Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils
Abstract
:1. Introduction
2. Results
2.1. Essential Oil’s Cytotoxic Activity
2.2. Essential Oil’s Direct Activity
2.3. Synergistic Activity between Essential Oils and Antibiotics
2.4. Essential Oil’s Indirect Activity
2.5. Direct and Indirect Activities of Each Major Compound of the Essential Oils
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals, Bacterial Strains, Cell Lines and Growth Mediums
4.3. GC–MS Analysis
4.4. Essential Oil’s Cytotoxic Activity
4.5. Antibacterial Assays
4.5.1. Essential Oil’s Direct Activity
4.5.2. Synergistic Activity between the Essential Oils and Antibiotics
4.5.3. Essential Oil’s Indirect Activity
4.5.4. Direct and Indirect Activities of Each Major Compound of the Essential Oils
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2017–2018; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-151506-1. [Google Scholar]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 3 January 2020).
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- ECDC. EUCAST Surveillance of Antimicrobial Resistance in Europe 2018; ECDC: Stockholm, Sweden, 2019.
- Shin, J.; Prabhakaran, V.-S.; Kim, K.-S. The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb. Pathog. 2018, 116, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Courvalin, P.; Dantas, G.; Davies, J.; Eisenstein, B.; Huovinen, P.; Jacoby, G.A.; Kishony, R.; Kreiswirth, B.N.; Kutter, E.; et al. Tackling antibiotic resistance. Nat. Rev. Microbiol. 2011, 9, 894–896. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef] [PubMed]
- Okusa, P.; Stévigny, C.; Duez, P. Medicinal plants: A tool to overcome antibiotic resistance? In Medicinal Plants Classification, Biosynthesis and Pharmacology; Nova Science Publishers: New York, NY, USA, 2009; pp. 315–336. ISBN 978-1-60876-027-5. [Google Scholar]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Janssen, A.M.; Scheffer, J.J.; Baerheim Svendsen, A. Antimicrobial activity of essential oils: A 1976–1986 literature review. Aspects of the test methods. Planta Med. 1987, 53, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog. Dis. 2012, 9, 699–705. [Google Scholar] [CrossRef]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing, Breakpoint Tables for Interpretation of MICs and Zone Diameters; EUCAST: Växjö, Sweden, 2020. [Google Scholar]
- Properzi, A.; Angelini, P.; Bertuzzi, G.; Venanzoni, R. Some biological activities of essential oils. Med. Aromat Plants 2013, 2, 136–140. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Armentano, M.F.; Carmosino, M.; Bufo, S.A.; De Feo, V.; Camele, I. Cytotoxic activity of Origanum Vulgare L. on hepatocellular carcinoma cell Line HepG2 and evaluation of its biological activity. Molecules 2017, 22, 1435. [Google Scholar] [CrossRef] [Green Version]
- Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2019, 60, 3042–3053. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Nikaido, H. Outer Membrane, Gram-Negative Bacteria. In Encyclopedia of Microbiology, 4th ed.; Schmidt, T.M., Ed.; Academic Press: Oxford, UK, 2019; pp. 388–403. ISBN 978-0-12-811737-8. [Google Scholar]
- Walsh, C.; Wencewicz, T. Antibiotics: Challenges, Mechanisms, Opportunities; American Society of Microbiology: Washington, DC, USA, 2016; ISBN 978-1-55581-931-6. [Google Scholar]
- Bouyahya, A.; Bakri, Y.; Et-Touys, A.; Talbaoui, A.; Khouchlaa, A.; Charfi, S.; Abrini, J.; Dakka, N. Résistance aux antibiotiques et mécanismes d’action des huiles essentielles contre les bactéries. Phytothérapie 2017. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.; Raei, P.; Alizadeh, N.; Aghdam, M.A.; Kafil, H. Carvacrol and thymol: Strong antimicrobial agents against resistant isolates. Rev. Med. Microbiol. 2017, 28, 63–68. [Google Scholar] [CrossRef]
- Doyle, A.A.; Stephens, J.C. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019, 139, 104405. [Google Scholar] [CrossRef]
- Sanches, L.J.; Marinello, P.C.; Panis, C.; Fagundes, T.R.; Morgado-Díaz, J.A.; de-Freitas-Junior, J.C.M.; Cecchini, R.; Cecchini, A.L.; Luiz, R.C. Cytotoxicity of citral against melanoma cells: The involvement of oxidative stress generation and cell growth protein reduction. Tumor Biol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.-W.; You, J.-R.; Kim, Y.-S.; Kim, S.-H.; Cho, E.-Y.; Yoon, J.-H.; Kwon, E.; Jang, J.-J.; Park, J.-S.; Kim, H.-C.; et al. In Vitro and In Vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regul. Toxicol. Pharmacol. 2018, 95, 115–123. [Google Scholar] [CrossRef]
- Goudarzi, G.R.; Saharkhiz, M.; Sattari, M.; Zomorodian, K. Antibacterial activity and chemical composition of ajowan (Carum copticum Benth. & Hook) essential oil. J. Agric. Sci. Technol. 2011, 13, 203–208. [Google Scholar]
- Vitali, L.A.; Beghelli, D.; Nya, P.C.B.; Bistoni, O.; Cappellacci, L.; Damiano, S.; Lupidi, G.; Maggi, F.; Orsomando, G.; Papa, F.; et al. Diverse biological effects of the essential oil from Iranian Trachyspermum ammi. Arab. J. Chem. 2016, 9, 775. [Google Scholar] [CrossRef]
- Hosseinkhani, F.; Jabalameli, F.; Banar, M.; Abdellahi, N.; Taherikalani, M.; Leeuwen, W.B.; Emaneini, M. Monoterpene isolated from the essential oil of Trachyspermum ammi is cytotoxic to multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus strains. Rev. Soc. Bras. Med. Trop. 2016, 49, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moein, M.; Zomorodian, K.; Pakshir, K.; Yavari, F.; Motamedi, M.; Zarshenas, M. Trachyspermum ammi (L.) sprague: Chemical composition of essential oil and antimicrobial activities of respective fractions. J. Evid. Based Complement. Altern. Med. 2015, 20, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Moosavi-Nasab, M.; Saharkhiz, M.; Ziaee, E.; Moayedi, F.; Koshani, R.; Azizi, R. Chemical compositions and antibacterial activities of five selected aromatic plants essential oils against food-borne pathogens and spoilage bacteria. J. Essent. Oil Res. 2015, 28, 241–251. [Google Scholar] [CrossRef]
- Kaskatepe, B.; Kiymaci, M.E.; Suzuk, S.; Erdem, S.A.; Cesur, S.; Yildiz, S. Antibacterial effects of cinnamon oil against carbapenem resistant nosocomial Acinetobacter baumannii and Pseudomonas aeruginosa isolates. Ind. Crops Prod. 2016, 81, 191–194. [Google Scholar] [CrossRef]
- Huang, D.F.; Xu, J.-G.; Liu, J.-X.; Zhang, H.; Hu, Q.P. Chemical constituents, antibacterial activity and mechanism of action of the essential oil from Cinnamomum cassia bark against four food-related bacteria. Microbiology 2014, 83, 357–365. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Ouedrhiri, W.; Balouiri, M.; Bouhdid, S.; Moja, S.; Chahdi, F.O.; Taleb, M.; Greche, H. Mixture design of Origanum compactum, Origanum majorana and Thymus serpyllum essential oils: Optimization of their antibacterial effect. Ind. Crops Prod. 2016, 89, 1–9. [Google Scholar] [CrossRef]
- Bouhdid, S.; Abrini, J.; Zhiri, A.; Espuny, M.J.; Manresa, A. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. J. Appl. Microbiol. 2009, 106, 1558–1568. [Google Scholar] [CrossRef]
- Plant, P.; Stephens, B. Evaluation of the antibacterial activity of a sizable set of essential oils. Med. Aromat. Plants 2015, 4, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Haba, E.; Bouhdid, S.; Torrego-Solana, N.; Marqués, A.M.; Espuny, M.J.; García-Celma, M.J.; Manresa, A. Rhamnolipids as emulsifying agents for essential oil formulations: Antimicrobial effect against Candida albicans and methicillin-resistant Staphylococcus aureus. Int. J. Pharm. 2014, 476, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger In Vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Padalia, H.; Moteriya, P.; Baravalia, Y.; Chanda, S. Antimicrobial and synergistic effects of some essential oils to fight against microbial pathogens—A review. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Formatex Research Center: Badajoz, Spain, 2015; Volume 1. [Google Scholar]
- Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approves Standard, 9th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; Volume M07-A9. [Google Scholar]
- Ngezahayo, J.; Oliveira Ribeiro, S.; Fontaine, V.; Hari, L.; Stévigny, C.; Duez, P. In Vitro study of five herbs used against microbial infections in Burundi. Phytother. Res. 2017, 31, 1571–1578. [Google Scholar] [CrossRef]
- Mackay, M.L.; Milne, K.; Gould, I.M. Comparison of methods for assessing synergic antibiotic interactions. Int. J. Antimicrob. Agents 2000, 15, 125–129. [Google Scholar] [CrossRef]
- Okusa, P.N.; Penge, O.; Devleeschouwer, M.; Duez, P. Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild (Boraginaceae). J. Ethnopharmacol. 2007, 112, 476–481. [Google Scholar] [CrossRef]
% RC ± SD | ||||||||
---|---|---|---|---|---|---|---|---|
EO | HaCaT | CoN | ||||||
16 μg/mL | 32 μg/mL | 125 μg/mL | 250 μg/mL | 16 μg/mL | 32 μg/mL | 125 μg/mL | 250 μg/mL | |
AW | 129.71 ± 1.43 | 123.53 ± 4.86 | 103.14 ± 3.43 | 2.73 ± 0.64 | 91.72 ± 0.35 | 92.26 ± 1.94 | 5.84 ± 0.55 | 2.18 ± 1.29 |
BE | 122.64 ± 1.58 | 111.40 ± 5.95 | 103.12 ± 4.15 | 98.87 ± 0.81 | 104.48 ± 2.58 | 94.80 ± 3.91 | 95.97 ± 1.19 | 57.26 ± 0.13 |
CA | 103.13 ± 2.55 | 101.05 ± 0.71 | 34.25 ± 2,00 | 2.90 ± 0.46 | 101.76 ± 2.96 | 103.09 ± 2.78 | 102.66 ± 3.84 | 7.92 ± 2.29 |
CC | 7.58 ± 0.81 | 6.32 ± 1.42 | 4.12 ± 0.84 | 3.26 ± 0.83 | 28.36 ± 10.17 | 8.69 ± 0.50 | 3.16 ± 0.72 | 1.89 ± 0.19 |
CF | 102.22 ± 0.80 | 101.13 ± 0.56 | 15.70 ± 1.32 | 2.98 ± 0.37 | 98.22 ± 3.87 | 19.52 ± 0.68 | 9.75 ± 0.09 | 3.75 ± 0.44 |
GF | 130.53 ± 0.22 | 116.44 ± 1.41 | 71.87 ± 2.04 | 37.28 ± 1.08 | 102.44 ± 5.57 | 99.89 ± 1.53 | 89.23 ± 4.66 | 76.05 ± 4.55 |
LG | 40.63 ± 0.38 | 21.54 ± 1.13 | 2.16 ± 0.75 | 1.77 ± 0.29 | 95.30 ± 5.51 | 93.99 ± 3.24 | 7.72 ± 2.44 | 3.41 ± 0.53 |
LS | 104.05 ± 7.91 | 98.82 ± 12.92 | 76.25 ± 6.58 | 5.77 ± 2.23 | 98.77 ± 14.52 | 85.18 ± 11.20 | 62.09 ± 2.19 | 3.52 ± 0.93 |
OC | 85.95 ± 5.83 | 82.16 ± 4.93 | 4.28 ± 1.51 | 3.74 ± 0.20 | 97.43 ± 10.49 | 82.34 ± 18.55 | 6.26 ± 0.42 | 5.44 ± 4.06 |
PM | 101.99 ± 0.47 | 98.68 ± 1.14 | 99.30 ± 1.30 | 68.3 ± 4.36 | 102.12 ± 0.20 | 99.81 ± 0.35 | 96.36 ± 4.39 | 93.63 ± 3.75 |
Minimum Inhibitory Concentration (MIC, μg/mL) | |||||
---|---|---|---|---|---|
EO | E. coli LMG 8223 | E. coli LMG 15862 | P. aeruginosa LMG 6395 | K. pneumoniae LMG 20218 | E. aerogenes LMG 2094 |
AW | 500 | 1000 | >1000 | 500 | 500 |
BE | >1000 | >1000 | >1000 | >1000 | >1000 |
CA | >1000 | >1000 | >1000 | >1000 | >1000 |
CC | 250 | 500 | 500 | 250 | 250 |
CF | 1000 | >1000 | >1000 | >1000 | >1000 |
GF | 1000 | 1000 | >1000 | 1000 | 1000 |
LG | 1000 | >1000 | >1000 | >1000 | >1000 |
LS | >1000 | >1000 | >1000 | >1000 | >1000 |
OC | 250 | 500 | 500 | 500 | 500 |
PM | 1000 | >1000 | >1000 | >1000 | 1000 |
AMP | 64 | >64 | >64 | >64 | >64 |
AMX | 8 | >64 | >64 | >64 | >64 |
CTX | <1 | <1 | 8 | 32 | 4 |
DOX | <1 | <1 | 2 | 8 | 1 |
PEN V | >64 | >64 | >64 | >64 | >64 |
TET | <1 | <1 | 2 | 8 | 2 |
Minimum Inhibitory Concentration (MIC, μg/mL) | ||||
---|---|---|---|---|
EO | S. aureus LMG 8064 (MSSA) | S. aureus LMG 15975 (MRSA) | S. aureus LMG 16217 (MRSA) | E. faecalis LMG 8222 |
AW | 500 | 500 | 500 | >1000 |
BE | >1000 | >1000 | >1000 | >1000 |
CA | >1000 | >1000 | >1000 | >1000 |
CC | 250 | 250 | 250 | 500 |
CF | 125 | 125 | 125 | 1000 |
GF | 500 | 1000 | 1000 | >1000 |
LG | 250 | 500 | 250 | >1000 |
LS | >1000 | >1000 | >1000 | >1000 |
OC | 250 | 250 | 250 | 1000 |
PM | 500 | 1000 | 1000 | >1000 |
AMX | 0.03 | 8 | 64 | < 1 |
CTX | < 1 | 2 | >64 | >64 |
FOF | 4 | 16 | 16 | 64 |
GEN | < 1 | >64 | 8 | 64 |
PEN V | 0.015 | 4 | 64 | 1 |
Combination between Essential Oils and Antibiotics | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus LMG 15975 | S. aureus LMG 16217 | E. coli LMG 15862 | P. aeruginosa LMG 6395 | |||||||||||||
EO | AMX | PEN V | AMX | PEN V | AMX | PEN V | DOX | TET | ||||||||
FICI | Int. | FICI | Int. | FICI | Int. | FICI | Int. | FICI | Int. | FICI | Int. | FICI | Int. | FICI | Int. | |
AW | 0.75 | A | 0.63 | A | 0.75 | A | 0.75 | A | 1.50 | I | 1.50 | I | 1.13 | I | 1.13 | I |
BE | 0.56 | A | 1.06 | I | 1.50 | I | 1.50 | I | 2.00 | I | 2.00 | I | 0.56 | A | 1.13 | I |
CA | 0.56 | A | 0.53 | A | 0.75 | A | 0.38 | S | 2.00 | I | 2.00 | I | 0.56 | A | 1.13 | I |
CC | 0.50 | S | 0.75 | A | 0.63 | A | 0.63 | A | 1.25 | I | 1.25 | I | 1.50 | I | 1.50 | I |
CF | 0.38 | S | 1.00 | A | 0.56 | A | 1.13 | I | 2.00 | I | 2.00 | I | 0.56 | A | 1.13 | I |
GF | 0.63 | A | 0.56 | A | 1.00 | A | 0.50 | S | 1.50 | I | 1.50 | I | 1.13 | I | 1.13 | I |
LG | 0.63 | A | 0.56 | A | 0.38 | S | 0.75 | A | 2.00 | I | 2.00 | I | 0.56 | A | 1.13 | I |
LS | 0.56 | A | 0.53 | A | 0.75 | A | 0.75 | A | 2.00 | I | 2.00 | I | 0.56 | A | 1.13 | I |
OC | 0.38 | S | 0.63 | A | 0.63 | A | 1.25 | I | 1.25 | I | 1.25 | I | 1.50 | I | 1.50 | I |
PM | 0.56 | A | 1.06 | I | 0.75 | A | 0.75 | A | 1.50 | I | 1.50 | I | 0.56 | A | 1.13 | I |
Minimum Inhibitory Concentration (MIC, μg/mL) | ||||
---|---|---|---|---|
EO | E. aerogenes LMG 2094 | K. pneumoniae LMG 20218 | ||
EO Sub-MIC + | CTX | EO Sub-MIC + | CTX | |
ABalone | 4 | 32 | ||
AW | 125 + | 4 | 125 + | 32 |
BE | 500 + | 4 | 500 + | 32 |
CA | 500 + | 2 | 500 + | 16 |
CC | 62.5 + | 2 | 62.5 + | 32 |
CF | 500 + | 2 | 500 + | 32 |
GF | 250 + | 2 | 250 + | 16 |
LG | 500 + | 2 | 500 + | 32 |
LS | 500 + | 4 | 500 + | 8 |
OC | 125 + | 1 | 125 + | 16 |
PM | 250 + | 4 | 500 + | 32 |
Minimum Inhibitory Concentration (MIC, μg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EO | S. aureus LMG 15975 | S. aureus LMG 16217 | E. faecalis LMG 8222 | ||||||||
EO Sub-MIC + | AMX | PEN V | EO Sub-MIC + | PEN V | EO Sub-MIC + | AMX | PEN V | EO Sub-MIC + | FOF | GEN | |
ABalone | 8 | 4 | 4 | 64 | 64 | 64 | 64 | ||||
AW | 125 + | 1 | 0.5 | 32 + | 2 | 125 + | 32 | 64 | 500 + | 64 | 1 |
BE | 500 + | 2 | 2 | 32 + | 4 | 500 + | 64 | 64 | 500 + | 64 | 64 |
CA | 500 + | 2 | 0.125 | 32 + | 1 | 500 + | 32 | 32 | 500 + | 64 | 1 |
CC | 62.5 + | 2 | 1 | nt | nt | 62.5 + | 64 | 64 | 125 + | 64 | 8 |
CF | 31.3 + | 2 | 2 | nt | nt | 31.3 + | 64 | 64 | 250 + | 64 | 2 |
GF | 250 + | 1 | 0.125 | 32 + | 1 | 250 + | 32 | 64 | 500 + | 64 | 4 |
LG | 125 + | 2 | 0.25 | nt | nt | 62.5 + | 64 | 32 | 500 + | 64 | 1 |
LS | 500 + | 1 | 0.06 | 32 + | 1 | 500 + | 32 | 32 | 500 + | 32 | 8 |
OC | 62.5 + | 2 | 0.25 | 32 + | 0.5 | 62.5 + | 64 | 64 | 250 + | 64 | 2 |
PM | 250 + | 2 | 0.06 | 32 + | 1 | 250 + | 64 | 64 | 500 + | 64 | 4 |
EO | Origin of the Plant | Organ Used | Chemical Composition | |
---|---|---|---|---|
Compound of the EO | % in the EO ± SD | |||
AW | India | fruit | thymol | 45.17 ± 1.94 |
γ-terpinene | 24.16 ± 0.01 | |||
p-cymene | 23.16 ± 1.69 | |||
BE | India | flowered top | estragole | 87.58 ± 2.22 |
CA | U.K. | flower | E-β-farnesene | 34.61 ± 3.79 |
CC | China | branch | E-cinnamaldehyde | 82.05 ± 10.46 |
CF | U.K. | leaf | linalool | 43.67 ± 4.16 |
2-decenal | 11.07 ± 0.53 | |||
GF | Indonesia | flower bud | eugenol | 84.58 ± 0.35 |
LG | Guatemala | aerial parts | citral | 75.16 ± 6.60 |
LS | France | flowered top | camphor | 32.54 ± 2.75 |
fenchone | 24.40 ± 0.33 | |||
OC | Morocco | flowered top | carvacrol | 57.21 ± 2.04 |
thymol | 13.73 ± 3.71 | |||
p-cymene | 11.55 ± 0.74 | |||
PM | Nepal | aerial parts | geraniol | 81.05 ± 0.70 |
geranyl acetate | 11.01 ± 0.30 |
Minimum Inhibitory Activity (MIC, μg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
S. aureus LMG 15975 | ||||||||
EO | Direct Activity | Indirect Activity | ||||||
% of the Compound in the EO | EO Compound | EO | EO Compound | EO | ||||
Sub-MIC + | PEN V * | Sub-MIC + | PEN V * | |||||
AW | Thymol | 45.17 | 250 | 500 | 62..5 + | 0.125 | 125 + | 0.5 |
BE | Estragole | 87.58 | >1000 | >1000 | 500 + | 2 | 500 + | 2 |
CA | E-β-farnesene | 34.61 | >1000 | >1000 | 500 + | 0.06 | 500 + | 0.125 |
CC | E-cinnamaldehyde | 82.05 | 250 | 250 | 62.5 + | 4 | 62.5 + | 1 |
CF | 2-decenal | 11.07 | 250 | 125 | 62.5 + | 0.06 | 31.3 + | 2 |
GF | Eugenol | 84.58 | 1000 | 1000 | 250 + | 1 | 250 + | 0.125 |
LG | Citral | 75.16 | 500 | 500 | 125 + | 0.06 | 125 + | 0.25 |
LS | Camphor | 32.54 | >1000 | >1000 | 500 + | 1 | 500 + | 0.06 |
OC | Carvacrol | 57.21 | 125 | 250 | 31.3 + | 0.5 | 62.5 + | 0.25 |
PM | Geraniol | 81.05 | 1000 | 1000 | 250 + | 0.03 | 250 + | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Ribeiro, S.; Fontaine, V.; Mathieu, V.; Zhiri, A.; Baudoux, D.; Stévigny, C.; Souard, F. Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics 2020, 9, 717. https://doi.org/10.3390/antibiotics9100717
Oliveira Ribeiro S, Fontaine V, Mathieu V, Zhiri A, Baudoux D, Stévigny C, Souard F. Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics. 2020; 9(10):717. https://doi.org/10.3390/antibiotics9100717
Chicago/Turabian StyleOliveira Ribeiro, Sofia, Véronique Fontaine, Véronique Mathieu, Abdesselam Zhiri, Dominique Baudoux, Caroline Stévigny, and Florence Souard. 2020. "Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils" Antibiotics 9, no. 10: 717. https://doi.org/10.3390/antibiotics9100717
APA StyleOliveira Ribeiro, S., Fontaine, V., Mathieu, V., Zhiri, A., Baudoux, D., Stévigny, C., & Souard, F. (2020). Antibacterial and Cytotoxic Activities of Ten Commercially Available Essential Oils. Antibiotics, 9(10), 717. https://doi.org/10.3390/antibiotics9100717