Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ajowan essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2690 KiB  
Article
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Viewed by 1321
Abstract
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional [...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences. Full article
Show Figures

Figure 1

36 pages, 9109 KiB  
Article
Effect of Temperature, Surface, and Medium Qualities on the Biofilm Formation of Listeria monocytogenes and Their Influencing Effects on the Antibacterial, Biofilm-Inhibitory, and Biofilm-Degrading Activities of Essential Oils
by Anita Seres-Steinbach, Péter Szabó, Krisztián Bányai and György Schneider
Foods 2025, 14(12), 2097; https://doi.org/10.3390/foods14122097 - 14 Jun 2025
Viewed by 573
Abstract
Listeria monocytogenes is a foodborne pathogen with a high tolerance to a wide range of environmental conditions, making its control in the food chain a particular challenge. Essential oils have recently been considered as potential antilisterial agents. In this study, the antilisterial effects [...] Read more.
Listeria monocytogenes is a foodborne pathogen with a high tolerance to a wide range of environmental conditions, making its control in the food chain a particular challenge. Essential oils have recently been considered as potential antilisterial agents. In this study, the antilisterial effects of 57 EOs were tested on 13 different L. monocytogenes. Thirty-seven EOs were found to be effective in a strain and temperature-dependent manner. At 37 °C, all EOs were effective against at least one strain of L. monocytogenes. However, at 14 °C and 23 °C, 12 EOs, such as Minth, Nutmeg, Neroli, Pepperminth, etc., became drastically ineffective. The efficacy of the EOs increased at the lowest temperature, as only four EOs, such as Dill seed, Juniper, lemon eucalyptus, and sandalwood, were found to be ineffective at 4 °C. Ajowan and thyme were the only EOs that were antibacterial against each strain at all temperatures tested (4, 14, 23, 37 °C). Biofilm-inhibition tests with 57 EOs, performed on polystyrene plates with different surface qualities and stainless steel, using 0.1% and 0.5% final concentrations, showed the outstanding inhibitory abilities of ajowan, geranium, Lime oil, melissa, palmarosa, rose geranium, sandalwood, and thyme. Fennel, lemon eucalyptus, and chamomile had the potential to inhibit biofilm formation without affecting live bacterial cell counts. Ajowan, geranium, thyme, and palmarosa reduced the biofilm to the optical density of 0.0–0.08, OD: 0.0–0.075, 0.0–0.072, and 0.0–0.04, respectively, compared to the bacterium control 0.085–0.45. The mature antibiofilm eradication ability of the EOs revealed the outstanding features of ajowan, geranium Lime, melissa, palmarosa, rose geranium, and thyme by suppressing the established biofilm to one tenth. The different sensitivities of the isolates and the temperature-dependent antilisterial effect of the tested EOs have to be taken into account if an EO-based food preservation technology is to be implemented, as several L. monocytogenes become resistant to different EOs at medium temperature ranges such as 14 °C and 23 °C. Full article
(This article belongs to the Special Issue Microbiological Risks in Food Processing)
Show Figures

Figure 1

16 pages, 2035 KiB  
Article
Nano Silicon Modulates Chemical Composition and Antioxidant Capacities of Ajowan (Trachyspermum ammi) Under Water Deficit Condition
by Zahra Sobatinasab, Mehdi Rahimmalek, Nematollah Etemadi and Antoni Szumny
Foods 2025, 14(1), 124; https://doi.org/10.3390/foods14010124 - 3 Jan 2025
Viewed by 1175
Abstract
Ajowan (Trachyspermum ammi) is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under [...] Read more.
Ajowan (Trachyspermum ammi) is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan. Based on the GC–MS analysis, thymol, carvacrol, p-cymene, and γ-terpinene were determined as the main components of the oil. The thymol content ranged from 34.16% in the Ardabil population (irrigation at 50% and nano silicon at 1.5 mM) to 65.71% in the Khorbir population (without nano silicon and irrigation at 50%). The highest phenolic content was in Khormo with irrigation at 90% and without nano silicon (172.3 mg TAE/g DW), while the lowest was found in Hamedan (irrigation at 50% and without nano silicon (7.2 mg TAE/g DW)). Irrigation at 50% and no nano silicon treatment led to an increase in total flavonoids in Ardabil (46.786 mg QUE/g DW). The antioxidant activity of ajowan was evaluated using the DPPH assay. Accordingly, the highest antioxidant capacity was observed in Khormo (irrigation at 90% without nano silicon; 4126 µg/mL). Moreover, the highest thymol content was observed in the Khorbir population with irrigation at 50% and without nano silicon treatment. Furthermore, correlation and principal component analysis (PCA) provide new insights into the production of ajowan from their substrates under nano silicon treatment and water deficit conditions. Finally, the results revealed information on how to improve the desired essential oil profile and antioxidant capacity of extracts for industrial producers. Full article
Show Figures

Figure 1

12 pages, 2249 KiB  
Article
Evaluation of Different Drying Treatments with Respect to Essential Oil Components, Phenolic and Flavonoid Compounds, and Antioxidant Capacity of Ajowan (Trachyspermum ammi L.)
by Zahra Sobatinasab, Mehdi Rahimmalek, Nematollah Etemadi and Antoni Szumny
Molecules 2024, 29(14), 3264; https://doi.org/10.3390/molecules29143264 - 10 Jul 2024
Cited by 1 | Viewed by 1323
Abstract
Ajowan (Trachyspermum ammi L.) is considered a valuable spice and medicinal herb. In this study, the essential oil content and composition of the aerial parts of ajowan were investigated under different drying treatments (sun, shade, oven at 45 °C, oven at 65 [...] Read more.
Ajowan (Trachyspermum ammi L.) is considered a valuable spice and medicinal herb. In this study, the essential oil content and composition of the aerial parts of ajowan were investigated under different drying treatments (sun, shade, oven at 45 °C, oven at 65 °C, microwave, and freeze drying). Moreover, the phenolic content, flavonoid content, and antioxidant capacity of samples were also assessed. Fresh samples produced the highest essential oil content (1.05%), followed by those treated under sun (0.7%) and shade drying (0.95%). Based on gas chromatography–mass spectrometry (GC–MS), thirty compounds were determined in which thymol (34.84–83.1%), carvacrol (0.15–32.36%), p-cymene (0.09–13.66%), and γ-terpinene (3.12–22.58%) were the most abundant. Among the drying methods, freeze drying revealed the highest thymol content, followed by drying in a 45 °C oven. The highest TPC (total phenolic content) and TFC (total flavonoid content) were obtained in the fresh sample (38.23 mg TAE g1 dry weight (DW)) and in the sample oven-dried at 45 °C (7.3 mg QE g1 DW), respectively. Based on the HPLC results, caffeic acid (18.04–21.32 mg/100 gDW) and ferulic acid (13.102–19.436 mg/100 g DW) were the most abundant phenolic acids, while among flavonoids, rutin constituted the highest amount (10.26–19.88 mg/100 gDW). Overall, freeze drying was the most promising method of drying for preserving the phenolic (TPC) and flavonoid (TFC) compounds and oil components. Full article
(This article belongs to the Topic Natural Compounds in Plants, 2nd Volume)
Show Figures

Figure 1

24 pages, 2686 KiB  
Article
Phytochemical, Morphological, and Physiological Variation in Different Ajowan (Trachyspermum ammi L.) Populations as Affected by Salt Stress, Genotype × Year Interaction and Pollination System
by Gita Mirniyam, Mehdi Rahimmalek, Ahmad Arzani, Parisa Yavari, Mohammad R. Sabzalian, Mohammad Hossein Ehtemam and Antoni Szumny
Int. J. Mol. Sci. 2023, 24(13), 10438; https://doi.org/10.3390/ijms241310438 - 21 Jun 2023
Cited by 5 | Viewed by 1824
Abstract
In the present research, 28 populations of ajowan (Trachyspermum ammi L.) were evaluated for agro-morphological traits and essential oil yield in two consecutive years. Then, selected ajowan populations from these two years were used for further morphophysiological and biochemical studies under different [...] Read more.
In the present research, 28 populations of ajowan (Trachyspermum ammi L.) were evaluated for agro-morphological traits and essential oil yield in two consecutive years. Then, selected ajowan populations from these two years were used for further morphophysiological and biochemical studies under different salinity levels (control, 60, 90, and 120 mM NaCl). The main components of the oil were thymol (32.7–54.29%), γ-terpinene (21.71–32.81%), and p-cymene (18.74–26.16%). Salt stress caused an increase in essential oil content in the Esfahfo and Qazvin populations. The highest total phenolic and flavonoid contents were found in the Arak population grown in 60 mM NaCl (183.83 mg TAE g−1 DW) and the Yazd population grown in 90 mM NaCl (5.94 mg QE g−1 DW). Moreover, the Yazd population exhibited the strongest antioxidant activity based on DPPH (IC50 = 1566 µg/mL) under 60 mM NaCl and the highest reducing power (0.69 nm) under 120 mM NaCl. The results revealed that low and moderate salt stress improves the phytochemicals of ajowan seeds, which are useful for pharmaceutical and food applications. In this research, some morphological traits, as well as essential oil yield, were evaluated in open pollinated versus self-pollinated plants. As a result, plant height, number of flowering branches, and crown diameter significantly decreased in some populations, while a significant increase was obtained for number of flowers per umbel and seed numbers per umbel. Finally, self-pollination of ajowan might provide new insights for further breeding programs to increase oil or thymol content in ajowan. Full article
(This article belongs to the Special Issue Response to Environmental Stress in Plants)
Show Figures

Figure 1

22 pages, 3272 KiB  
Article
Changes in Essential Oil Composition, Polyphenolic Compounds and Antioxidant Capacity of Ajowan (Trachyspermum ammi L.) Populations in Response to Water Deficit
by Gita Mirniyam, Mehdi Rahimmalek, Ahmad Arzani, Adam Matkowski, Shima Gharibi and Antoni Szumny
Foods 2022, 11(19), 3084; https://doi.org/10.3390/foods11193084 - 5 Oct 2022
Cited by 17 | Viewed by 2714
Abstract
Ajowan (Trachyspermum ammi L.) is considered a valuable spice plant with a high thymol content. Seed yield, essential oil constituents, polyphenolic composition, and antioxidant capacity of ajowan (Trachyspermum ammi L.) populations were evaluated in three (normal, moderate, and severe) water irrigation [...] Read more.
Ajowan (Trachyspermum ammi L.) is considered a valuable spice plant with a high thymol content. Seed yield, essential oil constituents, polyphenolic composition, and antioxidant capacity of ajowan (Trachyspermum ammi L.) populations were evaluated in three (normal, moderate, and severe) water irrigation regimes. The highest essential oil content (5.55%) was obtained under normal condition in the Yazd population. However, both essential oil and seed yield showed significant reductions as a result of water stress. According to gas chromatography–mass spectrometry (GC–MS) analysis, thymol (61.44%), γ-terpinene (26.96%), and p-cymene (20.32%) were identified as the major components of the oil. The highest (89.01%) and the lowest (37.54%) thymol contents were in Farsmar and Hamadan populations in severe stress condition, respectively. Based on HPLC analysis, chlorogenic (3.75–47.35 mg/100 g), caffeic (13.2–40.10 mg/100 g), and ferulic acid (11.25–40.10 mg/100 g) were identified as the major phenolic acids, while rutin was determined as the major flavonoid (11.741–20.123 mg/100 g). Moreover, total phenolic and flavonoid contents were elevated under drought stress treatment, while antioxidants responded inconsistently to stress based on two model systems. Overall, the Yazd population exhibited a superior response to water stress, as evidenced by its less reduced thymol and oil yield content, while Arak and Khormo had the highest accumulation of polyphenolic compounds. Full article
(This article belongs to the Special Issue Chromatography Analysis Methods of Bioactive Compounds in Foods)
Show Figures

Figure 1

17 pages, 1391 KiB  
Article
Apiaceae Essential Oils: Boosters of Terbinafine Activity against Dermatophytes and Potent Anti-Inflammatory Effectors
by Adriana Trifan, Simon Vlad Luca, Andra-Cristina Bostănaru, Mihai Brebu, Alexandra Jităreanu, Romeo-Teodor Cristina, Krystyna Skalicka-Woźniak, Sebastian Granica, Monika E. Czerwińska, Aleksandra Kruk, Hélène Greige-Gerges, Elwira Sieniawska and Mihai Mareș
Plants 2021, 10(11), 2378; https://doi.org/10.3390/plants10112378 - 4 Nov 2021
Cited by 13 | Viewed by 4106
Abstract
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world’s population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its [...] Read more.
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world’s population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug–drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1β, IL-8 and TNF-α) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26–0.31. At the tested concentrations (6.25–25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1β release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-α production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis. Full article
(This article belongs to the Special Issue Chemical Composition and Antimicrobial Activity of Essential Oils)
Show Figures

Figure 1

17 pages, 2756 KiB  
Article
A Design of Experiment (DoE) Approach to Model the Yield and Chemical Composition of Ajowan (Trachyspermum ammi L.) Essential Oil Obtained by Microwave-Assisted Extraction
by Eugenia Mazzara, Serena Scortichini, Dennis Fiorini, Filippo Maggi, Riccardo Petrelli, Loredana Cappellacci, Giuseppe Morgese, Mohammad Reza Morshedloo, Giovanni Filippo Palmieri and Marco Cespi
Pharmaceuticals 2021, 14(8), 816; https://doi.org/10.3390/ph14080816 - 19 Aug 2021
Cited by 12 | Viewed by 3989
Abstract
Ajowan (Trachyspermum ammi L.) is a spice traditionally used in Middle Eastern medicine and contains a valuable essential oil (EO) exploited in different fields, such as pharmaceutics, agrochemicals and food additives. This EO is mostly characterized by the thymol to which most [...] Read more.
Ajowan (Trachyspermum ammi L.) is a spice traditionally used in Middle Eastern medicine and contains a valuable essential oil (EO) exploited in different fields, such as pharmaceutics, agrochemicals and food additives. This EO is mostly characterized by the thymol to which most of its biological properties are related. Given the economic value of ajowan and its increasing demand across the globe, the extraction method used for its EO is of paramount importance in terms of quality and quantity of the final product. In the present study, we used the design of experiment (DoE) approach to study and optimize the extraction of the ajowan EO using the microwave-assisted extraction (MAE), a novel extraction technique with high efficiency, low energy consumption, short process length and low environmental impact. A two-step DoE (screening followed by surface response methodology) was used to reduce the number of experiments and to improve the cost/benefit ratio. Reliable mathematical models, relating the more relevant EO features with the extraction conditions, were obtained and used to identify the best experimental conditions able to maximize the yield and thymol concentration. The optimized MAE procedure assures an EO with a higher yield and thymol amount compared with the standard hydrodistillation procedure. Full article
(This article belongs to the Special Issue Natural Pharmacons: Biologically Active Plant Based Pharmaceuticals)
Show Figures

Figure 1

12 pages, 1221 KiB  
Article
Antibacterial Activities of Homemade Matrices Miming Essential Oils Compared to Commercial Ones
by Sofia Oliveira Ribeiro, Véronique Fontaine, Véronique Mathieu, Zhiri Abdesselam, Baudoux Dominique, Stévigny Caroline and Souard Florence
Antibiotics 2021, 10(5), 584; https://doi.org/10.3390/antibiotics10050584 - 14 May 2021
Cited by 5 | Viewed by 3261
Abstract
The increasing bacterial resistance to antibiotics is a worldwide concern. Essential oils are known to possess remarkable antibacterial properties, but their high chemical variability complicates their development into new antibacterial agents. Therefore, the main purpose of this study was to standardize their chemical [...] Read more.
The increasing bacterial resistance to antibiotics is a worldwide concern. Essential oils are known to possess remarkable antibacterial properties, but their high chemical variability complicates their development into new antibacterial agents. Therefore, the main purpose of this study was to standardize their chemical composition. Several commercial essential oils of ajowan (Trachyspermum ammi L.) and thyme (chemotype thymol) (Thymus vulgaris L.) were bought on the market. GC–MS analysis revealed that thyme essential oils have a chemical composition far more consistent than ajowan essential oils. Sometimes thymol was not even the major compound. The most abundant compounds and the homemade mixtures were tested against two Staphylococcus aureus strains. The antibacterial property of β-caryophyllene presented no direct activity against S. aureus LMG 15975, but in association with thymol or carvacrol at equal percentages an MIC of 125 μg/mL was observed. The mixture of those three compounds at equivalent percentages also decreased by 16-fold the MIC of the penicillin V. Against S. aureus LMG 21674, β-caryophyllene presented an MIC of 31.3 μg/mL and decreased by 267-fold the MIC of the penicillin V. These observations led us to question the benefits of using a complex chemical mixture instead of one active compound to fight bacterial resistance. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Essential Oils)
17 pages, 350 KiB  
Article
Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils
by Sofia Oliveira Ribeiro, Véronique Fontaine, Véronique Mathieu, Abdesselam Zhiri, Dominique Baudoux, Caroline Stévigny and Florence Souard
Antibiotics 2020, 9(10), 717; https://doi.org/10.3390/antibiotics9100717 - 20 Oct 2020
Cited by 35 | Viewed by 7411
Abstract
There is a huge concern in the medical field concerning the emergence of bacterial resistance to antibiotics. Essential oils are a source of antibacterial compounds that can overcome this problem. Ten essential oils that are commercially available were investigated in the present study: [...] Read more.
There is a huge concern in the medical field concerning the emergence of bacterial resistance to antibiotics. Essential oils are a source of antibacterial compounds that can overcome this problem. Ten essential oils that are commercially available were investigated in the present study: ajowan, basil, German chamomile, Chinese cinnamon, coriander, clove, lemongrass, Spanish lavender, oregano and palmarosa. Their direct, synergistic and indirect antibacterial activities were evaluated against different human pathogenic Gram-positive and Gram-negative strains. To evaluate their possible use in clinics, the cytotoxicity of these essential oils was also tested on keratinocyte and epithelial cell lines. Except for the Chinese cinnamon, coriander and lemongrass, all other essential oils presented no cytotoxicity at 32 and 16 μg/mL. The highest indirect antibacterial activities were observed with the palmarosa and Spanish lavender in association with penicillin V. These two associations presented a 64-fold decrease against a resistant strain of Staphylococcus aureus, however, at a cytotoxic concentration. It can also be highlighted that when tested at a non-cytotoxic concentration, the activity of oregano in association with penicillin V presented an eight-fold decrease. These results show the interest to use essential oils in combination with antibiotics to reduce their concentrations inside drugs. Full article
(This article belongs to the Special Issue Antibacterial Activity of Plant Extracts and Essential Oils)
14 pages, 6767 KiB  
Article
Behavioral and Electrophysiological Effects of Ajowan (Trachyspermum ammi Sprague) (Apiales: Apiaceae) Essential Oil and Its Constituents on Nymphal and Adult Bean Bugs, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae)
by Sung-Chan Lee, Seon-Mi Seo, Min-Jung Huh, Jun-Hyeong Kwon, Il Nam, Ji-Hong Park and Il-Kwon Park
Insects 2020, 11(2), 104; https://doi.org/10.3390/insects11020104 - 4 Feb 2020
Cited by 13 | Viewed by 3837
Abstract
We investigated the repellent effect of 12 Apiaceae plant essential oils on nymphal and adult (male and female) forms of the bean bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae), using a four-arm olfactometer. Among the essential oils tested, ajowan (Trachyspermum ammi Sprague) essential [...] Read more.
We investigated the repellent effect of 12 Apiaceae plant essential oils on nymphal and adult (male and female) forms of the bean bug, Riptortus clavatus (Thunberg) (Hemiptera: Alydidae), using a four-arm olfactometer. Among the essential oils tested, ajowan (Trachyspermum ammi Sprague) essential oil showed the strongest repellent activity against the nymphal and adult bean bugs. For female adults, the repellent activity was significantly different between an ajowan oil-treated chamber and an untreated chamber down to a concentration of 14.15 μg/cm2. We also investigated the repellent activity of individual ajowan essential oil constituents. Of the compounds examined, carvacrol and thymol showed the most potent repellent activity against the nymphal and adult bean bugs. Carvacrol and thymol exhibited 73.08% and 70.0% repellent activity for the bean bug nymph at 0.71 and 2.83 μg/cm2, respectively, and 82.6% and 80.7% at 5.66 and 11.32 μg/cm2, respectively, for male adults. Carvacrol and thymol exhibited strong repellent activity against female adult bean bugs down to a concentration of 2.83 μg/cm2. Ajowan essential oil, thymol and carvacrol elicited a negative electroantennogram (EAG) response from adult bean bugs. This could explain the repellent activity of ajowan essential oil and its constituents. Our results indicate that ajowan essential oil and its constituents carvacrol and thymol can be potential candidates as the ‘push’ component in a ‘push-pull’ strategy for bean bug control. Full article
Show Figures

Figure 1

Back to TopTop