Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (602)

Search Parameters:
Keywords = airport development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3439 KiB  
Article
Delay Prediction Through Multi-Channel Traffic and Weather Scene Image: A Deep Learning-Based Method
by Ligang Yuan, Linghua Kong and Haiyan Chen
Appl. Sci. 2025, 15(15), 8604; https://doi.org/10.3390/app15158604 (registering DOI) - 3 Aug 2025
Viewed by 166
Abstract
Accurate prediction of airport delays under convective weather conditions is essential for effective traffic coordination and improving overall airport efficiency. Traditional methods mainly rely on numerical weather and traffic indicators, but they often fail to capture the spatial distribution of traffic flows within [...] Read more.
Accurate prediction of airport delays under convective weather conditions is essential for effective traffic coordination and improving overall airport efficiency. Traditional methods mainly rely on numerical weather and traffic indicators, but they often fail to capture the spatial distribution of traffic flows within the terminal area. To address this limitation, we propose a novel image-based representation named Multi-Channel Traffic and Weather Scene Image (MTWSI), which maps both meteorological and traffic information onto a two-dimensional airspace grid, thereby preserving spatial relationships. Based on the MTWSI, we develop a delay prediction model named ADLCNN. This model first uses a convolutional neural network to extract deep spatial features from the scene images and then classifies each sample into a delay level. Using real operational data from Guangzhou Baiyun Airport, this paper shows that ADLCNN achieves significantly higher prediction accuracy compared to traditional machine learning methods. The results confirm that MTWSI provides a more accurate representation of real traffic conditions under convective weather. Full article
Show Figures

Figure 1

27 pages, 22029 KiB  
Article
Evaluating the Siphon Effect on Airport Cluster Resilience Using Accessibility and a Benchmark System for Sustainable Development
by Xinglong Wang, Weiqi Lin, Hao Yin and Fang Sun
Sustainability 2025, 17(15), 7013; https://doi.org/10.3390/su17157013 - 1 Aug 2025
Viewed by 157
Abstract
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which [...] Read more.
The siphon effect between airports has amplified the polarization in passenger throughput, undermining the balanced development and sustainability of airport clusters. The airport siphon effect occurs when one airport attracts a disproportionate share of passengers, concentrating traffic at the expense of others, which affects the overall resilience of the entire airport cluster. To address this issue, this study proposes a siphon index, expands the range of ground transportation options for passengers, and establishes a zero-siphon model to assess the impact of siphoning on the resiliency of airport clusters. Using this framework, four major airport clusters in China were selected as research subjects, with regional aviation accessibility serving as a measure of resilience. The results showed that among the four airport clusters, the siphon effect is most pronounced in the Guangzhou region. To explore the implications of this effect further, three airport disruption scenarios were simulated to assess the resilience of the Pearl River Delta airport cluster. The results indicated that the intensity and timing of disruptive events significantly affect airport cluster resilience, with hub airports being particularly sensitive. This study analyzes the risks associated with excessive route concentration, providing policymakers with critical insights to enhance the sustainability, equity, and resilience of airport clusters. The proposed strategies facilitate coordinated infrastructure development, optimized air–ground intermodal connectivity, and risk mitigation. These measures contribute to building more sustainable and adaptive aviation networks in rapidly urbanizing regions. Full article
Show Figures

Figure 1

20 pages, 2054 KiB  
Article
Change Management in Aviation Organizations: A Multi-Method Theoretical Framework for External Environmental Uncertainty
by Ilona Skačkauskienė and Virginija Leonavičiūtė
Sustainability 2025, 17(15), 6994; https://doi.org/10.3390/su17156994 - 1 Aug 2025
Viewed by 161
Abstract
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid [...] Read more.
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid technological advancements, environmental pressures and regulatory changes—this research proposes a theoretical change management model for aviation service providers, such as airports. Integrating three analytical approaches, the model offers a robust, multi-method approach for supporting sustainable transformation under uncertainty. Normative analysis using Bayesian decision theory identifies influential external environmental factors, capturing probabilistic relationships, and revealing causal links under uncertainty. Prescriptive planning through scenario theory explores alternative future pathways and helps to identify possible predictions, offer descriptive evaluation employing fuzzy comprehensive evaluation, and assess decision quality under vagueness and complexity. The proposed four-stage model—observation, analysis, evaluation, and response—offers a methodology for continuous external environment monitoring, scenario development, and data-driven, proactive change management decision-making, including the impact assessment of change and development. The proposed model contributes to the theoretical advancement of the change management research area under uncertainty and offers practical guidance for aviation organizations (airports) facing a volatile external environment. This framework strengthens aviation organizations’ ability to anticipate, evaluate, and adapt to multifaceted external changes, supporting operational flexibility and adaptability and contributing to the sustainable development of aviation services. Supporting aviation organizations with tools to proactively manage systemic uncertainty, this research directly supports the integration of sustainability principles, such as resilience and adaptability, for long-term value creation through change management decision-making. Full article
Show Figures

Figure 1

34 pages, 2947 KiB  
Article
Optimization and Empirical Study of Departure Scheduling Considering ATFM Slot Adherence
by Zheng Zhao, Siqi Zhao, Yahao Zhang and Jie Leng
Aerospace 2025, 12(8), 683; https://doi.org/10.3390/aerospace12080683 - 30 Jul 2025
Viewed by 142
Abstract
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization [...] Read more.
Departure punctuality (KPI01) and ATFM slot adherence (KPI03) have been emphasized by the International Civil Aviation Organization as key performance indicators (KPIs) in the Global Air Navigation Plan. To address the inherent conflict between these two objectives in departure scheduling, a multi-objective optimization model is proposed that aims to simultaneously enhance departure punctuality, ATFM slot adherence, and taxiing efficiency. A simulated annealing algorithm based on a resource transmission mechanism was developed to solve the model effectively. Based on full-scale operational data from Nanjing Lukou International Airport in June 2023, the empirical results confirm the model’s effectiveness in two primary dimensions: (1) Significant improvement in taxiing efficiency: The average unimpeded taxi-out time was reduced by 6.4% (from 17.2 to 16.1 min). The number of flights with taxi-out times exceeding 30 min decreased by 58%. For representative taxi routes (e.g., stand 118 to runway 6), the excess taxi-out time was reduced by 82.3% (from 5.61 to 1.10 min). (2) Enhanced operational punctuality: Departure punctuality improved by 10.7% (from 67.9% to 78.7%), while ATFM slot adherence increased by 31.2% (from 64.6% to 95.8%). This study presents an innovative departure scheduling approach and offers a practical framework for improving collaborative operational efficiency among airports, air traffic management units, and airlines. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

20 pages, 3903 KiB  
Article
Void Detection of Airport Concrete Pavement Slabs Based on Vibration Response Under Moving Load
by Xiang Wang, Ziliang Ma, Xing Hu, Xinyuan Cao and Qiao Dong
Sensors 2025, 25(15), 4703; https://doi.org/10.3390/s25154703 - 30 Jul 2025
Viewed by 231
Abstract
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including [...] Read more.
This study proposes a vibration-based approach for detecting and quantifying sub-slab corner voids in airport cement concrete pavement. Scaled down slab models were constructed and subjected to controlled moving load simulations. Acceleration signals were collected and analyzed to extract time–frequency domain features, including power spectral density (PSD), skewness, and frequency center. A finite element model incorporating contact and nonlinear constitutive relationships was established to simulate structural response under different void conditions. Based on the simulated dataset, a random forest (RF) model was developed to estimate void size using selected spectral energy indicators and geometric parameters. The results revealed that the RF model achieved strong predictive performance, with a high correlation between key features and void characteristics. This work demonstrates the feasibility of integrating simulation analysis, signal feature extraction, and machine learning to support intelligent diagnostics of concrete pavement health. Full article
Show Figures

Figure 1

13 pages, 2414 KiB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 281
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

19 pages, 2103 KiB  
Article
Airport Field Path Optimization Method Based on Conflict Hotspot Avoidance Mechanism
by Wen Tian, Mingjian Yang, Xuefang Zhou, Jianan Yin and Xv Shi
Appl. Sci. 2025, 15(15), 8204; https://doi.org/10.3390/app15158204 - 23 Jul 2025
Viewed by 166
Abstract
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for [...] Read more.
The state path optimization model, alongside strategies like slowing down and waiting, aims to identify optimal aircraft routes that minimize the total taxi time and prevent conflicts. Optimization reduces taxiing times for aircraft YZR7537, CES2558, and CSZ9806, while slightly increasing the times for CSN6310 and CSN3210 due to conflict hotspot avoidance measures. This approach also decreases the number of aircraft passing through key conflict hotspots, effectively reducing both conflicts and risk levels in these areas. Consequently, the total taxiing time for the optimized aircraft is cut by 53 s, enhancing airport operational efficiency. The proposed model serves as a theoretical foundation for developing an intelligent airport operation management system. Full article
Show Figures

Figure 1

22 pages, 2108 KiB  
Article
Deep Reinforcement Learning for Real-Time Airport Emergency Evacuation Using Asynchronous Advantage Actor–Critic (A3C) Algorithm
by Yujing Zhou, Yupeng Yang, Bill Deng Pan, Yongxin Liu, Sirish Namilae, Houbing Herbert Song and Dahai Liu
Mathematics 2025, 13(14), 2269; https://doi.org/10.3390/math13142269 - 15 Jul 2025
Viewed by 408
Abstract
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) [...] Read more.
Emergencies can occur unexpectedly and require immediate action, especially in aviation, where time pressure and uncertainty are high. This study focused on improving emergency evacuation in airport and aircraft scenarios using real-time decision-making support. A system based on the Asynchronous Advantage Actor–Critic (A3C) algorithm, an advanced deep reinforcement learning method, was developed to generate faster and more efficient evacuation routes compared to traditional models. The A3C model was tested in various scenarios, including different environmental conditions and numbers of agents, and its performance was compared with the Deep Q-Network (DQN) algorithm. The results showed that A3C achieved evacuations 43.86% faster on average and converged in fewer episodes (100 vs. 250 for DQN). In dynamic environments with moving threats, A3C also outperformed DQN in maintaining agent safety and adapting routes in real time. As the number of agents increased, A3C maintained high levels of efficiency and robustness. These findings demonstrate A3C’s strong potential to enhance evacuation planning through improved speed, adaptability, and scalability. The study concludes by highlighting the practical benefits of applying such models in real-world emergency response systems, including significantly faster evacuation times, real-time adaptability to evolving threats, and enhanced scalability for managing large crowds in high-density environments including airport terminals. The A3C-based model offers a cost-effective alternative to full-scale evacuation drills by enabling virtual scenario testing, supports proactive safety planning through predictive modeling, and contributes to the development of intelligent decision-support tools that improve coordination and reduce response time during emergencies. Full article
Show Figures

Figure 1

14 pages, 899 KiB  
Article
Multi-Robot Path Planning for High-Density Parking Environments Considering Efficiency and Fairness
by Jinhyuk Lee and Woojin Chung
Sensors 2025, 25(14), 4342; https://doi.org/10.3390/s25144342 - 11 Jul 2025
Viewed by 256
Abstract
As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often neglecting the priority of individual parking tasks. [...] Read more.
As parking congestion at airport parking lots intensifies, high-density parking (HDP) systems with multiple parking robots are gaining attention for improving operational efficiency. However, conventional multi-agent pathfinding (MAPF) methods primarily focus on overall efficiency improvement, often neglecting the priority of individual parking tasks. Additionally, these methods assume robots are ideal agents, resulting in physically infeasible paths for parking robots. We propose a multi-robot path planning approach that balances efficiency and priority. The proposed method improves priority-based search (PBS) by dynamically adjusting priorities, thereby ensuring both operational efficiency and priority of individual vehicles. A simulator replicating a real airport parking environment with 100 parking slots and parking robots under development was implemented to validate the approach. Real-world parking data from an airport was used as input, demonstrating that the proposed autonomous parking system can effectively handle peak-season parking demand. The proposed method achieves a throughput exceeding 41 vehicles per hour with appropriate weight value, meeting the peak-season demand while maintaining acceptable fairness. Our approach provides a practical foundation for establishing time-based parking operation strategies and estimating the number of robots recommended for a given parking scenario. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Figure 1

25 pages, 3717 KiB  
Article
Comprehensive Evaluation Method for Importance of Epidemic Prevention in Chinese Cities Considering Population Mobility Network
by Bing Li, Jie Zhang and Ziye Xiang
Mathematics 2025, 13(14), 2222; https://doi.org/10.3390/math13142222 - 8 Jul 2025
Viewed by 256
Abstract
Against the backdrop of frequent public health emergencies caused by infectious diseases, it is urgent to evaluate the importance of urban epidemic prevention by integrating population mobility networks. In this study, a comprehensive evaluation index system is constructed based on a population mobility [...] Read more.
Against the backdrop of frequent public health emergencies caused by infectious diseases, it is urgent to evaluate the importance of urban epidemic prevention by integrating population mobility networks. In this study, a comprehensive evaluation index system is constructed based on a population mobility network, and the improved entropy weight method and analytic hierarchy process are used to obtain the comprehensive weights. The weight imbalance problem of traditional methods is solved by introducing community structure weighting and subjective weight. We establish a Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)-based evaluation model named city importance evaluation based on the division of communities and TOPSIS (CICT) for the importance of urban epidemic prevention and simulate the model using data from 297 cities in China. It can rank indicators that affect the importance of cities in infectious disease prevention and control and identify key cities for infectious disease prevention and control. The influence of various indicators on the evaluation objectives vary during different investigation periods, but the entropy weights of confirmed cases, hospital beds, and practicing (assistant) physicians remain at a high level. Cities with a high number of confirmed cases consistently rank at the top in the comprehensive evaluation, but this model can also identify potential key cities with fewer confirmed cases. These cities require key management during the outbreak of infectious diseases. The evaluation model can scientifically assess the epidemic prevention significance of cities, improve the efficiency of public health emergency management, and provide quantitative support for formulating urban epidemic control strategies, promoting resource optimization allocation, and implementing targeted measures. Full article
(This article belongs to the Special Issue Data Modeling and Analysis in Epidemiology and Biostatistics)
Show Figures

Figure 1

23 pages, 1794 KiB  
Article
Dynamic Rescheduling Strategy for Passenger Congestion Balancing in Airport Passenger Terminals
by Yohan Lee, Seung Chan Choi, Keyju Lee and Sung Won Cho
Mathematics 2025, 13(13), 2208; https://doi.org/10.3390/math13132208 - 7 Jul 2025
Viewed by 412
Abstract
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising [...] Read more.
Airports are facing significant challenges due to the increasing number of air travel passengers. After a significant downturn during the COVID-19 pandemic, airports are implementing measures to enhance security and improve their level of service in response to rising demand. However, the rising passenger volume has led to increased congestion and longer waiting times, undermining operational efficiency and passenger satisfaction. While most previous studies have focused on static modeling or infrastructure improvements, few have addressed the problem of dynamically allocating passengers in real-time. To tackle this issue, this study proposes a mathematical model with a dynamic rescheduling framework to balance the workload across multiple departure areas where security screening takes place, while minimizing the negative impact on passenger satisfaction resulting from increased walking distances. The proposed model strategically allocates departure areas for passengers in advance, utilizing data-based predictions. A mixed integer linear programming (MILP) model was developed and evaluated through discrete event simulation (DES). Real operational data provided by Incheon International Airport Corporation (IIAC) were used to validate the model. Comparative simulations against four baseline strategies demonstrated superior performance in balancing workload, reducing waiting passengers, and minimizing walking distances. In conclusion, the proposed model has the potential to enhance the efficiency of the security screening stage in the passenger departure process. Full article
Show Figures

Figure 1

32 pages, 2155 KiB  
Article
A Study on Information Strategy Planning (ISP) for Applying Smart Technologies to Airport Facilities in South Korea
by Sunbae Moon, Gutaek Kim, Heechang Seo, Jiwon Jun and Eunsoo Park
Aerospace 2025, 12(7), 595; https://doi.org/10.3390/aerospace12070595 - 30 Jun 2025
Viewed by 463
Abstract
This study aims to develop an information strategy plan (ISP) for the integrated management of airport facility information in South Korea by applying smart technologies such as building information modeling (BIM), digital twins, and openBIM. As the demand for intelligent lifecycle management and [...] Read more.
This study aims to develop an information strategy plan (ISP) for the integrated management of airport facility information in South Korea by applying smart technologies such as building information modeling (BIM), digital twins, and openBIM. As the demand for intelligent lifecycle management and efficient facility operations continues to grow, airport infrastructure requires standardized and interoperable systems to manage complex assets and stakeholder collaboration. This research addresses three core challenges facing Korean airports: the lack of sustainable maintenance environments, the absence of data standards and systems, and the insufficiency of user-oriented platforms. Through system analysis, benchmarking, and SWOT assessment, the study proposes a stepwise implementation roadmap consisting of development, integration, and advancement phases and designs a “To-Be” model that incorporates 37 component technologies and a standardized information framework. The proposed ISP supports data-driven airport operations, enhances collaboration, and accelerates digital transformation, ultimately contributing to the development of smart and globally competitive airports. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

17 pages, 370 KiB  
Article
A Deep Learning Approach for General Aviation Trajectory Prediction Based on Stochastic Processes for Uncertainty Handling
by Houru Hu, Ye Yuan and Qingwen Xue
Appl. Sci. 2025, 15(12), 6810; https://doi.org/10.3390/app15126810 - 17 Jun 2025
Viewed by 435
Abstract
General aviation trajectory prediction plays a crucial role in enhancing safety and operational efficiency at non-towered airports. However, current research faces multiple challenges including variable weather conditions, complex aircraft interactions, and flight pattern constraints specified by general aviation regulations. This paper proposes a [...] Read more.
General aviation trajectory prediction plays a crucial role in enhancing safety and operational efficiency at non-towered airports. However, current research faces multiple challenges including variable weather conditions, complex aircraft interactions, and flight pattern constraints specified by general aviation regulations. This paper proposes a deep learning method based on stochastic processes aimed at addressing uncertainty issues in general aviation trajectory prediction. First, we design a probabilistic encoder–decoder structure enabling the model to output trajectory distributions rather than single paths, with regularization terms based on Lyapunov stability theory to ensure predicted trajectories maintain stable convergence while satisfying flight patterns. Second, we develop a multi-layer attention mechanism that accounts for weather factors, enhancing the model’s responsiveness to environmental changes. Validation using the TrajAir dataset from Pittsburgh-Butler Regional Airport (KBTP) not only advances deep learning applications in general aviation but also provides new insights for solving trajectory prediction problems. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

23 pages, 4357 KiB  
Article
Slot Optimization Based on Coupled Airspace Capacity of Multi-Airport System
by Sichen Liu, Shuce Wang, Minghua Hu and Lei Yang
Appl. Sci. 2025, 15(12), 6759; https://doi.org/10.3390/app15126759 - 16 Jun 2025
Viewed by 323
Abstract
An airport slot is the core resource in the air transportation system. In most busy airports in China, airline demand significantly exceeds the available slot capacity. Scientific and reasonable slot allocation techniques and methods can improve the operational efficiency and benefits of multi-airport [...] Read more.
An airport slot is the core resource in the air transportation system. In most busy airports in China, airline demand significantly exceeds the available slot capacity. Scientific and reasonable slot allocation techniques and methods can improve the operational efficiency and benefits of multi-airport systems. Existing research has predominantly addressed slot allocation optimization for individual airports; however, there are differences in the functional positioning and resource allocation during multi-airport slot optimization, which makes cooperative optimization in the context of multi-airport slot allocation difficult. The dynamic sharing of airspace capacity in multi-airport systems is crucial for optimizing airport slot allocation and improving resource utilization efficiency. This study develops a multi-objective optimization model incorporating coupled airspace capacity relationships within multi-airport systems and the fairness of airlines and airports in order to realize the optimal utilization of multi-airport system resources, considering specialized 24 h airport slot coordination parameter patterns and slot firebreaks in China. Finally, the validity and scalability of the model are verified using real flight data from three airports in the Beijing airport terminal area, and simulations are conducted to verify the model. The findings provide a solid reference for the optimization of airport slot timetables in multi-airport systems, having both important theoretical value and practical significance. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 805 KiB  
Article
Using SWARA for the Evaluation Criteria of Connecting Airports with Railway Networks
by Jure Šarić and Borna Abramović
Systems 2025, 13(6), 428; https://doi.org/10.3390/systems13060428 - 3 Jun 2025
Viewed by 475
Abstract
The optimisation of airport infrastructure capacities lacks adequate tools that would enable airport owners and managers to make strategic decisions related to sustainable development and strengthening multimodal connectivity. Assessing the sustainability of the transport system is one of the important issues in creating [...] Read more.
The optimisation of airport infrastructure capacities lacks adequate tools that would enable airport owners and managers to make strategic decisions related to sustainable development and strengthening multimodal connectivity. Assessing the sustainability of the transport system is one of the important issues in creating transport policies worldwide. In this research, the methodology of multi-criteria decision making (MCDM) was used, which can be applied to decision making and the evaluation of transport projects, considering more than one criterion in the selection process. The Stepwise Weight Assessment Ratio Analysis (SWARA) method is one of the new MCDM methods. The SWARA method will assess the weights of the selected main criteria and sub-criteria for the multimodal connection of airports to the railway transport infrastructure. In this method, the expert plays an important role in the evaluation and calculation of the criteria weights. This research also aims to respond to the need to define a framework for objective and transparent decision-making based on the assessment of the weighting factors of the selected main criteria and sub-criteria. To assess the justification for the choice of railway transport for connecting airports, financial, traffic, environmental, and availability criteria were used. Full article
(This article belongs to the Special Issue Optimization-Based Decision-Making Models in Rail Systems Engineering)
Show Figures

Figure 1

Back to TopTop