Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = alternans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1386 KiB  
Article
An Exogenous NO Donor Provokes Mechanical Alternans in Normal Rat Atria and Impairs Sarcomere Contractility in Right Atrial Cardiomyocytes in Atrial Fibrillation
by Xenia Butova, Tatiana Myachina, Polina Mikhryakova, Raisa Simonova, Daniil Shchepkin and Anastasia Khokhlova
Biomolecules 2025, 15(5), 735; https://doi.org/10.3390/biom15050735 - 17 May 2025
Viewed by 403
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. AF is associated with a deficiency in nitric oxide (NO) production, which contributes to disturbances in the electrical and mechanical function of the atrial myocardium. NO donors are considered promising for the treatment and [...] Read more.
Atrial fibrillation (AF) is the most common arrhythmia worldwide. AF is associated with a deficiency in nitric oxide (NO) production, which contributes to disturbances in the electrical and mechanical function of the atrial myocardium. NO donors are considered promising for the treatment and prevention of AF, but their effects on atrial contractility are unclear. This study examines the direct impact of a low-molecular-weight NO donor, spermine-NONOate (NOC-22), on the contractile function of atrial cardiomyocytes in paroxysmal AF. To study whether an NO donor-induced increase in NO level causes chamber-specific changes in atrial contractility, we measured sarcomere length (SL) dynamics in contracting single cardiomyocytes from the rat left and right atria (LA, RA) using a 7-day acetylcholine-CaCl2-induced AF model. We showed that in control rats NOC-22 provoked alternans of sarcomere shortening in both LA and RA cardiomyocytes. In AF, NOC-22 decreased the sarcomere-shortening amplitudes and velocities of sarcomere shortening–relengthening and increased the magnitude of sarcomere-shortening alternans only in RA cardiomyocytes. The negative effects of NO donors on RA contractility warrant careful consideration of their use in AF treatment. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 1847 KiB  
Article
Prognostic Role of Electrocardiographic Alternans in Ischemic Heart Disease
by Ilaria Marcantoni, Erica Iammarino, Alessandro Dell’Orletta and Laura Burattini
J. Clin. Med. 2025, 14(8), 2620; https://doi.org/10.3390/jcm14082620 - 11 Apr 2025
Viewed by 486
Abstract
Background/Objectives: Noninvasive arrhythmic risk stratification in patients with ischemic heart disease is poor nowadays, and further investigations are needed. The most correct approach is based on the use of electrocardiogram (ECG) with the extraction of indices such as ECG alternans (ECGA). The [...] Read more.
Background/Objectives: Noninvasive arrhythmic risk stratification in patients with ischemic heart disease is poor nowadays, and further investigations are needed. The most correct approach is based on the use of electrocardiogram (ECG) with the extraction of indices such as ECG alternans (ECGA). The aim of this study is to monitor the ECG evidence of ischemic coronary artery occlusion by the ECGA and to verify its ability to monitor the time course of balloon inflation, with the final goal of contributing to the exploration of the prognostic role of ECGA in ischemic heart disease. Methods: The ECGA amplitude and magnitude were computed by the correlation method (CM) on the STAFF III database, where ischemic coronary artery occlusion was induced in a controlled manner through coronary artery blockage by balloon inflation. ECGA computed during balloon inflation was also compared with periods before and after the inflation. Results: ECGA values became statistically higher during inflation than in the pre-inflation period and increased as inflation time increased, although not always in a statistically significant manner. ECGA went from values in the range 4–7 µV and 169–396 µV·beat before inflation to values in the range 5–9 µV and 208–573 µV·beat during 5 min of inflation (resulting statistically higher than before inflation), returning towards values in the range 4–8 µV and 182–360 µV·beat after inflation for amplitude and magnitude, respectively. Conclusions: CM-based ECGA detection was able to track the balloon inflation period. Our ECGA investigation represents a contribution in the field of research exploring its prognostic role as a noninvasive electrical risk index in ischemic heart disease. Full article
Show Figures

Figure 1

19 pages, 1338 KiB  
Article
Activation of Small Conductance Ca2+-Activated K+ Channels Suppresses Electrical and Calcium Alternans in Atrial Myocytes
by Giedrius Kanaporis and Lothar A. Blatter
Int. J. Mol. Sci. 2025, 26(8), 3597; https://doi.org/10.3390/ijms26083597 - 11 Apr 2025
Viewed by 522
Abstract
Small conductance Ca2+-activated K+ (SK) channels are expressed in atria and ventricles. However, the data on the contribution of SK channels to atrial action potential (AP) repolarization are inconsistent. We investigated the effect of SK channel modulators on AP morphology [...] Read more.
Small conductance Ca2+-activated K+ (SK) channels are expressed in atria and ventricles. However, the data on the contribution of SK channels to atrial action potential (AP) repolarization are inconsistent. We investigated the effect of SK channel modulators on AP morphology in rabbit atrial myocytes and tested the hypothesis that pharmacological activation of SK channels suppresses pacing-induced Ca2+ transient (CaT) and AP duration (APD) alternans. At the cellular level, alternans are observed as beat-to-beat alternations in contraction, APD, and CaT amplitude, representing a risk factor for arrhythmias, including atrial fibrillation. Our results show that SK channel inhibition by apamin did not affect atrial APD under basal conditions. However, SK channel activation by NS309 significantly shortened APD, indicating the expression of functional SK channels. Moreover, the activation of SK channels reduced CaT amplitude and sarcoplasmic reticulum Ca2+ load. Activation of SK channels also suppressed pacing-induced CaT and APD alternans. KV7.1 potassium channel inhibition, simulating long QT syndrome type-1 conditions, increased the risk of atrial CaT alternans, which was abolished by the activation of SK channels. In summary, our data suggest that pharmacological modulation of SK channels can potentially reduce atrial arrhythmia risk arising from pathological APD prolongation. Full article
(This article belongs to the Special Issue Calcium Homeostasis of Cells in Health and Disease: 2nd Edition)
Show Figures

Figure 1

17 pages, 10432 KiB  
Article
Mechanistic Insights into Melatonin’s Antiarrhythmic Effects in Acute Ischemia-Reperfusion-Injured Rabbit Hearts Undergoing Therapeutic Hypothermia
by Hui-Ling Lee, Po-Cheng Chang, Hung-Ta Wo, Shih-Chun Chou and Chung-Chuan Chou
Int. J. Mol. Sci. 2025, 26(2), 615; https://doi.org/10.3390/ijms26020615 - 13 Jan 2025
Viewed by 1090
Abstract
The electrophysiological mechanisms underlying melatonin’s actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), [...] Read more.
The electrophysiological mechanisms underlying melatonin’s actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups. HF was induced by rapid right ventricular pacing. Melatonin was administered orally (10 mg/kg/day) for four weeks, and IR was created by 60-min coronary artery ligation and 30-min reperfusion. The hearts were then excised and Langendorff-perfused for optical mapping studies at normothermia, followed by TH. Melatonin significantly reduced ventricular fibrillation (VF) maintenance. In failing hearts, melatonin reduced the spatially discordant alternans (SDA) inducibility mainly by modulating intracellular Ca2+ dynamics via upregulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) and calsequestrin 2 and attenuating the downregulation of phosphorylated phospholamban protein expression. In control hearts, melatonin improved conduction slowing and reduced dispersion of action potential duration (APDdispersion) by upregulating phosphorylated connexin 43, attenuating the downregulation of SERCA2a and phosphorylated phospholamban and attenuating the upregulation of phosphorylated Ca2+/calmodulin-dependent protein kinase II. TH significantly retarded intracellular Ca2+ decay slowed conduction, and increased APDdispersion, thereby facilitating SDA induction, which counteracted the beneficial effects of melatonin in reducing VF maintenance. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

25 pages, 7079 KiB  
Article
Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart
by Roshan Paudel, Mohsin Saleet Jafri and Aman Ullah
Curr. Issues Mol. Biol. 2024, 46(11), 12886-12910; https://doi.org/10.3390/cimb46110767 - 13 Nov 2024
Viewed by 1904
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed [...] Read more.
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Graphical abstract

18 pages, 1290 KiB  
Review
Normalization of Electrocardiogram-Derived Cardiac Risk Indices: A Scoping Review of the Open-Access Literature
by Erica Iammarino, Ilaria Marcantoni, Agnese Sbrollini, Micaela Morettini and Laura Burattini
Appl. Sci. 2024, 14(20), 9457; https://doi.org/10.3390/app14209457 - 16 Oct 2024
Cited by 2 | Viewed by 1473
Abstract
Changes in cardiac function and morphology are reflected in variations in the electrocardiogram (ECG) and, in turn, in the cardiac risk indices derived from it. These variations have led to the introduction of normalization as a step to compensate for possible biasing factors [...] Read more.
Changes in cardiac function and morphology are reflected in variations in the electrocardiogram (ECG) and, in turn, in the cardiac risk indices derived from it. These variations have led to the introduction of normalization as a step to compensate for possible biasing factors responsible for inter- and intra-subject differences, which can affect the accuracy of ECG-derived risk indices in assessing cardiac risk. The aim of this work is to perform a scoping review to provide a comprehensive collection of open-access published research that examines normalized ECG-derived parameters used as markers of cardiac anomalies or instabilities. The literature search was conducted from February to July 2024 in the major global electronic bibliographic repositories. Overall, 39 studies were selected. Results suggest extensive use of normalization on heart rate variability-related indices (49% of included studies), QT-related indices (18% of included studies), and T-wave alternans (5% of included studies), underscoring their recognized importance and suggesting that normalization may enhance their role as clinically useful risk markers. However, the primary objective of the included studies was not to evaluate the effect of normalization itself; thus, further research is needed to definitively assess the impact and advantages of normalization across various ECG-derived parameters. Full article
(This article belongs to the Special Issue Intelligent Medicine and Health Care, 2nd Edition)
Show Figures

Figure 1

21 pages, 1778 KiB  
Article
Enhancing Comprehensive Assessments in Chronic Heart Failure Caused by Ischemic Heart Disease: The Diagnostic Utility of Holter ECG Parameters
by Ștefania-Teodora Duca, Ionuț Tudorancea, Mihai Ștefan Cristian Haba, Alexandru-Dan Costache, Ionela-Lăcrămioara Șerban, D. Robert Pavăl, Cătălin Loghin and Irina-Iuliana Costache-Enache
Medicina 2024, 60(8), 1315; https://doi.org/10.3390/medicina60081315 - 14 Aug 2024
Cited by 2 | Viewed by 2701
Abstract
Background and Objectives: Chronic heart failure (CHF) caused by ischemic heart disease (IHD) is the leading cause of death worldwide and presents significant health challenges. Effective management of IHD requires prevention, early detection, and treatment to improve patient outcomes. This study aims [...] Read more.
Background and Objectives: Chronic heart failure (CHF) caused by ischemic heart disease (IHD) is the leading cause of death worldwide and presents significant health challenges. Effective management of IHD requires prevention, early detection, and treatment to improve patient outcomes. This study aims to expand the diagnostic utility of various 24 h Holter ECG parameters, such as T-wave alternans (TWA), late ventricular potentials (LVPs), and heart rate variability (HRV) in patients with CHF caused by IHD. Additionally, we seek to explore the association between these parameters and other comorbid conditions affecting the prognosis of CHF patients. Materials and Methods: We conducted a prospective case–control study with 150 patients divided into two subgroups: 100 patients with CHF caused by IHD, and 50 patients in the control group. Data included medical history, physical examination, laboratory tests, echocardiography, and 24 h Holter monitoring. Results: Our comparative analysis demonstrated that both TWA and LVPs were significantly higher in patients with CHF compared to the control group (p < 0.01), indicating increased myocardial electrical vulnerability in CHF patients. Both time and frequency-domain HRV parameters were significantly lower in the CHF group. However, the ratio of NN50 to the total count of NN intervals (PNN50) showed a borderline significance (p = 0.06). While the low-frequency (LF) domain was significantly lower in CHF patients, the high-frequency (HF) domain did not differ significantly between groups. Acceleration and deceleration capacities were also significantly altered in CHF patients. Categorizing CHF patients by left ventricular ejection fraction (LVEF) revealed that the mean of the 5-min normal-to-normal intervals over the complete recording (SDNN Index) was significantly higher in patients with LVEF ≥ 50% compared to those with CHF with reduced EF and CHF with mildly reduced EF (p < 0.001), whereas the other HRV parameters showed no significant differences among the groups. Conclusions: Holter ECG parameters can become a reliable tool in the assessment of patients with CHF. The integration of multiple Holter ECG parameters, such as TWA, LVPs, and HRV, can significantly enhance the diagnostic assessment of CHF caused by IHD. This comprehensive approach allows for a more nuanced understanding of the patient’s condition and potential outcomes. Full article
Show Figures

Figure 1

15 pages, 4520 KiB  
Article
A Feature Selection-Incorporated Simulation Study to Reveal the Effect of Calcium Ions on Cardiac Repolarization Alternans during Myocardial Ischemia
by Kaihao Gu, Zihui Geng, Yuwei Yang, Shengjie Yan, Bo Hu and Xiaomei Wu
Appl. Sci. 2024, 14(15), 6789; https://doi.org/10.3390/app14156789 - 3 Aug 2024
Viewed by 1293
Abstract
(1) Background: The main factors and their interrelationships contributing to cardiac repolarization alternans (CRA) remain unclear. This study aimed to elucidate the calcium (Ca2+)-related mechanisms underlying myocardial ischemia (MI)-induced CRA. (2) Materials and Methods: CRA was induced using S1 stimuli for [...] Read more.
(1) Background: The main factors and their interrelationships contributing to cardiac repolarization alternans (CRA) remain unclear. This study aimed to elucidate the calcium (Ca2+)-related mechanisms underlying myocardial ischemia (MI)-induced CRA. (2) Materials and Methods: CRA was induced using S1 stimuli for pacing in an in silico ventricular model with MI. The standard deviations of nine Ca2+-related subcellular parameters among heartbeats from 100 respective nodes with and without alternans were chosen as features, including the maximum systole and end-diastole and corresponding differences in the Ca2+ concentration in the intracellular region([Ca2+]i) and junctional sarcoplasmic reticulum ([Ca2+]jsr), as well as the maximum opening of the L-type Ca2+ current (ICaL) voltage-dependent activation gate (d-gate), maximum closing of the inactivation gate (ff-gate), and the gated channel opening time (GCOT). Feature selection was applied to determine the importance of these features. (3) Results: The major parameters affecting CRA were the differences in [Ca2+]i at end-diastole, followed by the extent of d-gate activation and GCOT among beats. (4) Conclusions: MI-induced CRA is primarily characterized by functional changes in Ca2+ re-uptake, leading to alternans of [Ca2+]i and subsequent alternans of ICaL-dependent properties. The combination of computational simulation and machine learning shows promise in researching the underlying mechanisms of cardiac electrophysiology. Full article
Show Figures

Figure 1

18 pages, 7746 KiB  
Article
Arrhythmogenic Ventricular Remodeling by Next-Generation Bruton’s Tyrosine Kinase Inhibitor Acalabrutinib
by Yanan Zhao, Praloy Chakraborty, Julianna Tomassetti, Tasnia Subha, Stéphane Massé, Paaladinesh Thavendiranathan, Filio Billia, Patrick F. H. Lai, Husam Abdel-Qadir and Kumaraswamy Nanthakumar
Int. J. Mol. Sci. 2024, 25(11), 6207; https://doi.org/10.3390/ijms25116207 - 5 Jun 2024
Cited by 3 | Viewed by 1653
Abstract
Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton’s tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our [...] Read more.
Cardiac arrhythmias remain a significant concern with Ibrutinib (IBR), a first-generation Bruton’s tyrosine kinase inhibitor (BTKi). Acalabrutinib (ABR), a next-generation BTKi, is associated with reduced atrial arrhythmia events. However, the role of ABR in ventricular arrhythmia (VA) has not been adequately evaluated. Our study aimed to investigate VA vulnerability and ventricular electrophysiology following chronic ABR therapy in male Sprague–Dawley rats utilizing epicardial optical mapping for ventricular voltage and Ca2+ dynamics and VA induction by electrical stimulation in ex-vivo perfused hearts. Ventricular tissues were snap-frozen for protein analysis for sarcoplasmic Ca2+ and metabolic regulatory proteins. The results show that both ABR and IBR treatments increased VA vulnerability, with ABR showing higher VA regularity index (RI). IBR, but not ABR, is associated with the abbreviation of action potential duration (APD) and APD alternans. Both IBR and ABR increased diastolic Ca2+ leak and Ca2+ alternans, reduced conduction velocity (CV), and increased CV dispersion. Decreased SERCA2a expression and AMPK phosphorylation were observed with both treatments. Our results suggest that ABR treatment also increases the risk of VA by inducing proarrhythmic changes in Ca2+ signaling and membrane electrophysiology, as seen with IBR. However, the different impacts of these two BTKi on ventricular electrophysiology may contribute to differences in VA vulnerability and distinct VA characteristics. Full article
(This article belongs to the Special Issue Cardiac Arrhythmia: Molecular Mechanisms and Therapeutic Strategies)
Show Figures

Figure 1

11 pages, 2980 KiB  
Case Report
Noninvasive Ambulatory Electrocardiographic Markers from Patients with COVID-19 Pneumonia: A Report of Three Cases
by Motohiro Kimata, Kenichi Hashimoto, Naomi Harada, Yusuke Kawamura, Yoshifumi Kimizuka, Yuji Fujikura, Mayuko Kaneko, Nobuaki Kiriu, Yasumasa Sekine, Natsumi Iwabuchi, Tetsuro Kiyozumi, Akihiko Kawana, Susumu Matsukuma and Yuji Tanaka
Medicina 2024, 60(4), 655; https://doi.org/10.3390/medicina60040655 - 19 Apr 2024
Viewed by 1864
Abstract
Coronavirus disease 2019 (COVID-19) has affected medical practice. More than 7,000,000 patients died worldwide after being infected with COVID-19; however, no specific laboratory markers have yet been established to predict death related to this disease. In contrast, electrocardiographic changes due to COVID-19 include [...] Read more.
Coronavirus disease 2019 (COVID-19) has affected medical practice. More than 7,000,000 patients died worldwide after being infected with COVID-19; however, no specific laboratory markers have yet been established to predict death related to this disease. In contrast, electrocardiographic changes due to COVID-19 include QT prolongation and ST-T changes; however, there have not been studies on the ambulatory electrocardiographic markers of COVID-19. We encountered three patients diagnosed as having COVID-19 who did not have a prior history of significant structural heart diseases. All patients had abnormalities in ambulatory echocardiogram parameters detected by high-resolution 24 h electrocardiogram monitoring: positive late potentials (LPs) and T-wave alternans (TWA), abnormal heart rate variability (HRV), and heart rate turbulence (HRT). Case 1 involved a 78-year-old woman with a history of chronic kidney disease, Case 2 involved a 76-year-old man with hypertension and diabetes, and Case 3 involved a 67-year-old man with renal cancer, lung cancer, and diabetes. None of them had a prior history of significant structural heart disease. Although no significant consistent increases in clinical markers were observed, all three patients died, mainly because of respiratory failure with mild heart failure. The LP, TWA, HRV, and HRT were positive in all three cases with no significant structural cardiac disease at the initial phase of admission. The further accumulation of data regarding ambulatory electrocardiographic markers in patients with COVID-19 is needed. Depending on the accumulation of data, the LP, TWA, HRV, and HRT could be identified as potential risk factors for COVID-19 pneumonia in the early phase of admission. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

17 pages, 3311 KiB  
Article
Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes
by Yuriana Oropeza-Almazán and Lothar A. Blatter
Biomolecules 2024, 14(2), 144; https://doi.org/10.3390/biom14020144 - 24 Jan 2024
Cited by 4 | Viewed by 2447
Abstract
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation–contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS [...] Read more.
Atrial calcium transient (CaT) alternans is defined as beat-to-beat alternations in CaT amplitude and is causally linked to atrial fibrillation (AF). Mitochondria play a significant role in cardiac excitation–contraction coupling and Ca signaling through redox environment regulation. In isolated rabbit atrial myocytes, ROS production is enhanced during CaT alternans, measured by fluorescence microscopy. Exogenous ROS (tert-butyl hydroperoxide) enhanced CaT alternans, whereas ROS scavengers (dithiothreitol, MnTBAP, quercetin, tempol) alleviated CaT alternans. While the inhibition of cellular NADPH oxidases had no effect on CaT alternans, interference with mitochondrial ROS (ROSm) production had profound effects: (1) the superoxide dismutase mimetic MitoTempo diminished CaT alternans and shifted the pacing threshold to higher frequencies; (2) the inhibition of cyt c peroxidase by SS-31, and inhibitors of ROSm production by complexes of the electron transport chain S1QEL1.1 and S3QEL2, decreased the severity of CaT alternans; however (3) the impairment of mitochondrial antioxidant defense by the inhibition of nicotinamide nucleotide transhydrogenase with NBD-Cl and thioredoxin reductase-2 with auranofin enhanced CaT alternans. Our results suggest that intact mitochondrial antioxidant defense provides crucial protection against pro-arrhythmic CaT alternans. Thus, modulating the mitochondrial redox state represents a potential therapeutic approach for alternans-associated arrhythmias, including AF. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

18 pages, 4572 KiB  
Article
Increased Risk for Atrial Alternans in Rabbit Heart Failure: The Role of Ca2+/Calmodulin-Dependent Kinase II and Inositol-1,4,5-trisphosphate Signaling
by Giedrius Kanaporis and Lothar A. Blatter
Biomolecules 2024, 14(1), 53; https://doi.org/10.3390/biom14010053 - 30 Dec 2023
Cited by 1 | Viewed by 2191
Abstract
Heart failure (HF) increases the probability of cardiac arrhythmias, including atrial fibrillation (AF), but the mechanisms linking HF to AF are poorly understood. We investigated disturbances in Ca2+ signaling and electrophysiology in rabbit atrial myocytes from normal and failing hearts and identified [...] Read more.
Heart failure (HF) increases the probability of cardiac arrhythmias, including atrial fibrillation (AF), but the mechanisms linking HF to AF are poorly understood. We investigated disturbances in Ca2+ signaling and electrophysiology in rabbit atrial myocytes from normal and failing hearts and identified mechanisms that contribute to the higher risk of atrial arrhythmias in HF. Ca2+ transient (CaT) alternans—beat-to-beat alternations in CaT amplitude—served as indicator of increased arrhythmogenicity. We demonstrate that HF atrial myocytes were more prone to alternans despite no change in action potentials duration and only moderate decrease of L-type Ca2+ current. Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition suppressed CaT alternans. Activation of IP3 signaling by endothelin-1 (ET-1) and angiotensin II (Ang II) resulted in acute, but transient reduction of CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ load, and lowered the alternans risk. However, prolonged exposure to ET-1 and Ang II enhanced SR Ca2+ release and increased the degree of alternans. Inhibition of IP3 receptors prevented the transient ET-1 and Ang II effects and by itself increased the degree of CaT alternans. Our data suggest that activation of CaMKII and IP3 signaling contribute to atrial arrhythmogenesis in HF. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

12 pages, 1483 KiB  
Article
Non-Invasive Risk Assessment and Prediction of Mortality in Patients Undergoing Coronary Artery Bypass Graft Surgery
by Ju-Youn Kim, Young-Jun Park, Kyoung-Min Park, Young-Keun On, June-Soo Kim, Seung-Jung Park and Young-Tak Lee
J. Cardiovasc. Dev. Dis. 2023, 10(9), 365; https://doi.org/10.3390/jcdd10090365 - 25 Aug 2023
Cited by 1 | Viewed by 1496
Abstract
Objectives: Heart rate turbulence (HRT) and T-wave alternans (TWA), non-invasive markers of cardiac autonomic dysfunction, and ventricular repolarization abnormality, reportedly, predict the risk of cardiovascular death after myocardial infarction. We investigated whether pre-operative assessment of HRT and/or TWA could predict long-term mortality following [...] Read more.
Objectives: Heart rate turbulence (HRT) and T-wave alternans (TWA), non-invasive markers of cardiac autonomic dysfunction, and ventricular repolarization abnormality, reportedly, predict the risk of cardiovascular death after myocardial infarction. We investigated whether pre-operative assessment of HRT and/or TWA could predict long-term mortality following coronary artery bypass graft (CABG) surgery. Methods: From May 2010 to December 2017, patients undergoing elective CABG and receiving 24 h ambulatory electrocardiogram monitoring 1 to 5 days prior to CABG surgery were prospectively enrolled. Pre-operative HRT and TWA were measured using a 24 h ambulatory electrocardiogram. The relative risk of cardiac or overall death was assessed according to abnormalities of HRT, TWA, or left ventricular ejection fraction (LV EF). Results: During the mean follow-up period of 4.6 ± 3.9 years, 40 adjudicated overall (5.9%/yr) and 5 cardiac deaths (0.9%/yr) occurred in 146 enrolled patients (64.9 ± 9.3 years; 108 males). Patients with abnormal HRT exhibited significantly higher relative risks of cardiac death (adjusted hazard ratio [HR] 24.9, 95% confidence interval [CI] 1.46–427) and all-cause death (adjusted HR 5.77, 95% CI 2.34–14.2) compared to those with normal HRT. Moreover, abnormal HRT plus abnormal TWA and LV EF < 50% was associated with a greater elevation in cardiac and overall mortality risk. The predictive role of abnormal HRT with/without abnormal TWA for all-cause death was likely more prominent in patients with mildly reduced (35 to 50%) or preserved (≥50%) LV EF. Abnormal HRT plus abnormal TWA and LV EF < 50% showed high negative predictive value in cardiac and overall mortality risk. Conclusions: Assessment of pre-operative HRT and/or TWA predicted mortality risk in patients undergoing elective CABG. Combined analysis of HRT, TWA, and LVEF enhanced the prognostic power. In particular, the predictive value of HRT was enhanced in patients with preserved or mid-range LV EF. Full article
(This article belongs to the Special Issue Arrhythmic Risk Stratification)
Show Figures

Figure 1

11 pages, 1530 KiB  
Review
Preventing and Treating Torsades de Pointes in the Mother, Fetus and Newborn in the Highest Risk Pregnancies with Inherited Arrhythmia Syndromes
by Annette Wacker-Gussmann, Gretchen K. Eckstein and Janette F. Strasburger
J. Clin. Med. 2023, 12(10), 3379; https://doi.org/10.3390/jcm12103379 - 10 May 2023
Cited by 5 | Viewed by 2970
Abstract
The number of women of childbearing age who have been diagnosed in childhood with ion channelopathy and effectively treated using beta blockers, cardiac sympathectomy, and life-saving cardiac pacemakers/defibrillators is increasing. Since many of these diseases are inherited as autosomal dominant, offspring have about [...] Read more.
The number of women of childbearing age who have been diagnosed in childhood with ion channelopathy and effectively treated using beta blockers, cardiac sympathectomy, and life-saving cardiac pacemakers/defibrillators is increasing. Since many of these diseases are inherited as autosomal dominant, offspring have about a 50% risk of having the disease, though many will be only mildly impacted during fetal life. However, highly complex delivery room preparation is increasingly needed in pregnancies with inherited arrhythmia syndromes (IASs). However, specific Doppler techniques show meanwhile a better understanding of fetal electrophysiology. The advent of fetal magnetocardiography (FMCG) now allows the detection of fetal Torsades de Pointes (TdP) ventricular tachycardia and other LQT-associated arrhythmias (QTc prolongation, functional second AV block, T-wave alternans, sinus bradycardia, late-coupled ventricular ectopy and monomorphic VT) in susceptible fetuses during the second and third trimester. These types of arrhythmias can be due to either de novo or familial Long QT Syndrome (LQTS), Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT), or other IAS. It is imperative that the multiple specialists involved in the antenatal, peripartum, and neonatal care of these women and their fetuses/infants have the optimal knowledge, training and equipment in order to care for these highly specialized pregnancies and deliveries. In this review, we outline the steps to recognize symptomatic LQTS in either the mother, fetus or both, along with suggestions for evaluation and management of the pregnancy, delivery, or post-partum period impacted by LQTS. Full article
(This article belongs to the Special Issue Cardiovascular Health in Pregnancy and the Off-Spring)
Show Figures

Figure 1

10 pages, 830 KiB  
Review
Targeted Atrial Fibrillation Therapy and Risk Stratification Using Atrial Alternans
by Neha Muthavarapu, Anmol Mohan, Sharanya Manga, Palak Sharma, Aditi Kishor Bhanushali, Ashima Yadav, Devanshi Narendra Damani, Pierre Jais, Richard D. Walton, Shivaram P. Arunachalam and Kanchan Kulkarni
J. Cardiovasc. Dev. Dis. 2023, 10(2), 36; https://doi.org/10.3390/jcdd10020036 - 20 Jan 2023
Cited by 4 | Viewed by 3096
Abstract
Atrial fibrillation (AF) is the most persistent arrhythmia today, with its prevalence increasing exponentially with the rising age of the population. Particularly at elevated heart rates, a functional abnormality known as cardiac alternans can occur prior to the onset of lethal arrhythmias. Cardiac [...] Read more.
Atrial fibrillation (AF) is the most persistent arrhythmia today, with its prevalence increasing exponentially with the rising age of the population. Particularly at elevated heart rates, a functional abnormality known as cardiac alternans can occur prior to the onset of lethal arrhythmias. Cardiac alternans are a beat-to-beat oscillation of electrical activity and the force of cardiac muscle contraction. Extensive evidence has demonstrated that microvolt T-wave alternans can predict ventricular fibrillation vulnerability and the risk of sudden cardiac death. The majority of our knowledge of the mechanisms of alternans stems from studies of ventricular electrophysiology, although recent studies offer promising evidence of the potential of atrial alternans in predicting the risk of AF. Exciting preclinical and clinical studies have demonstrated a link between atrial alternans and the onset of atrial tachyarrhythmias. Here, we provide a comprehensive review of the clinical utility of atrial alternans in identifying the risk and guiding treatment of AF. Full article
(This article belongs to the Special Issue Modern Approach to Complex Arrhythmias)
Show Figures

Figure 1

Back to TopTop