cullen, Pierre Féménias, Marco Fornari, Xenophon Frantzis, Achilles Tripolitsiotis, Jérôme Bouffard, Alessandro Di Bella, François Boy and Jerome Saunier
Remote Sens. 2024, 16(2), 223; https://doi.org/10.3390/rs16020223 - 5 Jan 2024
Cited by 2 | Viewed by 2762
Abstract
Two microwave transponders have been operating in west Crete and Gavdos to calibrate international satellite radar altimeters at the Ku-band. One has been continuously operating for about 8 years at the CDN1 Cal/Val site in the mountains of Crete, and the other at [...] Read more.
Two microwave transponders have been operating in west Crete and Gavdos to calibrate international satellite radar altimeters at the Ku-band. One has been continuously operating for about 8 years at the CDN1 Cal/Val site in the mountains of Crete, and the other at the GVD1 Cal/Val site on Gavdos since 11 October 2021. This ground infrastructure is also supported at present by four sea-surface Cal/Val sites operating, some of them for over 20 years, while two additional such Cal/Val sites are under construction. This ground infrastructure is part of the European Space Agency Permanent Facility for Altimetry Calibration (PFAC), and as of 2015, it has been producing continuously a time series of range biases for Sentinel-3A, Sentinel-3B, Sentinel-6 MF, Jason-2, Jason-3, and CryoSat-2. This work presents a thorough examination of the transponder Cal/Val responses to understand and determine absolute biases for all satellite altimeters overflying this ground infrastructure. The latest calibration results for the Jason-3, Copernicus Sentinel-3A and -3B, Sentinel-6 MF, and CryoSat-2 radar altimeters are described based on four sea-surface and two transponder Cal/Val sites of the PFAC in west Crete, Greece. Absolute biases for Jason-3, Sentinel-6 MF, Sentinel-3A, Sentinel-3B, and CryoSat-2 are close to a few mm, determined using various techniques, infrastructure, and settings. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry II)
Show Figures

Figure 1

35 pages, 43461 KiB  
Article
CryoSat Long-Term Ocean Data Analysis and Validation: Final Words on GOP Baseline-C
by Marc Naeije, Alessandro Di Bella, Teresa Geminale and Pieter Visser
Remote Sens. 2023, 15(22), 5420; https://doi.org/10.3390/rs15225420 - 19 Nov 2023
Cited by 4 | Viewed by 2832
Abstract
ESA’s Earth explorer mission CryoSat-2 has an ice-monitoring objective, but it has proven to also be a valuable source of observations for measuring impacts of climate change over oceans. In this paper, we report on our long-term ocean data analysis and validation and [...] Read more.
ESA’s Earth explorer mission CryoSat-2 has an ice-monitoring objective, but it has proven to also be a valuable source of observations for measuring impacts of climate change over oceans. In this paper, we report on our long-term ocean data analysis and validation and give our final words on CryoSat-2’s Geophysical Ocean Products (GOP) Baseline-C. The validation is based on a cross comparison with concurrent altimetry and with in situ tide gauges. The highlights of our findings include GOP Baseline-C showing issues with the ionosphere and pole tide correction. The latter gives rise to an east–west pattern in range bias. Between Synthetic Aperture Radar (SAR) and Low-Resolution Mode (LRM), a 1.4 cm jump in range bias is explained by a 0.5 cm jump in sea state bias, which relates to a significant wave height SAR-LRM jump of 10.5 cm. The remaining 0.9 cm is due to a range bias between ascending and descending passes, exhibiting a clear north–south pattern and ascribed to a timing bias of +0.367 ms, affecting both time-tag and elevation. The overall range bias of GOP Baseline-C is established at −2.9 cm, referenced to all calibrated concurrent altimeter missions. The bias drift does not exceed 0.2 mm/yr, leading to the conclusion that GOP Baseline-C is substantially stable and measures up to the altimeter reference missions. This is confirmed by tide gauge comparison with a selected set of 309 PSMSL tide gauges over 2010–2022: we determined a correlation of R = 0.82, a mean standard deviation of σ=5.7 cm (common reference and GIA corrected), and a drift of 0.17 mm/yr. In conclusion, the quality, continuity, and reference of GOP Baseline-C is exceptionally good and stable over time, and no proof of any deterioration or platform aging has been found. Any improvements for the next CryoSat-2 Baselines could come from sea state bias optimization, ionosphere and pole tide correction improvement, and applying a calibrated value for any timing biases. Full article
Show Figures

Figure 1

31 pages, 36347 KiB  
Article
Absolute Calibration of the Chinese HY-2B Altimetric Mission with Fiducial Reference Measurement Standards
by Stelios P. Mertikas, Mingsen Lin, Dimitrios Piretzidis, Costas Kokolakis, Craig Donlon, Chaofei Ma, Yufei Zhang, Yongjun Jia, Bo Mu, Xenophon Frantzis, Achilles Tripolitsiotis and Lei Yang
Remote Sens. 2023, 15(5), 1393; https://doi.org/10.3390/rs15051393 - 1 Mar 2023
Cited by 6 | Viewed by 3160
Abstract
This research and collaboration work aims at the calibration and validation (Cal/Val) of the Chinese HY-2B satellite altimeter based upon two permanent Cal/Val facilities: (1) the China Altimetry Calibration Cooperation Plan in Qingdao, Bohai Sea and the Wanshan islands, China and (2) the [...] Read more.
This research and collaboration work aims at the calibration and validation (Cal/Val) of the Chinese HY-2B satellite altimeter based upon two permanent Cal/Val facilities: (1) the China Altimetry Calibration Cooperation Plan in Qingdao, Bohai Sea and the Wanshan islands, China and (2) the permanent facility for altimetry calibration established by the European Space Agency in Crete, Greece. The HY-2B satellite altimeter and its radiometer have been calibrated and monitored using uniform, standardized procedures, as well as protocols and best practices, and they also built upon trusted and indisputable reference standards at both Cal/Val infrastructures in Europe and China. The HY-2B altimeter is thus monitored in a coordinated, absolute, homogeneous, long-term and worldwide manner. Calibration of altimeters is accomplished by examining satellite observations in open seas against reference measurements. Comparisons are established through precise satellite positioning, water level observations, GPS buoys and reference models (geoid, mean dynamic topography, earth tides, troposphere and ionosphere), all defined at the Cal/Val sites. In this work, the final uncertainty for the altimeter bias will be attributed to several individual sources of uncertainty, coming from observations in water level, atmosphere, absolute positioning, reference surface models, transfer of heights from Cal/Val sites to satellite observations, etc. Through this project, the procedures, protocols and best practices, originally developed in the course of the ESA FRM4ALT project, are updated, upgraded and followed at both Cal/Val facilities in Europe and China. All in all, the HY-2B satellite altimeter observes the sea level quite well and within its specifications. Full article
(This article belongs to the Special Issue Advances in Satellite Altimetry)
Show Figures

Figure 1

14 pages, 4166 KiB  
Technical Note
Validation of Recent Altimeter Missions at Non-Dedicated Tide Gauge Stations in the Southeastern North Sea
by Saskia Esselborn, Tilo Schöne, Julia Illigner, Robert Weiß, Thomas Artz and Xinge Huang
Remote Sens. 2022, 14(1), 236; https://doi.org/10.3390/rs14010236 - 5 Jan 2022
Cited by 3 | Viewed by 3179
Abstract
Consistent calibration and monitoring is a basic prerequisite for providing a reliable time series of global and regional sea-level variations from altimetry. The precisions of sea-level measurements and regional biases for six altimeter missions (Jason-1/2/3, Envisat, Saral, Sentinel-3A) are assessed in this study [...] Read more.
Consistent calibration and monitoring is a basic prerequisite for providing a reliable time series of global and regional sea-level variations from altimetry. The precisions of sea-level measurements and regional biases for six altimeter missions (Jason-1/2/3, Envisat, Saral, Sentinel-3A) are assessed in this study at 11 GNSS-controlled tide gauge stations in the German Bight (SE North Sea) for the period 2002 to 2019. The gauges are partly located at the open water, and partly at the coast close to mudflats. The altimetry is extracted at virtual stations with distances from 2 to 24 km from the gauges. The processing is optimized for the region and adjusted for the comparison with instantaneous tide gauge readings. An empirical correction is developed to account for mean height gradients and slight differences of the tidal dynamics between the gauge and altimetry, which improves the agreement between the two data sets by 15–75%. The precision of the altimeters depends on the location and mission and ranges from 1.8 to 3.7 cm if the precision of the gauges is 2 cm. The accuracy of the regional mission biases is strongly dependent on the mean sea surface heights near the stations. The most consistent biases are obtained based on the CLS2011 model with mission-dependent accuracies from 1.3 to 3.4 cm. Hence, the GNSS-controlled tide gauges operated operationally by the German Waterway and Shipping Administration (WSV) might complement the calibration and monitoring activities at dedicated CalVal stations. Full article
(This article belongs to the Special Issue Coastal Area Observations Based on Satellite Altimetry Data)
Show Figures

Figure 1

39 pages, 17832 KiB  
Article
The ESA Permanent Facility for Altimetry Calibration: Monitoring Performance of Radar Altimeters for Sentinel-3A, Sentinel-3B and Jason-3 Using Transponder and Sea-Surface Calibrations with FRM Standards
by Stelios Mertikas, Achilleas Tripolitsiotis, Craig Donlon, Constantin Mavrocordatos, Pierre Féménias, Franck Borde, Xenophon Frantzis, Costas Kokolakis, Thierry Guinle, George Vergos, Ilias N. Tziavos and Robert Cullen
Remote Sens. 2020, 12(16), 2642; https://doi.org/10.3390/rs12162642 - 16 Aug 2020
Cited by 24 | Viewed by 5962
Abstract
This work presents the latest calibration results for the Copernicus Sentinel-3A and -3B and the Jason-3 radar altimeters as determined by the Permanent Facility for Altimetry Calibration (PFAC) in west Crete, Greece. Radar altimeters are used to provide operational measurements for sea surface [...] Read more.
This work presents the latest calibration results for the Copernicus Sentinel-3A and -3B and the Jason-3 radar altimeters as determined by the Permanent Facility for Altimetry Calibration (PFAC) in west Crete, Greece. Radar altimeters are used to provide operational measurements for sea surface height, significant wave height and wind speed over oceans. To maintain Fiducial Reference Measurement (FRM) status, the stability and quality of altimetry products need to be continuously monitored throughout the operational phase of each altimeter. External and independent calibration and validation facilities provide an objective assessment of the altimeter’s performance by comparing satellite observations with ground-truth and in-situ measurements and infrastructures. Three independent methods are employed in the PFAC: Range calibration using a transponder, sea-surface calibration relying upon sea-surface Cal/Val sites, and crossover analysis. Procedures to determine FRM uncertainties for Cal/Val results have been demonstrated for each calibration. Biases for Sentinel-3A Passes No. 14, 278 and 335, Sentinel-3B Passes No. 14, 71 and 335, as well as for Jason-3 Passes No. 18 and No. 109 are given. Diverse calibration results by various techniques, infrastructure and settings are presented. Finally, upgrades to the PFAC in support of the Copernicus Sentinel-6 ‘Michael Freilich’, due to launch in November 2020, are summarized. Full article
(This article belongs to the Special Issue Calibration and Validation of Satellite Altimetry)
Show Figures

Graphical abstract

20 pages, 5347 KiB  
Article
Calibration of an Airborne Interferometric Radar Altimeter over the Qingdao Coast Sea, China
by Lei Yang, Yongsheng Xu, Xinghua Zhou, Lin Zhu, Qiufu Jiang, Hanwei Sun, Ge Chen, Panlong Wang, Stelios P. Mertikas, Yanguang Fu, Qiuhua Tang and Fangjie Yu
Remote Sens. 2020, 12(10), 1651; https://doi.org/10.3390/rs12101651 - 21 May 2020
Cited by 20 | Viewed by 5067
Abstract
Calibration/Validation (Cal/Val) of satellite altimeters is fundamental for monitoring onboard sensor performance and ensuring long-term data quality. As altimeter technology has been evolving rapidly from profile to wide swath and interferometric altimetry, different requirements regarding Cal/Val have emerged. Most current Cal/Val technology has [...] Read more.
Calibration/Validation (Cal/Val) of satellite altimeters is fundamental for monitoring onboard sensor performance and ensuring long-term data quality. As altimeter technology has been evolving rapidly from profile to wide swath and interferometric altimetry, different requirements regarding Cal/Val have emerged. Most current Cal/Val technology has been developed for conventional profile altimeters, whereby satellite observations are compared against measurements at one point along orbit lines. However, the application of this type of Cal/Val technique to swath interferometric altimeters with two-dimensional measurements is difficult. Here, we propose a new strategy for the evaluation of interferometric altimeters based on comparison of wave-induced sea surface elevation (WSSE) spectra from one- and two-dimensional measurements. This method assumes that the WSSE variance of an equilibrium wave field is uniform and can be measured equivalently in the space or time domains. The method was first tested with simulated data and then used to evaluate the performance of an airborne interferometric radar altimeter system (AIRAS) using Global Navigation Satellite System (GNSS) buoy measurements. The differences between the WSSE variances from the AIRAS and two GNSS buoys were below 8 cm2, corresponding to a standard deviation of 2.8 cm, which could serve as a reference for the WSSE error over the scale range of waves. The correlation coefficient between the AIRAS and GNSS buoys was approximately 0.90, indicating that the error was small relative to the WSSE signals. In addition, the sea surface height (SSH) difference measured by the AIRAS was compared with that derived from the GNSS buoys at two sites. The results indicated that the error of the SSH difference was 3 cm. This approach represents a possible technique for the Cal/Val of future spaceborne/airborne interferometric altimeters; however, additional experiments and applications are needed to verify the feasibility of this method. Full article
(This article belongs to the Special Issue Calibration and Validation of Satellite Altimetry)
Show Figures

Graphical abstract

40 pages, 17135 KiB  
Article
Fifteen Years of Cal/Val Service to Reference Altimetry Missions: Calibration of Satellite Altimetry at the Permanent Facilities in Gavdos and Crete, Greece
by Stelios P. Mertikas, Craig Donlon, Pierre Féménias, Constantin Mavrocordatos, Demitris Galanakis, Achilles Tripolitsiotis, Xenophon Frantzis, Ilias N. Tziavos, George Vergos and Thierry Guinle
Remote Sens. 2018, 10(10), 1557; https://doi.org/10.3390/rs10101557 - 27 Sep 2018
Cited by 31 | Viewed by 6264
Abstract
Satellite altimetry provides exceptional means for absolute and undisputable monitoring of changes in sea level and inland waters (rivers and lakes), over regional to global scales, with accuracy and with respect to the center of mass of the Earth. Altimetry system’s responses have [...] Read more.
Satellite altimetry provides exceptional means for absolute and undisputable monitoring of changes in sea level and inland waters (rivers and lakes), over regional to global scales, with accuracy and with respect to the center of mass of the Earth. Altimetry system’s responses have to be continuously monitored for their quality, biases, errors, drifts, etc. with calibration. Absolute calibration of altimeters is achieved by external and independent to satellite facilities on the ground. This is the mainstay for a continuous, homogenous, and reliable monitoring of the earth and its oceans. This paper describes the development of the Permanent Facility for Altimetry Calibration in Gavdos/Crete, Greece, as of 2001 along with its infrastructure and instrumentation. Calibration results are presented for the reference missions of Jason-1, Jason-2, and Jason-3. Then, this work continues with the determination of relative calibrations with respect to reference missions for Sentinel-3A, HY-2A, and SARAL/AltiKa. Calibration results are also given for Jason-2 and Jason-3 altimeters using the transponder at the CDN1 Cal/Val site on the mountains of Crete, with simultaneous comparisons against sea-surface calibration and during their tandem mission. Finally, the paper presents procedures for estimating uncertainties for altimeter calibration to meet the Fiducial Reference Measurement standards. Full article
(This article belongs to the Special Issue Radar Remote Sensing of Oceans and Coastal Areas)
Show Figures

Graphical abstract

Back to TopTop