Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,421)

Search Parameters:
Keywords = agriculture sustainable development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6937 KiB  
Article
Water Quality Evaluation and Countermeasures of Pollution in Wan’an Reservoir Using Fuzzy Comprehensive Evaluation Model
by Gaoqi Duan, Li Peng, Chunrong Wang and Qiongqiong Lu
Toxics 2025, 13(9), 712; https://doi.org/10.3390/toxics13090712 (registering DOI) - 23 Aug 2025
Abstract
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was [...] Read more.
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was employed to develop a comprehensive water quality evaluation method. This approach assessed spatial variations in water quality across the upper, middle, and lower reaches of the reservoir, identifying key factors influencing water quality. The results indicate that water quality in Wan’an Reservoir, primarily characterized by total nitrogen, was poor. Notably, 50% of the sampling points in the main stream were identified as highly polluted, with the highest exceedance rate observed in the middle reaches of the tributaries. Sampling points classified as Class I were predominantly located in the upper reaches, where water quality benefitted from clean incoming water and minimal disturbance. In contrast, the lower reaches experienced more severe pollution due to the cumulative effects of domestic sewage, industrial wastewater, and agricultural runoff. These findings are crucial for developing effective water environmental protection strategies and promoting the sustainable utilization and protection of water resources. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
29 pages, 3349 KiB  
Review
Plant-Based Biofillers for Polymer Composites: Characterization, Surface Modification, and Application Potential
by Mateusz Pęśko and Anna Masek
Polymers 2025, 17(17), 2286; https://doi.org/10.3390/polym17172286 (registering DOI) - 23 Aug 2025
Abstract
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive [...] Read more.
The mounting global concern regarding the accumulation of plastic waste underscores the necessity for the development of innovative solutions, with particular emphasis on the incorporation of plant-based biofillers into polymer composites as a sustainable alternative to conventional materials. This review provides a comprehensive and structured overview of the recent progress (2020–2025) in the integration of plant-based biofillers into both thermoplastic and thermosetting polymer matrices, with a focus on surface modification techniques, physicochemical characterization, and emerging industrial applications. Unlike the prior literature, this work highlights the dual environmental and material benefits of using plant-derived fillers, particularly in the context of waste valorization and circular material design. By clearly identifying a current research gap—the limited scalability and processing efficiency of biofillers—this review proposes a strategy in which plant-derived materials function as key enablers for sustainable composite development. Special attention is given to extraction methods of lignocellulosic fillers from renewable agricultural waste streams and their subsequent functionalization to improve matrix compatibility. Additionally, it delineates the principal approaches for biofiller modification, demonstrating how their properties can be tailored to meet specific needs in biocomposite production. This critical synthesis of the state-of-the-art literature not only reinforces the role of biofillers in reducing dependence on non-renewable fillers but also outlines future directions in scaling up their use, improving durability, and expanding performance capabilities of sustainable composites. Overall, the presented analysis contributes novel insights into the material design, processing strategies, and potential of plant biofillers as central elements in next-generation green composites. Full article
Show Figures

Figure 1

28 pages, 2243 KiB  
Article
Does China’s Zero Growth Policy Promote Green Enterprise Entry? Evidence from the Agricultural Input Sector
by Yuxian Lin, Jingxuan Dong, Naiwen Kang and Zhen Yan
Agriculture 2025, 15(17), 1804; https://doi.org/10.3390/agriculture15171804 (registering DOI) - 23 Aug 2025
Abstract
Against the backdrop of global commitments to sustainable development and carbon neutrality objectives, the agricultural sector faces compelling imperatives to transition toward environmentally sustainable and resource-efficient production systems. Focusing on the critical role of agricultural inputs, this study investigates how China’s Zero Growth [...] Read more.
Against the backdrop of global commitments to sustainable development and carbon neutrality objectives, the agricultural sector faces compelling imperatives to transition toward environmentally sustainable and resource-efficient production systems. Focusing on the critical role of agricultural inputs, this study investigates how China’s Zero Growth Policy for Fertilizer and Pesticide Use (ZGP), implemented in 2015, influences green transformation in the agricultural inputs sector through a quasi-natural experiment framework. Employing a staggered difference-in-differences (DID) design with comprehensive nationwide firm registration data from 2013 to 2020, we provide novel micro-level evidence on environmental regulation’s market-shaping effects. Our findings demonstrate that the ZGP significantly enhances green market selection, stimulating entry of environmentally certified firms, with effect heterogeneity revealing policy impacts are attenuated in manufacturing-intensive regions due to green entry barriers, while being amplified in major grain-producing areas and more market-oriented regions. Mechanism analyses identify three key transmission channels: intensified regulatory oversight, heightened public environmental awareness, and growing market demand for sustainable inputs. Furthermore, the policy has induced structural transformation within the industry, progressively increasing green enterprises’ market share. These results offer valuable insights for designing targeted environmental governance mechanisms to facilitate sustainable transitions in agricultural input markets. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

37 pages, 760 KiB  
Review
Innovative and Sustainable Management Practices and Tools for Enhanced Salinity Tolerance of Vegetable Crops
by Theodora Ntanasi, Ioannis Karavidas, Beppe Benedetto Consentino, George P. Spyrou, Evangelos Giannothanasis, Sofia Marka, Maria Gerakari, Kondylia Passa, Gholamreza Gohari, Penelope J. Bebeli, Eleni Tani, Leo Sabatino, Vasileios Papasotiropoulos and Georgia Ntatsi
Horticulturae 2025, 11(9), 1004; https://doi.org/10.3390/horticulturae11091004 (registering DOI) - 23 Aug 2025
Abstract
The increasing threat of salinity, exacerbated by climate change and unsustainable agricultural practices, necessitates innovative and sustainable crop management strategies to safeguard vegetable crop production and global food security. This review highlights a comprehensive framework that combines physiological insights with practical interventions aimed [...] Read more.
The increasing threat of salinity, exacerbated by climate change and unsustainable agricultural practices, necessitates innovative and sustainable crop management strategies to safeguard vegetable crop production and global food security. This review highlights a comprehensive framework that combines physiological insights with practical interventions aimed at enhancing salinity tolerance in vegetable crops. Key strategies include grafting, precision irrigation and fertilization, biofortification, and biostimulant application. These practices are applicable to both soil-based and soilless cultivation systems, offering broad relevance across diverse production environments. Combining and adapting these strategies to specific crops and environments is essential for developing sustainable, productive vegetable farming systems that can survive rising salinity and secure future food supplies. Future research focus on optimizing these integrated methods and elucidating their underlying mechanisms to enable wider and more effective adoption. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Graphical abstract

32 pages, 14323 KiB  
Article
Analysis of the Spatiotemporal Variation Characteristics and Driving Forces of Crops in the Yellow River Basin from 2000 to 2023
by Chunhui Xu, Zongshun Tian, Yuefeng Lu, Zirui Yin and Zhixiu Du
Remote Sens. 2025, 17(17), 2934; https://doi.org/10.3390/rs17172934 (registering DOI) - 23 Aug 2025
Abstract
In the context of global climate change and growing food security challenges, this study provides a comprehensive analysis of the yields of three staple crops (wheat, corn and rice) in the Yellow River Basin of China, employing multiple quantitative analysis methods including the [...] Read more.
In the context of global climate change and growing food security challenges, this study provides a comprehensive analysis of the yields of three staple crops (wheat, corn and rice) in the Yellow River Basin of China, employing multiple quantitative analysis methods including the Mann–Kendall trend test, center of gravity transfer model and hotspot analysis. Our research integrates yield data covering these three crops from 72 prefecture-level cities across the Yellow River Basin, during 2000 to 2023, to systematically examine the temporal variation, spatial variation and spatial agglomeration characteristics of the yields. The study uses GeoDetector to explore the impacts of natural and socioeconomic factors on changes in crop yields from both single-factor and interactive-factor perspectives. While traditional statistical methods often struggle to simultaneously handle complex causal relationships among multiple factors, particularly in effectively distinguishing between direct and indirect influence paths or accounting for the transmission effects of factors through mediating variables, this study adopts Structural Equation Modeling (SEM) to identify which factors directly affect crop yields and which exert indirect effects through other factors. This approach enables us to elucidate the path relationships and underlying mechanisms governing crop yields, thereby revealing the direct and indirect influences among multiple factors. This study conducted an analysis using Structural Equation Modeling (SEM), classifying the intensity of influence based on the absolute value of the impact factor (with >0.3 defined as “strong”, 0.1–0.3 as “moderate” and <0.1 as “weak”), and distinguishing the nature of influence by the positive or negative value (positive values indicate promotion, negative values indicate inhibition). The results show that among natural factors, temperature has a moderate promoting effect on wheat (0.21) and a moderate inhibiting effect on corn (−0.25); precipitation has a moderate inhibiting effect on wheat (−0.28) and a moderate promoting effect on rice (0.17); DEM has a strong inhibiting effect on wheat (−0.33) and corn (−0.58), and a strong promoting effect on rice (0.38); slope has a moderate inhibiting effect on wheat (−0.15) and a moderate promoting effect on corn (0.15). Among socioeconomic factors, GDP has a weak promoting effect on wheat (0.01) and a moderate inhibiting effect on rice (−0.20), while the impact of population is relatively small. In terms of indirect effects, slope indirectly inhibits wheat (−0.051, weak) and promotes corn (0.149, moderate) through its influence on temperature; DEM indirectly promotes rice (0.236, moderate) through its influence on GDP and precipitation. In terms of interaction effects, the synergy between precipitation and temperature has the highest explanatory power for wheat and rice, while the synergy between DEM and precipitation has the strongest explanatory power for corn. The study further analyzes the mechanisms of direct and indirect interactions among various factors and finds that there are significant temporal and spatial differences in crop yields in the Yellow River Basin, with natural factors playing a leading role and socioeconomic factors showing dynamic regulatory effects. These findings provide valuable insights for sustainable agricultural development and food security policy-making in the region. Full article
30 pages, 491 KiB  
Article
Spatial Differentiation of the Competitiveness of Organic Farming in EU Countries in 2014–2023: An Input–Output Approach
by Agnieszka Komor, Joanna Pawlak, Wioletta Wróblewska, Sebastian Białoskurski and Eugenia Czernyszewicz
Sustainability 2025, 17(17), 7614; https://doi.org/10.3390/su17177614 (registering DOI) - 23 Aug 2025
Abstract
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In [...] Read more.
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In the face of global competition and changes in food systems, studying their competitiveness of organic agriculture is essential. It is key to assessing its potential for long-term development and competition with conventional agriculture. The purpose of this study is to identify and assess the spatial differentiation in the competitiveness of organic agriculture in EU countries. This study assessed the level of input and output competitiveness of organic agriculture in selected EU countries using the author’s synthetic taxonomic indicators consisting of several sub-variables. The competitiveness of organic farming in twenty-three countries (Cyprus, Latvia, Portugal, and Finland were not included due to a lack of statistical data) was analysed using one of the linear ordering methods, i.e., a non-pattern method with a system of fixed weights. The research has shown significant spatial differentiation in both the input competitiveness and the outcome competitiveness of organic agriculture in EU countries. In 2023, Estonia had the highest level of input competitiveness, followed by Austria, the Czech Republic, and Sweden. In 2023, Estonia had the highest synthetic indicator of outcome competitiveness, followed by the Netherlands and Denmark. In addition, an assessment was made of changes in EU organic agriculture in 2014–2023 by analysing the direction and dynamics of changes in selected measures of the development potential of organic agriculture in all member states (27 countries). This sector is characterised by high growth dynamics, including both the area under cultivation and the number of producers and processors of organic food. This study identified several important measures to support the development of organic farming (especially in countries where this type of activity is relatively less competitive) through targeted support mechanisms, such as policy and regulatory measures, financing, agricultural training and advisory services, scientific research, encouraging cooperation, and stimulating demand for organic products. Full article
26 pages, 1829 KiB  
Article
Green and Efficient Technology Investment Strategies for a Contract Farming Supply Chain Under the CVaR Criterion
by Yuying Li and Wenbin Cao
Sustainability 2025, 17(17), 7600; https://doi.org/10.3390/su17177600 - 22 Aug 2025
Abstract
Synergizing soil quality improvement and greening for increased yields are essential to ensuring grain security and developing sustainable agriculture, which has become a key issue in agricultural cultivation. This study considers a contract farming supply chain composed of a risk-averse farmer and a [...] Read more.
Synergizing soil quality improvement and greening for increased yields are essential to ensuring grain security and developing sustainable agriculture, which has become a key issue in agricultural cultivation. This study considers a contract farming supply chain composed of a risk-averse farmer and a risk-neutral firm making green and efficient technology (GET) investments, which refers to the use of technology monitoring to achieve fertilizer reduction and yield increases with yield uncertainty. Based on the CvaR (Conditional value at Risk) criterion, the Stackelberg game method is applied to construct a two-level supply chain model and analyze different cooperation mechanisms. The results show that when the wholesale price is moderate, both sides will choose the cooperative mechanism of cost sharing to invest in technology; the uncertainty of yield and the degree of risk aversion have a negative impact on the agricultural inputs and GET investment, and when yield fluctuates greatly, the farmer invests in GET to make higher utility but lowers profits for the firm and supply chain. This study provides a theoretical basis for GET investment decisions in agricultural supply chains under yield uncertainty and has important practical value for promoting sustainable agricultural development and optimizing supply chain cooperation mechanisms. Full article
Show Figures

Figure 1

16 pages, 1993 KiB  
Article
Isolation and Characterization of a Native Metarhizium rileyi Strain Mrpgbm2408 from Paralipsa gularis in Maize: First Data on Efficacy and Enzymatic Host Response Dynamics
by Yunhao Yao, Kaiyu Fu, Xiaoyu Wang, Guangzu Du, Yuejin Peng, Guy Smagghe, Wenqian Wang and Bin Chen
Insects 2025, 16(9), 872; https://doi.org/10.3390/insects16090872 - 22 Aug 2025
Abstract
Paralipsa gularis (Zeller) has become an increasingly destructive pest in both storage and field ecosystems, particularly affecting maize crops across China. As chemical control methods face limitations due to resistance development and environmental concerns, biological control presents a promising alternative. In this study, [...] Read more.
Paralipsa gularis (Zeller) has become an increasingly destructive pest in both storage and field ecosystems, particularly affecting maize crops across China. As chemical control methods face limitations due to resistance development and environmental concerns, biological control presents a promising alternative. In this study, we isolated and identified a novel strain of Metarhizium sp. from naturally infected P. gularis larvae collected in Yunnan Province, China. Morphological characterization, along with ITS-rDNA and EF-1α-rDNA sequencing, confirmed the fungus as Metarhizium rileyi. The optimal growth medium for this strain was SMAY, and the optimal conditions were 25 °C under continuous light (L:D = 24:0). Laboratory bioassays showed that the strain exhibited high virulence against P. gularis larvae, with cumulative mortality reaching 82% following infestation with 5 × 108 conidia/mL. Biochemical analyses revealed that fungal infection significantly inhibited the activity of the key antioxidant enzyme SOD in the host, while activities of POD, CAT, and detoxification enzymes (P450, CarE, AChE, and GSTs) were significantly increased. These results indicate that immune responses were triggered, and systemic colonization of the host was achieved. Overall, this native M. rileyi strain demonstrates strong potential as an effective biological control agent. Its ability to overcome insect defenses and induce high mortality supports its integration into pest management programs targeting P. gularis. This work advances the understanding of fungal–insect interactions and contributes to sustainable, environmentally safe strategies for managing a pest of economic importance in agricultural ecosystems. Full article
(This article belongs to the Section Insect Behavior and Pathology)
36 pages, 2737 KiB  
Article
Sustainability Assessment of Rice Farming: Insights from Four Italian Farms Under Climate Stress
by Savoini Guglielmo, De Marinis Pietro, Casson Andrea, Abhishek Dattu Narote, Riccardo Guidetti, Stefano Bocchi and Valentina Vaglia
Agriculture 2025, 15(17), 1797; https://doi.org/10.3390/agriculture15171797 - 22 Aug 2025
Abstract
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a [...] Read more.
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a sustainable agricultural transition under extreme climate stress. To this aim, the study employed economic analysis, Life Cycle Assessment (LCA) for environmental impact, and the OASIS framework for broader social and resilience indicators. The study revealed tradeoffs between the economic efficiency of conventional rice farming and the ecological resilience of organic systems, a conclusion made possible only through its integrated assessment methodology. By combining different methods, the research suggested that while conventional farms achieved clear financial superiority and greater efficiency per ton of rice, organic systems showcased superior ecological performance per hectare, greater biodiversity, and enhanced resilience. This highlights a crucial research frontier focused on designing hybrid systems or new economic models that can translate the environmental resilience of organic methods into tangible market value, effectively resolving the very tradeoffs this comprehensive assessment suggested. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Graphical abstract

19 pages, 441 KiB  
Review
Recent Advances and Applications of Nondestructive Testing in Agricultural Products: A Review
by Mian Li, Honglian Yin, Fei Gu, Yanjun Duan, Wenxu Zhuang, Kang Han and Xiaojun Jin
Processes 2025, 13(9), 2674; https://doi.org/10.3390/pr13092674 - 22 Aug 2025
Abstract
With the rapid development of agricultural intelligence, nondestructive testing (NDT) has shown considerable promise for agricultural product inspection. Compared with traditional methods—which often suffer from subjectivity, low efficiency, and sample damage—NDT offers rapid, accurate, and non-invasive solutions that enable precise inspection without harming [...] Read more.
With the rapid development of agricultural intelligence, nondestructive testing (NDT) has shown considerable promise for agricultural product inspection. Compared with traditional methods—which often suffer from subjectivity, low efficiency, and sample damage—NDT offers rapid, accurate, and non-invasive solutions that enable precise inspection without harming the products. These inherent advantages have promoted the increasing adoption of NDT technologies in agriculture. Meanwhile, rising quality standards for agricultural products have intensified the demand for more efficient and reliable detection methods, accelerating the replacement of conventional techniques by advanced NDT approaches. Nevertheless, selecting the most appropriate NDT method for a given agricultural inspection task remains challenging, due to the wide diversity in product structures, compositions, and inspection requirements. To address this challenge, this paper presents a review of recent advancements and applications of several widely adopted NDT techniques, including computer vision, near-infrared spectroscopy, hyperspectral imaging, computed tomography, and electronic noses, focusing specifically on their application in agricultural product evaluation. Furthermore, the strengths and limitations of each technology are discussed comprehensively, quantitative performance indicators and adoption trends are summarized, and practical recommendations are provided for selecting suitable NDT techniques according to various agricultural inspection tasks. By highlighting both technical progress and persisting challenges, this review provides actionable theoretical and technical guidance, aiming to support researchers and practitioners in advancing the effective and sustainable application of cutting-edge NDT methods in agriculture. Full article
Show Figures

Figure 1

26 pages, 1686 KiB  
Article
How Land-Take Impacts the Provision of Ecosystem Services—The Case of the Province of Monza and Brianza (Italy)
by Giulio Senes, Giulia Lussana, Paolo Stefano Ferrario, Roberto Rovelli, Ambra Pedrazzoli, Denise Corsini and Natalia Fumagalli
Land 2025, 14(9), 1700; https://doi.org/10.3390/land14091700 - 22 Aug 2025
Abstract
Non-urbanized areas (NUAs), including residual urban green areas, urban parks, agricultural, natural and semi-natural areas, are a fundamental part of the green infrastructure. They are essential in sustaining life and future development, providing a series of ecosystem services (ESs) vital to human society. [...] Read more.
Non-urbanized areas (NUAs), including residual urban green areas, urban parks, agricultural, natural and semi-natural areas, are a fundamental part of the green infrastructure. They are essential in sustaining life and future development, providing a series of ecosystem services (ESs) vital to human society. However, the rapid expansion of urban areas has led to a significant reduction in green spaces. Land-take, reducing available land resources, impacts ecosystem functionality, making it crucial to preserve high-quality territories and the relative ESs provided. In this context, the aim of this study was to evaluate the reduction in ESs due to the land-take having occurred in the last 20 years in the Province of Monza–Brianza, the Italian province with the highest land-take. To achieve this goal, authors used the official data of land use/cover of the Lombardy Region, with three time thresholds (T0: 1999–2003, T1: 2012–2013, T2: 2021) and applied a methodology for ESs assessment originally developed for the municipal level, adapting it to the provincial scale. The study analyzes trends in land-take and land-use changes and assesses how these changes have led to variations in ES provision. The approach involves calculating multiple indices reflecting different ESs provided by NUAs: provisioning ESs coming from agriculture, regulating ESs provided by natural resources, cultural ESs provided by landscape. Findings reveal that urban expansion has decreased provisioning ESs coming from agriculture, while ESs provided by landscape and natural resources have remained stable or improved, respectively. The natural quality index has improved due to conservation policies, despite the high land-take recorded. Anyway, although regional policies have mitigated some negative effects, the overall reduction in green spaces remains a critical issue. Full article
29 pages, 2178 KiB  
Article
Emerging Invasive Weeds in Iran: Occurrence, Ecological Impacts, and Sustainable Management
by Ali Reza Yousefi, Sirwan Babaei, Iraj Nosratti, Ehsan Zeidali, Masoumeh Babaei, Ebrahim Asadi Oskouei, Hesan Saberi, Mandeep Redhu and Amir Sadeghpour
Plants 2025, 14(17), 2611; https://doi.org/10.3390/plants14172611 - 22 Aug 2025
Abstract
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna [...] Read more.
Invasive weeds pose a growing threat to global biodiversity, ecosystem stability, and agricultural productivity with significant ecological and economic consequences. In Iran, the rapid spread of invasive species such as Boreava orientalis, Azolla spp., Ibicella lutea, Physalis divaricata, Picnomon acarna, Cynanchum acutum, Vicia hyrcanica, Eichhornia crassipes, and Ambrosia psilostachya has severely affected native ecosystems, disrupted ecological processes, and threatened food security. These species exhibit aggressive traits such as rapid maturity, high reproductive rates, seed dormancy, and allelopathy that enable them to outcompete native species and successfully invade and dominate delicate habitats. Despite their documented impacts, a critical gap remains in understanding their biology, ecology, and management, particularly in understudied regions like Iran. This review synthesizes current knowledge on major invasive weeds affecting Iranian agroecosystems, with a focus on their ecological impacts and the urgent need for sustainable management strategies. It presents an integrated framework that combines ecological, biological, and management perspectives to address invasiveness, particularly in highly adaptable species like B. orientalis and A. psilostachya. This review highlights the critical role of interdisciplinary collaboration, advanced technology, and community involvement in developing effective strategies. It offers practical guidance for researchers, policymakers, and agricultural stakeholders, serving as a model for managing invasive species in other vulnerable regions. Ultimately, it supports global efforts to safeguard biodiversity, improve crop productivity, and strengthen ecological resilience against the growing threat of invasive species. Full article
(This article belongs to the Topic Plant Invasion)
Show Figures

Figure 1

18 pages, 5394 KiB  
Article
Chemical Speciation and Ecological Risk of Heavy Metals in Municipal Sewage Sludge from Bangkok, Thailand
by Rujirat Buthnoo and Daoroong Sungthong
Sustainability 2025, 17(17), 7572; https://doi.org/10.3390/su17177572 - 22 Aug 2025
Abstract
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized [...] Read more.
Municipal sewage sludge is a potential soil amendment rich in organic matter and nutrients, yet its reuse is often constrained by heavy metal contamination. This study evaluated six heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) in sludge collected from seven centralized wastewater treatment plants in Bangkok, Thailand, by analyzing physicochemical properties, total metal concentrations, and chemical speciation. Three ecological risk indices, the geo-accumulation index (Igeo), risk assessment code (RAC), and potential ecological risk index (PERI), were applied to assess contamination status, mobility, and ecological threat. The sludge exhibited high levels of organic matter and essential nutrients, indicating potential for agricultural reuse; however, elevated electrical conductivity at some sites may pose salinity risks if unmanaged. Speciation analysis revealed that Cd and Zn were largely present in mobile and redox-sensitive fractions, Cr and Pb were primarily in stable residual forms, and Cu and Ni occurred in moderately mobile forms influenced by environmental conditions. Across all indices, Cd consistently posed the highest ecological risk, followed by Zn, in a site-dependent manner, while Cr and Pb represented low risk. These findings provide a clearer understanding of metal behavior in sewage sludge and underscore the importance of integrating chemical speciation with multi-index risk assessment in sludge management. Incorporating such approaches into national guidelines, particularly in countries lacking established heavy metal limits, can strengthen monitoring frameworks, guide safe and sustainable reuse, and support regulatory development in contexts with limited monitoring data. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

14 pages, 4081 KiB  
Article
Designing a Sustainable Pilot Garden to Promote Environmental Education at Carlos Albán Holguín School in Bogotá, Colombia
by Angie Tatiana Ortega-Ramírez, Arley Lida Moreno, José Enrique Luna Correa, Miriam Reyes Tovar, Oscar Silva-Marrufo and Miriam América Caballero Olvera
Sustainability 2025, 17(17), 7570; https://doi.org/10.3390/su17177570 - 22 Aug 2025
Abstract
Lack of food security is a major threat at the local and global levels. This research focused on the design and implementation of a school garden at Carlos Albán Holguín school as a strategy to ensure food for vulnerable communities and promote environmental [...] Read more.
Lack of food security is a major threat at the local and global levels. This research focused on the design and implementation of a school garden at Carlos Albán Holguín school as a strategy to ensure food for vulnerable communities and promote environmental education. This project was structured in six stages including diagnosis, characterization, formulation, and pilot validation. Data were collected through surveys and checklists, which evaluated the garden’s conditions and students’ understanding of environmental practices. Key findings revealed significant improvements in students’ knowledge of sustainable agriculture upon implementing the garden, with 75% demonstrating outstanding comprehension and 80% effectively applying organic farming principles. Promoting and implementing urban agriculture benefits surrounding communities, reduces environmental impact, promotes social awareness of current food security challenges, and promotes economic growth in cities. The main conclusion of this research is that integrating environmental education within the school curriculum can significantly enhance food security and foster environmental stewardship. This research underscores the importance of sustainable urban gardens in addressing nutritional deficiencies and promoting sustainable agriculture practices in urban settings. Full article
(This article belongs to the Special Issue Creating an Innovative Learning Environment)
Show Figures

Figure 1

15 pages, 1441 KiB  
Article
Secondary Metabolites Predict Diazotrophic Cyanobacteria: A Model-Based Cheminformatic Approach
by James Young, Taufiq Nawaz, Liping Gu and Ruanbao Zhou
Metabolites 2025, 15(9), 562; https://doi.org/10.3390/metabo15090562 - 22 Aug 2025
Abstract
Background: Nitrogen fixation (diazotrophy) is a desirable trait present in some cyanobacteria with potential applications in sustainable agriculture and chemical feedstock production. This study discovers a predictive relationship modeled between secondary metabolites and diazotrophic cyanobacteria by leveraging chemical structure similarity to identify diazotrophic [...] Read more.
Background: Nitrogen fixation (diazotrophy) is a desirable trait present in some cyanobacteria with potential applications in sustainable agriculture and chemical feedstock production. This study discovers a predictive relationship modeled between secondary metabolites and diazotrophic cyanobacteria by leveraging chemical structure similarity to identify diazotrophic strains. Methods: An algorithm was developed using chemical fingerprint similarity of metabolites curated from CyanoMetDB and evaluated with leave-one-out cross-validation on 133 manually labeled metabolites. Results: The model demonstrated strong predictive performance, achieving 88% accuracy and a ROC-AUC of 0.96. We then applied this approach to prioritize likely diazotrophic strains among 1980 unlabeled metabolites and their associated organisms, providing a rank order of most likely undetected diazotrophic strains. Toxicity analysis showed that diazotrophic-associated metabolites show similar toxicity to non-diazotrophic metabolites in rats, with less toxicity in Daphnia magna, suggesting that these metabolites are not playing a defensive role. However, these metabolites did have relatively high nitrogen presence, and many were cyclic peptides, potentially serving as signaling molecules. Conclusions: This study underscores the potential of secondary metabolites in identifying diazotrophs, even when they may not be actively demonstrating diazotrophic physiology. Discovering more diazotrophic cyanobacteria has strong implications for advancing agricultural biotechnology towards the goal of self-fertilizing crops. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

Back to TopTop