Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = air pollution tolerance index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15127 KiB  
Article
Assessing the Influences of Leaf Functional Traits on Plant Performances Under Dust Deposition and Microplastic Retention
by Mamun Mandal, Anamika Roy, Shubhankar Ghosh, Achinta Mondal, Arkadiusz Przybysz, Robert Popek, Totan Ghosh, Sandeep Kumar Dash, Ganesh Kumar Agrawal, Randeep Rakwal and Abhijit Sarkar
Atmosphere 2025, 16(7), 861; https://doi.org/10.3390/atmos16070861 - 15 Jul 2025
Viewed by 379
Abstract
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city [...] Read more.
Since airborne microplastics (AMPs) are a recent and unexplored field of study, there are several unresolved issues regarding their effects on plants. The accumulating potential of AMPs and their effect on the biochemical parameters of ten different plant species in an Indian city environment were assessed. The four types of AMPs deposited in the phyllosphere—fragment (30.76%), film (28.95%), fiber (22.61%), and pellet (17.68%)—were examined using stereomicroscopy and fluorescence microscopy. The air pollution tolerance index (APTI) was determined, and other biochemical parameters such as proline, phenol, malondialdehyde, carotenoids, superoxide dismutase, catalase, and peroxidase were also measured. The findings showed that in the case of polymers type, PE (30%) was more abundant than others, followed by PET (17%), PP (15%), PVC (13%), PVA (10%), PS (7%), ABS (5%), and PMMA (3%). Clerodendrum infortunatum L., Calotropis procera (Aiton) W.T. Aiton, and Mangifera indica L. all showed a strong APTI and also exhibited significantly higher amounts of AMP accumulation. Principal component analysis showed a stronger association between phyllospheric AMPs and biochemical parameters. Additionally, the correlation analysis revealed that the presence of accumulated AMPs may significantly influence the biochemical parameters of the plants. Thus, it can be concluded that the different plant species are uniquely specialized in AMP accumulation, which is significantly impacted by the plants’ APTI as well as other biochemical parameters. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

19 pages, 4035 KiB  
Article
Impact of Short-Term and Prolonged (Multi-Year) Droughts on Tree Mortality at the Individual Tree and Stand Levels
by Goran Češljar, Zvonimir Baković, Ilija Đorđević, Saša Eremija, Aleksandar Lučić, Ivana Živanović and Bojan Konatar
Plants 2025, 14(13), 1904; https://doi.org/10.3390/plants14131904 - 20 Jun 2025
Viewed by 588
Abstract
Droughts accompanied by high temperatures are becoming increasingly frequent across Europe and globally. Both individual trees and entire forest ecosystems are exposed to drought stress, with prolonged drought periods leading to increased tree mortality. Therefore, continuous monitoring, data collection, and analysis of tree [...] Read more.
Droughts accompanied by high temperatures are becoming increasingly frequent across Europe and globally. Both individual trees and entire forest ecosystems are exposed to drought stress, with prolonged drought periods leading to increased tree mortality. Therefore, continuous monitoring, data collection, and analysis of tree mortality are essential prerequisites for understanding the complex interactions between climate and trees. This study examined the effects of short-term and prolonged (multi-year) droughts on the mortality of individual trees and forests in Serbia. The analysis was based on datasets from our previous research on the influence of drought and drought duration on individual tree mortality in Serbian forest ecosystems, supplemented with new data collected through the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests). Additionally, we incorporated data from the public enterprise (PE) “Srbijašume”, which manages forests in Central Serbia, focusing on random yields resulting from natural disasters (droughts). These data enabled a comparative assessment of the findings on increased mortality and drought impact at both the individual tree level and the stand level. This study identifies key similarities and differences in tree mortality trends based on drought duration and examines their correlations within the same time frame (2004–2023). By analysing climatic conditions across Serbia, we provide evidence of the interaction between drought periods and increased forest mortality, which we further confirmed by calculating the Standardized Precipitation Evapotranspiration Index (SPEI). We also address the tree species that were most sensitive to the effects of drought. Our findings indicate that prolonged (multi-year) droughts, accompanied by high temperatures, have significantly contributed to increased tree mortality over the past decade. Successive multi-year droughts pose a substantial threat to both individual trees and entire forests, producing more severe and persistent responses compared to those caused by single-year droughts, which forests and individual trees are generally more capable of tolerating. Moreover, due to prolonged drought stress, trees weaken, leading to delayed mortality that may manifest several years after the initial drought event. The observed increase in tree mortality has been found to correlate with rising temperatures and the growing frequency of prolonged droughts over the past decade. Especially, intense droughts in the growing season (April–September) have a very negative impact on forests. Full article
Show Figures

Figure 1

17 pages, 283 KiB  
Review
Review: Implications of Air Pollution on Trees Located in Urban Areas
by Alamilla-Martínez Diana Grecia, Tenorio-Sánchez Sergio Arturo and Gómez-Ramírez Marlenne
Earth 2025, 6(2), 38; https://doi.org/10.3390/earth6020038 - 10 May 2025
Viewed by 1197
Abstract
Air pollution in cities is intensifying, inevitably affecting all living organisms, gincluding trees. Urban trees are vital for cities because they improve air quality and regulate the climate; however, like all living organisms, they are affected by the environment to which they are [...] Read more.
Air pollution in cities is intensifying, inevitably affecting all living organisms, gincluding trees. Urban trees are vital for cities because they improve air quality and regulate the climate; however, like all living organisms, they are affected by the environment to which they are exposed. In cities, the primary atmospheric pollutants of inorganic origin include NO, SOX, COX, O3, and suspended particulate matter (PM2.5 and PM10). Each of these pollutants impacts population health, with urban trees undergoing a series of consequent alterations. In this study, we review the inorganic pollutants identified by the World Health Organization (WHO) as impacting air quality in cities in different regions of the world; discuss the regulations that govern NO2, SO2, CO, O3, and PM2.5 and PM10 emissions and their impact they have on urban trees; analyze the processes involved in pollutant–tree interactions and the related tolerance and/or resistance mechanisms; and determine the tree species with the best tolerance, classified using an air pollution tolerance index (APTI). Full article
Show Figures

Graphical abstract

14 pages, 4646 KiB  
Article
Evaluation of Ecological Service Functions of Urban Greening Tree Species in Northern China Based on the Species-Specific Air Purification Index
by Yuqian Sun, Guangzhao Wu and Pin Li
Forests 2024, 15(10), 1835; https://doi.org/10.3390/f15101835 - 21 Oct 2024
Cited by 1 | Viewed by 1213
Abstract
Urban forests, as an integral part of nature-based solutions (NBS), are significant contributors to improving urban air quality, delivering ecological service functions and environmental benefits to human health and well-being. Suitable urban forest management, including proper species selection, needs to be defined to [...] Read more.
Urban forests, as an integral part of nature-based solutions (NBS), are significant contributors to improving urban air quality, delivering ecological service functions and environmental benefits to human health and well-being. Suitable urban forest management, including proper species selection, needs to be defined to efficiently reduce air pollutants in cities, with a focus on the removal ability of the main air pollutants (PM2.5, PM10, O3, and NO2), the ecological adaptability to O3 and NO2, and allergenic effects. This study ranked 73 urban greening tree species in northern Chinese cities based on their ability to maximize air quality and minimize disservices. This study proposed a novel Species-Specific Air Purification Index (S-API), which is suitable for air quality improvement for tree/shrub species. Urban managers are recommended to select species with an S-API > 1.47—that is, species that have a high removal capacity of PM2.5, PM10, O3, and NO2, are O3- and NO2-tolerant, and are non-allergenic (e.g., Castanea mollissima Blume, Ginkgo biloba L., Hibiscus syriacus L., Ilex chinensis Sims, Juniperus procumbens (Endl.) Iwata et Kusaka, Liriodendron chinense (Hemsl.) Sarg., Morus alba L., Styphnolobium japonicum (L.) Schott, Syringa oblata Lindl., and Ulmus pumila L.). The S-API of urban greening species thus represents a potentially useful metric for air pollutant risk assessment and for selecting appropriate species for urban greening in cities facing serious air pollution challenges. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

18 pages, 5377 KiB  
Article
Historical Pollution Exposure Impacts on PM2.5 Dry Deposition and Physiological Responses in Urban Trees
by Ruiyu Liu, Manli Wang, Shuyu Chen, Jing Zhang, Xiaoai Jin, Yuan Ren and Jian Chen
Forests 2024, 15(9), 1614; https://doi.org/10.3390/f15091614 - 13 Sep 2024
Cited by 1 | Viewed by 1314
Abstract
Urban trees are known for their ability to settle fine particulate matter (PM2.5), yet the effects of historical pollution exposure on their dust-retention capacity and stress memory remain underexplored. Therefore, we selected Euonymus japonicus Thunb. var. aurea-marginatus Hort. and Photinia × [...] Read more.
Urban trees are known for their ability to settle fine particulate matter (PM2.5), yet the effects of historical pollution exposure on their dust-retention capacity and stress memory remain underexplored. Therefore, we selected Euonymus japonicus Thunb. var. aurea-marginatus Hort. and Photinia × fraseri Dress, which are two common urban greening tree species in the Yangtze River Delta, a highly urbanized region in China facing severe air pollution challenges, characterized by dense urban forests, and we employed an aerosol generator to perform controlled experiments aiming to simulate PM2.5 pollution exposure in a sealed chamber. The experiments encompassed a first pollution treatment period P1 (15 days), a recovery period R (15 days), and a second pollution treatment period P2 (15 days). The study investigates the historical impacts of pollution exposure by simulating controlled environmental conditions and assessing the morphological and physiological changes in trees. The main results are as follows: Vd of Euonymus japonicus Thunb. var. aurea-marginatus Hort. significantly decreased on the 10th day during P2 compared with that on the same day during P1, whereas Vd of Photinia × fraseri Dress significantly decreased on the 15th day. Compared with those during P1, the specific leaf area of both plants significantly decreased, the specific leaf weight significantly increased, the wax layer significantly thickened, the stomata decreased, and the content of photosynthetic pigments remained stable during P2. Furthermore, the air pollution tolerance index (APTI) generally increased during both P1 and P2. This study contributes to international knowledge by examining stress memory in urban trees and underscores the role of stress memory in enhancing plant resistance to periodic particulate pollution, offering insights into the adaptive mechanisms that can be applied globally, not just regionally. Full article
Show Figures

Figure 1

20 pages, 3297 KiB  
Article
Assessing the Air Pollution Tolerance Index of Urban Plantation: A Case Study Conducted along High-Traffic Roadways
by Zunaira Asif and Wen Ma
Atmosphere 2024, 15(6), 659; https://doi.org/10.3390/atmos15060659 - 30 May 2024
Cited by 4 | Viewed by 2057
Abstract
Road transport and traffic congestion significantly contribute to dust pollution, which negatively impacts the growth of roadside plants in urban areas. This study aims to quantify the air pollution tolerance index (APTI) and analyze the impacts of dust deposition on different plant species [...] Read more.
Road transport and traffic congestion significantly contribute to dust pollution, which negatively impacts the growth of roadside plants in urban areas. This study aims to quantify the air pollution tolerance index (APTI) and analyze the impacts of dust deposition on different plant species and trees planted along a busy urban roadside in Lahore, Pakistan by considering seasonal variations. The APTI of each species is determined based on inputs of various biochemical parameters (leaf extract pH, ascorbic acid content, relative water content, and total chlorophyll levels), including dust deposition. In this study, laboratory analysis techniques are employed to assess these factors in selected plant species such as Mangifera indica, Saraca asoca, Cassia fistula, and Syzygium cumini. A statistical analysis is conducted to understand the pairwise correlation between various parameters and the APTI at significant and non-significant levels. Additionally, uncertainties in the inputs and APTI are addressed through a probabilistic analysis using the Monte Carlo simulation method. This study unveils seasonal variations in key parameters among selected plant species. Almost all biochemical parameters exhibit higher averages during the rainy season, followed by the summer and winter. Conversely, dust deposition on plants follows an inverse trend, with values ranging from 0.19 to 4.8 g/cm2, peaking during winter, notably in Mangifera indica. APTI values, ranging from 9.39 to 14.75, indicate varying sensitivity levels across species, from sensitive (Syzygium cumini) to intermediate tolerance (Mangifera indica). Interestingly, plants display increased tolerance during regular traffic hours, reflecting a 0.9 to 5% difference between the APTI at peak and regular traffic hours. Moreover, a significant negative correlation (−0.86 at p < 0.05 level) between APTI values and dust deposition suggests a heightened sensitivity to pollutants during the winter. These insights into the relationship between dust pollution and plant susceptibility will help decision makers in the selection of resilient plants for urban areas and improve air quality. Full article
(This article belongs to the Special Issue Air Pollution in Asia)
Show Figures

Figure 1

17 pages, 6110 KiB  
Article
Investigation of a Perspective Urban Tree Species, Ginkgo biloba L., by Scientific Analysis of Historical Old Specimens
by Szilvia Kisvarga, Dóra Hamar-Farkas, Katalin Horotán, Csaba Gyuricza, Katarína Ražná, Matúš Kučka, Ľubomír Harenčár, András Neményi, Csaba Lantos, János Pauk, Ádám Solti, Edina Simon, Dina Bibi, Semonti Mukherjee, Katalin Török, Andrea Tilly-Mándy, László Papp and László Orlóci
Plants 2024, 13(11), 1470; https://doi.org/10.3390/plants13111470 - 26 May 2024
Cited by 2 | Viewed by 2445
Abstract
In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to [...] Read more.
In this study, we examined over 200-year-old Ginkgo biloba L. specimens under different environmental conditions. The overall aim was to explore which factors influence their vitality and general fitness in urban environments and thus their ability to tolerate stressful habitats. In order to determine this, we used a number of different methods, including histological examinations (stomatal density and size) and physiological measurements (peroxidase enzyme activity), as well as assessing the air pollution tolerance index (APTI). The investigation of the genetic relationships between individuals was performed using flow cytometry and miRNA marker methods. The genetic tests revealed that all individuals are diploid, whereas the lus-miR168 and lus-miR408 markers indicated a kinship relation between them. These results show that the effect of different habitat characteristics can be detected through morphological and physiological responses, thus indicating relatively higher stress values for all studied individuals. A significant correlation can be found between the level of adaptability and the relatedness of the examined individuals. These results suggest that Ginkgo biloba L. is well adapted to an environment with increased stress factors and therefore suitable for use in urban areas. Full article
(This article belongs to the Special Issue Ornamental Plants and Urban Gardening II)
Show Figures

Figure 1

15 pages, 1940 KiB  
Review
Effects of Air Pollution on Morphological, Biochemical, DNA, and Tolerance Ability of Roadside Plant Species
by Zahid Mehmood, Hsi-Hsien Yang, Muhammad Umer Farooq Awan, Usman Ahmed, Ali Hasnain, Muhammad Luqman, Sohaib Muhammad, Andleeb Anwar Sardar, Tsai-Yu Chan and Aleeha Sharjeel
Sustainability 2024, 16(8), 3427; https://doi.org/10.3390/su16083427 - 19 Apr 2024
Cited by 11 | Viewed by 10873
Abstract
Air pollution is a severe problem in the modern world. Urbanization, industrialization, and traffic emit air pollutants such as carbon monoxide (CO), nitrous oxides (NOx), hydrocarbons (HCs), and particulate matter into the environment. Plants can absorb air pollutants through stomata. They adversely affect [...] Read more.
Air pollution is a severe problem in the modern world. Urbanization, industrialization, and traffic emit air pollutants such as carbon monoxide (CO), nitrous oxides (NOx), hydrocarbons (HCs), and particulate matter into the environment. Plants can absorb air pollutants through stomata. They adversely affect the various metabolic and physiological processes of plant species. This review describes the impact of air pollution on plant health, morphologically, physiologically, and genetically, and the tolerance ability of plants located along roadside areas. Many morphological effects, like chlorosis, necrosis, leaf area, stomatal clogging, plant productivity, leaf falling, and reduction in flower yield, are observed due to the influence of air pollution. Air pollutants also damage the DNA and affect the biochemicals of the plants, as well as pH, relative water content (RWC), simple sugar, ascorbic acid (AA), total chlorophyll content (TCH), proline, and polyamines. Some plants located under pollution stress can mitigate air pollution. Plants with higher APTI values are more tolerant of air pollution, while those with the lowest APTI values can be used as an indicator of the rate of air pollution. There is much morphological, biochemical, and DNA damage noted in this review. Different strategies can be used to diagnose the effects of air pollution in the future and develop green belts to mitigate air pollution in pollution-stressed areas. Full article
Show Figures

Figure 1

21 pages, 4569 KiB  
Article
Diversity of Epiphytic Subaerial Algal Communities in Bangkok, Thailand, and Their Potential Bioindicator with Air Pollution
by Santi Saraphol, Fabio Rindi and Nuttha Sanevas
Diversity 2024, 16(1), 55; https://doi.org/10.3390/d16010055 - 16 Jan 2024
Cited by 3 | Viewed by 2114
Abstract
Epiphytic subaerial algae represent an assemblage of micro-organisms widely distributed in terrestrial environments, including urban environments. Urban habitats present many challenges for the survival of photosynthetic micro-organisms, yet many species of subaerial microalgae have been reported from these environments, demonstrating a high tolerance [...] Read more.
Epiphytic subaerial algae represent an assemblage of micro-organisms widely distributed in terrestrial environments, including urban environments. Urban habitats present many challenges for the survival of photosynthetic micro-organisms, yet many species of subaerial microalgae have been reported from these environments, demonstrating a high tolerance to the harsh conditions of urban environments. In this study, the epiphytic subaerial communities of five parks in the urban area of Bangkok were studied using a metabarcoding approach (sequencing of the 23S rDNA marker), with the goal of unraveling their diversity and assessing potential bioindicators with levels of air pollution. Diversity indexes were determined for the algal taxa detected, which were separated into groups corresponding to different collection sites by cluster analysis. Relationships between taxa and air pollutants were analyzed by PCA and the Pearson correlation coefficient (r). The results showed a high diversity of epiphytic subaerial algae. We recorded 101 taxa belonging to the Cyanophyta (70 taxa), Chlorophyta (21 taxa), Charophyta (5 taxa), Bacillariophyta (3 taxa), and Eustigmatophyta (2 taxa). The most abundant taxon was Chroococcidiopsis sp. 1, for which up to 13,254 sequences/cm2 were recorded. The Shannon–Weaver index ranged between 1.37 and 2.51, the Margalef index between 3.84 and 4.75, and the Pielou index between 0.30 and 0.54. The similarity index was between 8.00% and 64.82%, according to the cluster analysis results for the three groups. The PCA indicated that all air pollutants affected the diversity and abundance of epiphytic subaerial algae. Cyanothece sp. 2 was negatively related to O3 and positively related to NO2 and CO and is suggested as a potential bioindicator of air pollution. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

15 pages, 3374 KiB  
Article
Suitability Assessment of Six Tree Species through Combined Analysis of PM2.5 Capture Ability and Air Pollution Tolerance Index for Urban Green Belt
by Muni Li, Peng Tan, Prabhat Kumar Rai, Yu Li, Huan Meng, Tong Zhang, Zhi Zhang and Weikang Zhang
Sustainability 2023, 15(20), 14744; https://doi.org/10.3390/su152014744 - 11 Oct 2023
Cited by 2 | Viewed by 2003
Abstract
Increasing concentrations of atmospheric particulate matter (PM) can cause a serious threat to urban air quality and human health. To reduce PM pollution in urban environments, pragmatic screening and planting of tolerant tree species can be effective and sustainable ways. However, our understanding [...] Read more.
Increasing concentrations of atmospheric particulate matter (PM) can cause a serious threat to urban air quality and human health. To reduce PM pollution in urban environments, pragmatic screening and planting of tolerant tree species can be effective and sustainable ways. However, our understanding of the effects of the capture ability of PM2.5 on plant tolerance, and efforts to devise explicit assessment tools for suitability analysis for urban green belt plantations, are still inadequate. In this study, six common green tree species (Pinus tabuliformis, Abies holophylla, Juniperus chinensis, Salix babylonica, Robinia pseudoacacia, and Populus alba) from three pollution sites in Shenyang City, China, were collected in order to assess their PM2.5 capture ability, biochemical characteristics, leaf microstructures, and air pollution tolerance index (APTI). The results revealed that different sites and tested plant species can significantly affect the amount of PM2.5 retained by leaf surfaces. The PM2.5 retention amount of Abies holophylla was the highest at the SFH site and 1.41–8.89 times that of other tested species (p < 0.05). Morphological plant attributes, such as leaf surface roughness (r = 0.52 **) and contact angle (r = −0.57 **), were strongly related to the PM2.5 retention amount. The PM2.5 retention amount per unit leaf area had the strongest and most significant negative influence on total chlorophyll content (r = −0.743 **), indicating that the accumulation of leaf PM2.5 reduced the photosynthetic efficiency of the plants. Among the tested plants, Robinia pseudoacacia had the highest APTI value and was identified as the most resilient plant at all three sites, whereas Juniperus chinensis had the lowest APTI at all study sites. However, the integration of PM2.5 capture ability with APTI showed Pinus tabuliformis to be the best species for the construction of urban green belts in Shenyang City. Full article
Show Figures

Figure 1

15 pages, 1904 KiB  
Article
Assessing the Use of Ziziphus spina-christi as a Sustainable Solution for Biomonitoring of Urban Air Quality: A Case Study from Qatar
by Noora Al-Naimi, Ahmed Abou Elezz, Maryam Al-Adba, Hamood Al-Saadi, Caesar Sorino and Hassan Hassan
Sustainability 2023, 15(18), 13590; https://doi.org/10.3390/su151813590 - 12 Sep 2023
Viewed by 2676
Abstract
Globally, urbanization, industrialization, and transportation have worsened urban air quality in recent decades. Using sustainable, cost-effective methods to monitor and reduce air pollution is crucial. The best Nature-based Solution (NbS) for urban environmental cleanup is plants. Roadside plants are key carriers of air [...] Read more.
Globally, urbanization, industrialization, and transportation have worsened urban air quality in recent decades. Using sustainable, cost-effective methods to monitor and reduce air pollution is crucial. The best Nature-based Solution (NbS) for urban environmental cleanup is plants. Roadside plants are key carriers of air pollution and have various tolerances. Ziziphus spina-christi’s air pollution tolerance was assessed using the Air Pollution Tolerance Index (APTI). The Bioconcentration Factor (BCF) examined the heavy metal accumulation capacity of Ziziphus spina-Christi’s fruits and leaves. Two sampling sites were studied: a reference location remote from human activity and a densely populated metropolitan region. Ziziphus spina-christi is considered a tolerant species in Qatar, based on its calculated value of APTI in this study. Both total chlorophyll and ascorbic acid influence APTI levels and have a strong positive correlation with APTI. BCF values in leaves were higher than fruits indicating that the leaves of Ziziphus spina-christi have a greater potential for metal absorption than its fruits. Moreover, the leaves of Ziziphus spina-christi showed a potential for mercury accumulation (BCF > 1), thus it is a good candidate to be used for phytoremediation in areas of mercury contamination. The integration of both APTI and BCF methods is significant and beneficial in advising policymakers and urban planners regarding suitable tree species for sustainable urban development. Full article
(This article belongs to the Special Issue Air Pollution Management and Environment Research)
Show Figures

Figure 1

17 pages, 3039 KiB  
Article
Exploring a New O3 Index as a Proxy for the Avoidance/Tolerance Capacity of Forest Species to Tolerate O3 Injury
by Jacopo Manzini, Yasutomo Hoshika, Barbara Baesso Moura and Elena Paoletti
Forests 2023, 14(5), 901; https://doi.org/10.3390/f14050901 - 27 Apr 2023
Cited by 5 | Viewed by 1819
Abstract
Tropospheric ozone (O3) is a detrimental air pollutant causing phytotoxic effects. Several O3 indices are used to assess the risk for vegetation, e.g., the exposure-based AOT40 (accumulated ozone exposure over a threshold of 40 ppb) and the stomatal-flux based POD [...] Read more.
Tropospheric ozone (O3) is a detrimental air pollutant causing phytotoxic effects. Several O3 indices are used to assess the risk for vegetation, e.g., the exposure-based AOT40 (accumulated ozone exposure over a threshold of 40 ppb) and the stomatal-flux based POD1 (Phytotoxic Ozone Dose above a threshold of 1 nmol m−2 s−1). Leaf Mass per Area (LMA) is recommended as a simple index to explain the plant tolerance capacity to O3. We therefore tested a new species-specific O3 index (Leaf Index Flux—LIF: calculated as stomatal O3 flux/LMA) as a proxy of the avoidance/tolerance capacity against O3 stress according to datasets of visible foliar injury (VFI) in forest monitoring and a manipulative Free-Air Controlled Exposure (FACE) experiment. For the forest monitoring, AOT40, POD1, and LIF were calculated from hourly O3, soil moisture, and meteorological measurements at nine Italian forest sites over the period 2018–2022. The results were tested for correlation with the O3 VFI annually surveyed at the same sites along the forest edge (LESS) or inside the forest (ITP) and expressed as relative frequency of symptomatic species in the LESS (SS_LESS) and Plant Injury Index per tree in the plot (PII_ITP). Based on VFI occurrence at ITP and LESS, Fagus sylvatica was considered the most O3-sensitive species, whereas conifers (Pinus pinea and Picea abies) and other deciduous/evergreen broadleaf (Quercus petraea, Q. cerris, Q. ilex, and Phyllirea latifolia) showed rare and no O3 VFI. Shrub species such as Rubus spp. and Vaccinium myrtillus were O3-sensitive, as they showed VFI along the LESS. AOT40 did not show significant correlations with the VFI parameters, POD1 increased with increasing SS_LESS (p = 0.005, r = 0.37) and PII_ITP (p < 0.001, r = 0.53), and LIF showed an even higher correlation with SS%_LESS (p < 0.001, r = 0.63) and PII_ITP (p < 0.001, r = 0.87). In the FACE experiment, PII was investigated for five deciduous and three evergreen tree species following one growing season of exposure to ambient and above-ambient O3 levels (PII_FACE). Moreover, PII_FACE resulted better correlated with LIF (r = 0.67, p < 0.001) than with POD1 (r = 0.58, p = 0.003) and AOT40 (r = 0.35, p = 0.09). Therefore, LIF is recommended as a promising index for evaluating O3 VFI on forest woody species and stresses high O3 risk potential for forest species with high stomatal conductance and thin leaves. Full article
(This article belongs to the Special Issue Effects of Abiotic Stress on Tree Physiology and Ecology)
Show Figures

Figure 1

11 pages, 1375 KiB  
Article
Seasonal Variations of Particulate Matter Capture and the Air Pollution Tolerance Index of Five Roadside Plant Species
by Huong-Thi Bui, Na-Ra Jeong and Bong-Ju Park
Atmosphere 2023, 14(1), 138; https://doi.org/10.3390/atmos14010138 - 8 Jan 2023
Cited by 7 | Viewed by 4519
Abstract
Particulate matter (PM) is the most dangerous type of air pollutant and is harmful to human health. Plants can be used as a biofilter to remove PM from the atmosphere and improve air quality. In this study, we used the air pollution tolerance [...] Read more.
Particulate matter (PM) is the most dangerous type of air pollutant and is harmful to human health. Plants can be used as a biofilter to remove PM from the atmosphere and improve air quality. In this study, we used the air pollution tolerance index and four leaf traits of five different plant species commonly used in landscaping in Korea to determine which plants are best suited to remove PM from the atmosphere in roadside areas in spring, summer, and autumn. We found that the PM concentrations in the atmosphere impacted the amount of PM accumulated in the plants, with increased PM accumulation during periods of increased environmental PM levels on the roadside. Euonymus japonicus, and Euonymus alatus accumulated the highest amount of PM and had the highest tolerance levels to air pollution. Thus, these species could be suitable for use in areas with high PM concentrations to improve air quality. We also found that shrubs were more effective in accumulating PM than trees and recommend that shrubs and trees be used together to further increase the amount of PM removed from the atmosphere in urban areas. Full article
(This article belongs to the Special Issue Feature Papers in Air Quality)
Show Figures

Figure 1

15 pages, 1952 KiB  
Article
Organic Wastes Augment the Eco-Restoration Potential of Bamboo Species on Fly Ash-Degraded Land: A Field Study
by Riya Sawarkar, Adnan Shakeel, Piyush A. Kokate and Lal Singh
Sustainability 2023, 15(1), 755; https://doi.org/10.3390/su15010755 - 31 Dec 2022
Cited by 9 | Viewed by 3581
Abstract
Rapid industrialization has been a major cause of land degradation and other environmental problems globally. Most energy inputs in industries depend on coal-burning power stations which release various pollutants into the environment. Among these pollutants, fly ash is a concerning pollutant for soil [...] Read more.
Rapid industrialization has been a major cause of land degradation and other environmental problems globally. Most energy inputs in industries depend on coal-burning power stations which release various pollutants into the environment. Among these pollutants, fly ash is a concerning pollutant for soil quality, as it occupies a voluminous area of land in India and renders it unproductive. Therefore, this work attempts to evaluate the organic amendment-facilitated bioremediation/phytoremediation of fly ash-degraded land through bamboo plantations under field conditions. Three species of bamboo, Bambusa balcooa, B. tulda, and B. bambos, were planted on fly ash dumpsite soil amended with a combined dose of pressmud and farmyard manure. Results demonstrate that after two years of plantation, all the physicochemical attributes of the degraded land were improved considerably compared to the initial observations. Although all the bamboo species exhibited promising phytoremediation potential, variations were observed in their phytoremediation mechanisms: B. balcooa was the most ideal phytostabilizer species for Cu, Zn, and Ni. B. bambos was found as an ideal phytostabilizer of Pb and Zn while B. tulda was found as a phytoextractor of Cr and Zn. Additionally, all the bamboo species sequestrated atmospheric CO2 considerably, resulting in overall environmental restoration of the degraded area; B. balcooa was the most ideal species. Moreover, B. balcooa exhibited the highest air pollution tolerance index compared to other species. This study, therefore, recommends that a comprehensive analysis of organic matter-mediated phytoremediation would assist environmental managers to formulate sustainable eco-restoration strategies, ensuring a sustainable solution to land degradation. Full article
Show Figures

Figure 1

14 pages, 2750 KiB  
Article
Air Pollution Tolerance Index and Heavy Metals Accumulation of Tree Species for Sustainable Environmental Management in Megacity of Lahore
by Rab Nawaz, Muhammad Aslam, Iqra Nasim, Muhammad Atif Irshad, Sajjad Ahmad, Maria Latif and Fida Hussain
Air 2023, 1(1), 55-68; https://doi.org/10.3390/air1010004 - 7 Dec 2022
Cited by 9 | Viewed by 11265
Abstract
Urban air and soil quality has been deteriorating during the past few years due to urbanization, industrialization and increased number of vehicles. The goal of the current study was to assess the Air Pollution Tolerance Index (APTI) and heavy metal absorption (Pb, Cd, [...] Read more.
Urban air and soil quality has been deteriorating during the past few years due to urbanization, industrialization and increased number of vehicles. The goal of the current study was to assess the Air Pollution Tolerance Index (APTI) and heavy metal absorption (Pb, Cd, Zn, and Ni) potential by ten selected trees planted along the roadside in the metropolitan city of Lahore, Pakistan. APTI was estimated on the basis of biochemical parameters (chlorophyll content, ascorbic acid, pH and relative water contents) of plant extract, while heavy metals (HMs) accumulation potential was measured by a digestion method. The highest APTI was estimated in P. longifolia (78.9), followed by A. scholarils (75.9) and M. indica (71.9). Overall, these three species have significant closeness among the higher pollution-tolerance results. The poor APTI result was determined in F. religiosa (19.5) and E. citriodora (14.9). The highest Pb contents were observed in P. longifolia and M. indica i.e., 135 and 132 mg/kg, respectively. Similarly, the highest Zn contents were found in P. longifolia and S. cumini with 130 and 132 mg/kg, respectively. The Ni concentration was observed highest in P. longifolia (34 mg/kg), but in the remaining species, it is almost the same trend of Ni accumulation. Combining these trees can be useful for fostering green-belt growth along roadsides to reduce air and soil pollution and achieve environmental sustainability. But unfortunately, these species are not planted well across the roadside as they have very little biodiversity index, as compared to other species. These species should be planted in urban areas to enhance biodiversity in the urban ecosystem and make them sustainable cities and communities. Full article
Show Figures

Figure 1

Back to TopTop