Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = alkali metal nitrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7811 KB  
Article
Influence and Mechanism of Fertilization and Irrigation of Heavy Metal Accumulation in Salinized Soils
by Dandan Yu, Qingfeng Miao, Haibin Shi, Zhuangzhuang Feng, Weiying Feng, Zhen Li and José Manuel Gonçalves
Agriculture 2024, 14(10), 1694; https://doi.org/10.3390/agriculture14101694 - 27 Sep 2024
Cited by 1 | Viewed by 1626
Abstract
The impact of fertilization and irrigation on heavy metal accumulation in saline–alkali soil and its underlying mechanisms are critical issues given the constraints that soil salinization places on agricultural development and crop quality. This study addressed these issues by investigating the effects of [...] Read more.
The impact of fertilization and irrigation on heavy metal accumulation in saline–alkali soil and its underlying mechanisms are critical issues given the constraints that soil salinization places on agricultural development and crop quality. This study addressed these issues by investigating the effects of adjusting organic fertilizer types, proportions, and irrigation volumes on the physicochemical properties of lightly to moderately saline–alkali soils and analyzing the interaction mechanisms between microorganisms and heavy metals. The results indicate that the rational application of organic fertilizers combined with supplemental irrigation can mitigate soil salinity accumulation and water deficits, and reduce the soil pH, thereby enhancing soil oxidation, promoting nitrogen transformation and increasing nitrate–nitrogen levels. As the proportion of organic fertilizers increased, heavy metal residues, enrichment, and risk indices in the crop grains also increased. Compared to no irrigation, supplemental irrigation of 22 mm during the grain-filling stage increased soil surface Cd content, Zn content, and the potential ecological risk index (HRI) by 10.2%, 3.1%, and 8%, respectively, while simultaneously reducing the heavy metal content in grains by 12–13.5% and decreasing heavy metal enrichment. Principal component analysis revealed the primary factors influencing Cu and Zn residues and Cd accumulation in the crop grains. Soil salinity was significantly negatively correlated with soil pH, organic matter, total nitrogen, and ammonium nitrogen, whereas soil organic matter, total nitrogen, ammonium nitrogen, soil pH, oxidation–reduction potential, soluble nitrogen, and microbial biomass nitrogen were positively correlated. The accumulation and residues of Zn and Cu in the soil were more closely correlated with the soil properties compared to those of Cd. Specifically, Zn accumulation on the soil surface was primarily related to aliphatic organic functional groups, followed by soil salinity. Residual Zn in the crop grains was primarily associated with soil oxidation–reduction properties, followed by soil moisture content. The accumulation of Cu on the soil surface was mainly correlated with the microbial biomass carbon (MBC), whereas the residual Cu in the crop grains was primarily linked to the soil moisture content. These findings provide theoretical insights for improving saline–alkali soils and managing heavy metal contamination, with implications for sustainable agriculture and environmental protection. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

16 pages, 8791 KB  
Article
Interactions of Cr3+, Ni2+, and Sr2+ with Crushed Concrete Fines
by Andrew P. Hurt, Aimee A. Coleman and Nichola J. Coleman
Crystals 2022, 12(5), 717; https://doi.org/10.3390/cryst12050717 - 18 May 2022
Cited by 2 | Viewed by 2472
Abstract
The underutilized cement-rich fine fraction of concrete-based demolition waste is a potential sorbent for aqueous metal ion contaminants. In this study, crushed concrete fines (CCF) were found to exclude 33.9 mg g−1 of Cr3+, 35.8 mg g−1 of Ni [...] Read more.
The underutilized cement-rich fine fraction of concrete-based demolition waste is a potential sorbent for aqueous metal ion contaminants. In this study, crushed concrete fines (CCF) were found to exclude 33.9 mg g−1 of Cr3+, 35.8 mg g−1 of Ni2+, and 7.16 mg g−1 of Sr2+ from ~1000 ppm single metal nitrate solutions (CCF:solution 25 mg cm−3) under static batch conditions at 20 °C after 3 weeks. The removal of Sr2+ followed a pseudo-second-order reaction (k2 = 3.1 × 10−4 g mg−1 min−1, R2 = 0.999), whereas a pseudo-first-order model described the removal of Cr3+ (k1 = 2.3 × 10−4 min−1, R2 = 0.998) and Ni2+ (k1 = 5.7 × 10−4 min−1, R2 = 0.991). In all cases, the principal mechanism of interaction was the alkali-mediated precipitation of solubility-limiting phases on the surface of the CCF. Four consecutive deionized water leaching procedures (CCF:water 0.1 g cm−3) liberated 0.53%, 0.88%, and 8.39% of the bound Cr3+, Ni2+, and Sr2+ species, respectively. These findings indicate that CCF are an effective sorbent for the immobilization and retention of aqueous Cr3+ and Ni2+ ions, although they are comparatively ineffectual in the removal and sustained exclusion of Sr2+ ions. As is commonly noted with Portland cement-based sorbents, slow removal kinetics, long equilibrium times, the associated release of Ca2+ ions, high pH, and the formation of loose floc may preclude these materials from conventional wastewater treatments. This notwithstanding, they are potentially suitable for incorporation into permeable reactive barriers for the containment of metal species in contaminated groundwaters, sediments, and soils. Full article
(This article belongs to the Special Issue Recycling Silicate-Bearing Waste Materials)
Show Figures

Figure 1

13 pages, 22308 KB  
Article
Impact of Iron on the Fe–Co–Ni Ternary Nanocomposites Structural and Magnetic Features Obtained via Chemical Precipitation Followed by Reduction Process for Various Magnetically Coupled Devices Applications
by Tien Hiep Nguyen, Gopalu Karunakaran, Yu.V. Konyukhov, Nguyen Van Minh, D.Yu. Karpenkov and I.N. Burmistrov
Nanomaterials 2021, 11(2), 341; https://doi.org/10.3390/nano11020341 - 29 Jan 2021
Cited by 12 | Viewed by 5358
Abstract
This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of [...] Read more.
This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe–Co–Ni nanocomposites. The initial hydroxides of Fe–Co–Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300–500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6–192.5 Am2/kg, Mr = 0.4–39.7 Am2/kg, Mr/Ms = 0.02–0.32, and HcM = 4.72–60.68 kA/m by regulating the composition and reduction temperature of the Fe–Co–Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe–Co–Ni ternary system phase content and magnetic properties was evaluated. The Fe–Co–Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications. Full article
Show Figures

Figure 1

14 pages, 7141 KB  
Article
Control of Particle Size in Flame Spray Pyrolysis of Tb–doped Y2O3 for Bio-Imaging
by Sovann Khan, Yunseok Choi, Hak-Young Ahn, Jae Hyun Han, Byeong-Kwon Ju, Jaewon Chung and So-Hye Cho
Materials 2020, 13(13), 2987; https://doi.org/10.3390/ma13132987 - 4 Jul 2020
Cited by 7 | Viewed by 3661
Abstract
Recently, the use of oxide-based nanomaterials for bio-imaging has received great attention owing to their remarkable stabilities as compared to those of conventional organic dyes. Therefore, the development of scalable methods for highly luminescent oxide materials with fine control of size has become [...] Read more.
Recently, the use of oxide-based nanomaterials for bio-imaging has received great attention owing to their remarkable stabilities as compared to those of conventional organic dyes. Therefore, the development of scalable methods for highly luminescent oxide materials with fine control of size has become crucial. In this study, we suggested modified flame spray pyrolysis (FSP) as a scalable method to produce a green-light emitting phosphor—Tb–doped Y2O3—in the nanometer size range. In our FSP method, an alkali salt (NaNO3) was found to be highly effective as a size-controlling agent when it is simply mixed with other metal nitrate precursors. The FSP of the mixture solution resulted in oxide composites of Y2O3:Tb3+ and NaxO. However, the sodium by-product was easily removed by washing with water. This salt-assisted FSP produced nano-sized and well-dispersed Y2O3:Tb3+ nanoparticles; their crystallinity and luminescence were higher than those of the bulk product made without the addition of the alkali salt. The nanoparticle surface was further coated with silica for biocompatibility and functionalized with amino groups for the attachment of biological molecules. Full article
Show Figures

Graphical abstract

14 pages, 2801 KB  
Article
Investigating the Suitability of Grape Husks Biochar, Municipal Solid Wastes Compost and Mixtures of Them for Agricultural Applications to Mediterranean Soils
by Despina Vamvuka, Katerina Esser and Kostas Komnitsas
Resources 2020, 9(3), 33; https://doi.org/10.3390/resources9030033 - 13 Mar 2020
Cited by 13 | Viewed by 4719
Abstract
Present work aimed at evaluating the leaching potential of grape husks biochar, municipal solid wastes compost and their combined application as amendments of sandy Mediterranean soil, in order to assess their capability of releasing/retaining nutrients or heavy metals and therefore their suitability for [...] Read more.
Present work aimed at evaluating the leaching potential of grape husks biochar, municipal solid wastes compost and their combined application as amendments of sandy Mediterranean soil, in order to assess their capability of releasing/retaining nutrients or heavy metals and therefore their suitability for agricultural applications. Grape husks biochar was produced by pyrolysis at 500 °C in a fixed bed unit. Column leaching experiments, simulating Mediterranean rainfall conditions, were conducted. For all compost/biochar/soil combinations, alkali and alkaline earth metals showed greater solubility, increasing the pH of the extracts and thus decreasing the leachability of heavy metals Cr, Cu, Zr and Sr. Biochar co-application with compost did not prevent the leaching of nitrates, phosphates or trace elements; however, it did lower the chemical oxygen demand and allowed the slower release of sodium, calcium and magnesium from soil. As compared to compost, addition of biochar to soil increased the concentration of potassium by 76%, whereas it decreased that of heavy metals in the leachates by 40%–95%. Grape husks biochar could serve as a better soil amendment than municipal solid wastes compost and if carefully managed could be used as liming agent or fertilizer on acidic soils. Full article
Show Figures

Figure 1

26 pages, 4711 KB  
Article
Co-Mn-Al Mixed Oxides Promoted by K for Direct NO Decomposition: Effect of Preparation Parameters
by Kateřina Pacultová, Tereza Bílková, Anna Klegova, Kateřina Karásková, Dagmar Fridrichová, Květa Jirátová, Tomáš Kiška, Jana Balabánová, Martin Koštejn, Andrzej Kotarba, Wojciech Kaspera, Paweł Stelmachowski, Grzegorz Słowik and Lucie Obalová
Catalysts 2019, 9(7), 593; https://doi.org/10.3390/catal9070593 - 9 Jul 2019
Cited by 19 | Viewed by 4488
Abstract
Fundamental research on direct NO decomposition is still needed for the design of a sufficiently active, stable and selective catalyst. Co-based mixed oxides promoted by alkali metals are promising catalysts for direct NO decomposition, but which parameters play the key role in NO [...] Read more.
Fundamental research on direct NO decomposition is still needed for the design of a sufficiently active, stable and selective catalyst. Co-based mixed oxides promoted by alkali metals are promising catalysts for direct NO decomposition, but which parameters play the key role in NO decomposition over mixed oxide catalysts? How do applied preparation conditions affect the obtained catalyst’s properties? Co4MnAlOx mixed oxides promoted by potassium calcined at various conditions were tested for direct NO decomposition with the aim to determine their activity, stability and selectivity. The catalysts were prepared by co-precipitation of the corresponding nitrates and subsequently promoted by KNO3. The catalysts were characterized by atomic absorption spectrometry (AAS)/inductive coupled plasma (ICP), X-ray photoelectron spectrometry (XPS), XRD, N2 physisorption, temperature programmed desorption of CO2 (TPD-CO2), temperature programmed reduction by hydrogen (TPR-H2), species-resolved thermal alkali desorption (SR-TAD), work function measurement and STEM. The preparation procedure affects physico-chemical properties of the catalysts, especially those that are associated with the potassium promoter presence. The addition of K is essential for catalytic activity, as it substantially affects the catalyst reducibility and basicity—key properties of a deNO catalyst. However, SR-TAD revealed that potassium migration, redistribution and volatilization are strongly dependent on the catalyst calcination temperature—higher calcination temperature leads to potassium stabilization. It also caused the formation of new phases and thus affected the main properties—SBET, crystallinity and residual potassium amount. Full article
Show Figures

Figure 1

19 pages, 2394 KB  
Article
Precipitated K-Promoted Co–Mn–Al Mixed Oxides for Direct NO Decomposition: Preparation and Properties
by Květa Jirátová, Kateřina Pacultová, Jana Balabánová, Kateřina Karásková, Anna Klegová, Tereza Bílková, Věra Jandová, Martin Koštejn, Alexandr Martaus, Andrzej Kotarba and Lucie Obalová
Catalysts 2019, 9(7), 592; https://doi.org/10.3390/catal9070592 - 9 Jul 2019
Cited by 11 | Viewed by 3577
Abstract
Direct decomposition of nitric oxide (NO) proceeds over Co–Mn–Al mixed oxides promoted by potassium. In this study, answers to the following questions have been searched: Do the properties of the K-promoted Co–Mn–Al catalysts prepared by different methods differ from each other? The K-precipitated [...] Read more.
Direct decomposition of nitric oxide (NO) proceeds over Co–Mn–Al mixed oxides promoted by potassium. In this study, answers to the following questions have been searched: Do the properties of the K-promoted Co–Mn–Al catalysts prepared by different methods differ from each other? The K-precipitated Co–Mn–Al oxide catalysts were prepared by the precipitation of metal nitrates with a solution of K2CO3/KOH, followed by the washing of the precipitate to different degrees of residual K amounts, and by cthe alcination of the precursors at 500 °C. The properties of the prepared catalysts were compared with those of the best catalyst prepared by the K-impregnation of a wet cake of Co–Mn–Al oxide precursors. The solids were characterized by chemical analysis, DTG, XRD, N2 physisorption, FTIR, temperature programmed reduction (H2-TPR), temperature programmed CO2 desorption (CO2-TPD), X-ray photoelectron spectrometry (XPS), and the species-resolved thermal alkali desorption method (SR-TAD). The washing of the K-precipitated cake resulted in decreasing the K amount in the solid, which affected the basicity, reducibility, and non-linearly catalytic activity in NO decomposition. The highest activity was found at ca 8 wt.% of K, while that of the best K-impregnated wet cake catalyst was at about 2 wt.% of K. The optimization of the cake washing conditions led to a higher catalytic activity. Full article
Show Figures

Figure 1

18 pages, 4478 KB  
Article
Importance of Rocks and Their Weathering Products on Groundwater Quality in Central-East Cameroon
by Merlin Gountié Dedzo, Désiré Tsozué, Mumbfu Ernestine Mimba, Fulbert Teddy, Romio Mofor Nembungwe and Sylvie Linida
Hydrology 2017, 4(2), 23; https://doi.org/10.3390/hydrology4020023 - 5 Apr 2017
Cited by 34 | Viewed by 10390
Abstract
The present work highlights the influence of lithology on water quality in Méiganga and its surroundings. The main geological formations in this region include gneiss, granite and amphibolite. The soils developed on these rocks are of ABC type, which are acidic to slightly [...] Read more.
The present work highlights the influence of lithology on water quality in Méiganga and its surroundings. The main geological formations in this region include gneiss, granite and amphibolite. The soils developed on these rocks are of ABC type, which are acidic to slightly acidic. Electrical conductivity (EC), organic matter, total nitrogen, nitrate-nitrogen, sulfate, chloride, phosphorus and exchangeable base values were low to very low in the soil samples. Groundwater samples were investigated for their physicochemical characteristics. The wide ranges of EC values (15.1–436 µS/cm) and total dissolved solids (9–249 mg/L) revealed the heterogeneous distribution of hydrochemical processes within the groundwater of the area. The relative abundance of major dissolved species (mg/L) was Ca2+ > Na+ > Mg2+ > K+ for cations and HCO3 >> NO3 > Cl > SO42 for anions. All the groundwater samples were soft, with total hardness values (2.54–136.65 mg/L) below the maximum permissible limits of the World Health Organization (WHO) guideline. The majority of water samples (67%) were classified as mixed CaMg-HCO3 type. Alkaline earth metal contents dominated those of alkali metals in 66.66% of samples. Thus, for the studied groundwater, Mg2+ and Ca2+ ion adsorption by clay minerals was almost nonexistent; this implies their release into the solution, which accounts for their high concentrations compared to alkali metals. Ion geochemistry revealed that water-rock interactions (silicate weathering) and ion exchange processes regulated the groundwater chemistry. One water sample points towards the evaporation domain of this diagram, indicating that groundwater probably does not originate from a deeper system. Kaolinite is the most stable secondary phase in the waters in the study area, in accordance with the geochemical process of monosiallitization, which predominated in the humid tropical zone. Full article
Show Figures

Figure 1

14 pages, 2162 KB  
Article
Rb2Na(NO3)3: A Congruently Melting UV-NLO Crystal with a Very Strong Second-Harmonic Generation Response
by Guohong Zou, Chensheng Lin, Hyung Gu Kim, Hongil Jo and Kang Min Ok
Crystals 2016, 6(4), 42; https://doi.org/10.3390/cryst6040042 - 13 Apr 2016
Cited by 67 | Viewed by 7656
Abstract
Crystals of congruently melting noncentrosymmetric (NCS) mixed alkali metal nitrate, Rb2Na(NO3)3, have been grown through solid state reactions. The material possesses layers with NaO8 hexagonal bipyramids and NO3 triangular units. Rb+ cations are residing [...] Read more.
Crystals of congruently melting noncentrosymmetric (NCS) mixed alkali metal nitrate, Rb2Na(NO3)3, have been grown through solid state reactions. The material possesses layers with NaO8 hexagonal bipyramids and NO3 triangular units. Rb+ cations are residing in the interlayer space. Each NaO8 hexagonal bipyramid shares its corners and edges with two and three NO3 units, respectively, in order to fulfill a highly dense stacking in the unit cell. The NaO8 groups share their six oxygen atoms in equatorial positions with three different NO3 groups to generate a NaO6-NO3 layer with a parallel alignment. The optimized arrangement of the NO3 groups and their high density in the structure together produce a strong second-harmonic generation (SHG) response. Powder SHG measurements indicate that Rb2Na(NO3)3 has a strong SHG efficiency of five times that of KH2PO4 (KDP) and is type I phase-matchable. The calculated average nonlinear optical (NLO) susceptibility of Rb2Na(NO3)3 turns out to be the largest value among the NLO materials composed of only [NO3] anion. In addition, Rb2Na(NO3)3 exhibits a wide transparency region ranging from UV to near IR, which suggests that the compound is a promising NLO material. Full article
(This article belongs to the Special Issue Nonlinear Optical Crystals)
Show Figures

Graphical abstract

Back to TopTop