Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = age gelation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4300 KiB  
Article
Structural and Gelation Characteristics of Alkali-Soluble β-Glucan from Poria cocos
by Zhixing Li, Chenglei Sun, Fan Wang and Zhaofei Xia
Gels 2025, 11(6), 387; https://doi.org/10.3390/gels11060387 - 24 May 2025
Viewed by 377
Abstract
Alkali-soluble polysaccharides from Poria cocos (APCP) are typically discarded due to poor water solubility and limited bioavailability, despite their β-(1→3)-glucan backbone suggesting potential for functional applications. This study aimed to explore the structural characteristics, gelation behavior, and the capacity of APCP to reduce [...] Read more.
Alkali-soluble polysaccharides from Poria cocos (APCP) are typically discarded due to poor water solubility and limited bioavailability, despite their β-(1→3)-glucan backbone suggesting potential for functional applications. This study aimed to explore the structural characteristics, gelation behavior, and the capacity of APCP to reduce silver ions. Structural analysis confirmed that APCP is a homogenous β-(1→3)-D-glucan with a molecular weight of 314.2 kDa and a PDI of 1.32. A pH-mediated strategy enabled the formation of stable single-component APCP hydrogel (APCPH) with tunable mechanical strength, high swelling capacity (>590%), and thermal stability. The APCPH further acted as both a reducing and stabilizing matrix for in situ AgNP formation. Notably, the Ag-APCP hydrogel exhibited distinct antibacterial activity, with inhibition zones reaching 5.31 mm against Staphylococcus pseudintermedius. These findings demonstrate the feasibility of transforming underutilized APCP into multifunctional hydrogel platforms for green nanomaterial synthesis and biomedical applications. Future studies will focus on optimizing AgNP synthesis parameters and evaluating long-term stability and biocompatibility for translational use in antimicrobial therapies. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

16 pages, 5206 KiB  
Article
Stabilisation of Nanosilver Supramolecular Hydrogels with Trisodium Citrate
by Joanna Kowalczuk, Oleg M. Demchuk, Mariusz Borkowski and Michał Bielejewski
Molecules 2025, 30(7), 1613; https://doi.org/10.3390/molecules30071613 - 4 Apr 2025
Viewed by 526
Abstract
Designing supramolecular gelators with targeted properties is very difficult and mainly relies on structural modifications of known gelator molecules. However, very often, even minor modifications can result in the complete loss of gelation capabilities. In the present work, we have studied the influence [...] Read more.
Designing supramolecular gelators with targeted properties is very difficult and mainly relies on structural modifications of known gelator molecules. However, very often, even minor modifications can result in the complete loss of gelation capabilities. In the present work, we have studied the influence and role of the silver nanoparticles (AgNPs) and trisodium citrate (TSC) additives on the self-assembly process of alanine derivative gelator (C12Ala) and intermolecular interactions resulting in hydrogel systems of enhanced stability and sustainability. The effect of phase separation and diversity of supramolecular microstructures of gelator internal matrix on the composition of the investigated tricomponent system was studied thoroughly with thermal analysis methods (TGA/DSC), high-resolution nuclear magnetic resonance spectroscopy (HR-MAS NMR), and polarising optical microscopy (POM). The molecular mechanism of gelation and the interactions responsible for enhanced properties of nanosilver hydrogels was determined and described, indicating the synergistic role of TSC and AgNPs in the self-assembly process. Full article
(This article belongs to the Special Issue Amphiphilic Molecules, Interfaces and Colloids: 2nd Edition)
Show Figures

Figure 1

17 pages, 4047 KiB  
Article
Development of a PLA Polymer-Based Liquid Filler for Next-Generation Aesthetics
by Ji Hyun Sung, Na Jeong Park, Jeong Eun Park, Hye Sung Yoon, Ji Hyeon Baek, Helen Cho and Ji Hoon Park
Int. J. Mol. Sci. 2025, 26(5), 2369; https://doi.org/10.3390/ijms26052369 - 6 Mar 2025
Cited by 1 | Viewed by 1806
Abstract
In regard to both natural aging and photoaging caused by UV radiation, a decrease in skin collagen and elastin fibers results in the loss of soft tissue volume. Biodegradable polymer fillers have been used to overcome this problem, but the slow rate of [...] Read more.
In regard to both natural aging and photoaging caused by UV radiation, a decrease in skin collagen and elastin fibers results in the loss of soft tissue volume. Biodegradable polymer fillers have been used to overcome this problem, but the slow rate of reconstruction and particle agglomeration has limited this approach. The DMSB01 filler, which consists of poly d-l-lactic acid (PDLLA) with a methoxy polyethylene glycol (mPEG) initiator, was created to address this issue. In this study, we assessed the reconstruction and dispersion of the DMSB01 filler in vitro, as well as its effect on collagen expression in rats. DMSB01 showed rapid reconstruction and excellent dispersion stability; gelation occurred within 5 min at 37 °C and remained stable. In an animal model, DMSB01 induced M2 macrophages, Transforming growth factor beta (TGF-β) expression, and significantly increased collagens I and III. Collagen recovery and wrinkle improvement were confirmed by the aging and photoaging models, and hematoxylin and eosin (H&E) staining was used to demonstrate the safety and biodegradability of DMSB01. DMSB01 was effective in terms of inducing collagen production and improving skin aging, and shows promise as an innovative ingredient to overcome the limitations of existing fillers. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 5242 KiB  
Article
Microwave-Assisted Preparation of Hierarchical Porous Carbon Aerogels Derived from Food Wastes for Supercapacitors
by Zijun Dong, Tong Li, Xinghe Xu, Yi Chen, Jiemei Fu and Shichang Sun
Nanomaterials 2025, 15(5), 387; https://doi.org/10.3390/nano15050387 - 2 Mar 2025
Cited by 1 | Viewed by 985
Abstract
Preparing carbon aerogel in an eco-friendly and inexpensive manner remains a significant challenge. The carbon aerogels derived from food waste (FWCAs) with a three-dimensional connected network structure are successfully synthesized using microwave radiation. The as-prepared FWCA-4 (The KOH/C ratio is 4) has a [...] Read more.
Preparing carbon aerogel in an eco-friendly and inexpensive manner remains a significant challenge. The carbon aerogels derived from food waste (FWCAs) with a three-dimensional connected network structure are successfully synthesized using microwave radiation. The as-prepared FWCA-4 (The KOH/C ratio is 4) has a large specific surface area (1470 m2/g), pore volume (0.634 m3/g), and a high degree of graphitization. Band-like lattice stripes with a spacing of 0.34 nm, corresponding to the graphite plane, are observed. A high specific capacitance of 314 F/g at 1.0 A/g and an excellent capacitance retention (>90% after 10,000 cycles) make the FWCA-4 suitable for high-performance supercapacitor electrode materials. Furthermore, the specific surface area and pore volume of FWCA-4 are larger and the degree of graphitization is higher than in ordinary porous carbon derived from food waste (FWPC). The assembled symmetrical solid capacitor from FWCA-4 exhibits a maximum energy density of approximately 179.9 W/kg in neutral ion electrolytes. Thus, food waste is successfully used to prepare carbon aerogels through a gelation process using microwave radiation. The recycling of waste biomass is achieved, and the results provide insights for the preparation of carbon aerogels using biomass. Full article
(This article belongs to the Special Issue Nanomaterials for Sustainable Green Energy)
Show Figures

Graphical abstract

16 pages, 4497 KiB  
Article
Experimental Investigation on the Application of Polymer Agents in Offshore Sandstone Reservoirs: Optimization Design for Enhanced Oil Recovery
by Yanyue Li, Changlong Liu, Yaqian Zhang, Baoqing Xue, Jinlong Lv, Chuanhui Miao, Yiqiang Li and Zheyu Liu
Polymers 2025, 17(5), 673; https://doi.org/10.3390/polym17050673 - 2 Mar 2025
Viewed by 880
Abstract
The conventional polymer gel has high initial viscosity and short gelation time, making it difficult to meet the requirements of deep profile control in offshore reservoirs with large well spacing and strong heterogeneity. This paper evaluates the performance and core plugging capacity of [...] Read more.
The conventional polymer gel has high initial viscosity and short gelation time, making it difficult to meet the requirements of deep profile control in offshore reservoirs with large well spacing and strong heterogeneity. This paper evaluates the performance and core plugging capacity of novel functional polymer gels and microspheres to determine the applicability of core permeability ranges. On the heterogeneous core designed based on the reservoir characteristics of Block B oilfield, optimization was conducted separately for the formulation, dosage, and slug combinations of the polymer gel/microsphere. Finally, oil displacement experiments using polymer and microsphere combinations were conducted on vertically and planar heterogeneous cores to simulate reservoir development effects. The experimental results show the novel functional polymer gel exhibits slow gelation with high gel strength, with viscosity rapidly increasing four days after aging, ultimately reaching a gel strength of 74,500 mPa·s. The novel functional polymer gel and polymer microsphere can effectively plug cores with permeabilities below 6000 mD and 2000 mD, respectively. For heterogeneous cores with an average permeability of 1000 mD, the optimal polymer microsphere has a concentration of 4000 mg/L and a slug size of 0.3 PV; for heterogeneous cores with an average permeability of 4000 mD, the optimal functional polymer gel has a concentration of 7500 mg/L and a slug size of 0.1 PV. In simulations of vertically and planarly heterogeneous reservoirs, the application of polymer agent increases the oil recovery factor by 53% and 38.7% compared to water flooding. This realizes the gradual and full utilization of layers with high, medium, and low permeability. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces: 2nd Edition)
Show Figures

Figure 1

23 pages, 2600 KiB  
Article
Formulation of Hydrogel Beads to Improve the Bioaccessibility of Bioactive Compounds from Goldenberry and Purple Passion Fruit and Evaluation of Their Antiproliferative Effects on Human Colorectal Carcinoma Cells
by Ana María Naranjo-Durán, Diego Miedes, Juan Manuel Patiño-Osorio, Antonio Cilla, Amparo Alegría, Catalina Marín-Echeverri, Julián Quintero-Quiroz and Gelmy Luz Ciro-Gómez
Gels 2025, 11(1), 10; https://doi.org/10.3390/gels11010010 - 27 Dec 2024
Cited by 2 | Viewed by 1314
Abstract
Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility [...] Read more.
Goldenberry and purple passion fruit contain bioactive compounds (BCs) that can prevent gastrointestinal cancers; hydrogel beads can protect and control their release in the gastrointestinal tract. This study aimed to develop an encapsulating material for fruit hydrogel beads (FHBs) to increase their bioaccessibility and to assess antiproliferative effects. A blend of goldenberry–purple passion fruit was encapsulated using ionic gelation and electrospraying. Through a mixture experimental design with sodium alginate (SA), hydroxypropylmethylcellulose (HPMC) and arabic gum (AG) as components, the following response variables were optimized: polyphenol bioaccessibility and encapsulation efficiency. Polyphenols and antioxidant activity were quantified before and after digestion. Antiproliferative effect was evaluated on Caco-2 colon cancer cells. Variations in formulation proportions had a significant effect (p < 0.05) on most responses. An SA-AG mixture in a 0.75:0.25 ratio maximized polyphenol bioaccessibility to 213.17 ± 19.57% and encapsulation efficiency to 89.46 ± 6.64%. Polyphenols and antioxidant activity were lower in FHBs than in the fruit blend (F). Both F and FHBs inhibited tumor cell proliferation by 17% and 25%, respectively. In conclusion, encapsulating BCs in hydrogel beads with SA-AG can enhance the effectiveness of polyphenols in food applications by improving their bioaccessibility and showing a more pronounced effect in inhibiting tumor cell proliferation. Full article
(This article belongs to the Special Issue Functional Gels Loaded with Natural Products)
Show Figures

Figure 1

18 pages, 3779 KiB  
Article
Influence of Heat- and Cold-Stressed Raw Milk on the Stability of UHT Milk
by Nan Li, Zhigang Yang, Zhiyu Yuan, Zizhu Zhen, Xinna Xie, Danqing Zhu, Gang Lu, Feng Zhao, Bo Qu, Bingli Qi, Yujun Jiang, Qianyu Zhao and Chaoxin Man
Foods 2025, 14(1), 3; https://doi.org/10.3390/foods14010003 - 24 Dec 2024
Viewed by 1302
Abstract
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ −25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ −10 °C) circumstances. [...] Read more.
This study investigated the variations and alterations in the concentrations of plasmin system components in raw and UHT (ultra-high-temperature) milk under cold stress (WCT ≤ −25 °C), heat stress (THI ≥ 80), and normal (THI < 70 and WCT ≥ −10 °C) circumstances. The findings indicated elevated amounts of plasmin system components in cold-stressed raw milk. While storing UHT milk at 25 °C, the concentrations and activity of plasmin in the milk exhibited an initial increase followed by a decrease, peaking around the 30th day. The maximum plasmin level and activity in cold-stressed milk were 607.86 μg/L and 15.99 U/L, respectively, with the beginning of gelation occurring around day 60. The higher activity of plasmin in cold-stressed milk led to the poorer stability and sensory assessment of the milk. However, heat-stressed milk is not such a problem for UHT milk as cold-stressed milk. The findings indicate shortcomings in the quality of cold-stressed milk and its adverse effects on the stability of UHT milk, underscoring the necessity of preventing cold stress in the herd and refraining from utilizing cold-stressed milk as a raw material for UHT production. Full article
(This article belongs to the Section Dairy)
Show Figures

Graphical abstract

15 pages, 6552 KiB  
Article
An Ultra-Stable Polysaccharide Gel Plugging Agent for Water Shutoff in Mature Oil Reservoirs
by Yang Yang, Shuangxiang Ye, Ping Liu and Youqi Wang
Appl. Sci. 2024, 14(24), 11957; https://doi.org/10.3390/app142411957 - 20 Dec 2024
Viewed by 621
Abstract
Polyacrylamide-based gel plugging agents are extensively utilized in oilfields for water shutoff. However, their thermal stability, salt tolerance, and shear resistance are limited, making it difficult to achieve high-strength plugging and maintain stability under high-temperature and high-salinity reservoir conditions. This study proposes the [...] Read more.
Polyacrylamide-based gel plugging agents are extensively utilized in oilfields for water shutoff. However, their thermal stability, salt tolerance, and shear resistance are limited, making it difficult to achieve high-strength plugging and maintain stability under high-temperature and high-salinity reservoir conditions. This study proposes the use of chitosan (CTSs), a polysaccharide with a rigid cyclic structure, as the polymer. The organic cross-linker N,N′-methylenebisacrylamide (MBA) is incorporated via the Michael addition reaction mechanism to develop an ultra-stable, organically cross-linked chitosan gel system. The CTS/MBA gel system was evaluated under various environmental conditions using rheological testing and thermal aging to assess gel strength and stability. The results demonstrate significant improvements in gel strength and stability at high temperatures (up to 120 °C) and under high-shear conditions, as the increased cross-linking density enhanced resistance to thermal and mechanical degradation. Rapid gelation was observed with increasing MBA concentration, while pH and salinity further modulated gel properties. Scanning electron microscopy revealed the formation of a three-dimensional microstructure after gelation, which contributed to the enhanced properties. This study provides novel insights into optimizing polymer gel performance for the petroleum industry, particularly in high-temperature and high-shear environments. Full article
(This article belongs to the Special Issue Recent Advances and Emerging Technologies in Oil and Gas Production)
Show Figures

Graphical abstract

14 pages, 3000 KiB  
Article
Preparation and Characterization of Temperature-Sensitive Gel Plugging Agent
by Fengbao Liu, Da Yin, Jinsheng Sun, Xiao Luo and Xianbin Huang
Gels 2024, 10(11), 742; https://doi.org/10.3390/gels10110742 - 15 Nov 2024
Cited by 1 | Viewed by 1220
Abstract
In order to use intelligent gel systems to realize deep source water control in medium and high water cut reservoirs, and also to solve the shortcomings of conventional gels, such as the high chemical dose required, large profile control radius, poor temperature resistance, [...] Read more.
In order to use intelligent gel systems to realize deep source water control in medium and high water cut reservoirs, and also to solve the shortcomings of conventional gels, such as the high chemical dose required, large profile control radius, poor temperature resistance, shear resistance, and plugging performance, a temperature-sensitive gel based on natural cellulose was developed, and the temperature resistance, rheological performance, and plugging performance of the temperature-sensitive gel were tested and evaluated. The results show that the system can maintain a viscosity retention rate of up to 95% after high-temperature aging at 90–120 °C for 50 days. When using medium- to low-salinity calcium chloride formation water for preparation, the gelation effect is good. The rheometer oscillation frequency scanning test shows that the system gel is a strong elastic body dominated by elasticity. The core displacement experiment shows that the highest sealing rate of the system is 97%, and the breakthrough pressure can reach 2.5 MPa at this time. The microstructure of the gel system was tested by infrared, and it was found that the gel system had strong hydrogen bonding and the gel had good stability. The research results contribute to improving the recovery rate of high water cut oil reservoirs. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

17 pages, 11316 KiB  
Article
Effects of Moisture Content and Heat Treatment on the Viscoelasticity and Gelation of Polyacrylonitrile/Dimethylsulfoxide Solutions
by Jae-Yeon Yang, Yun-Su Kuk, Byoung-Suhk Kim and Min-Kang Seo
Gels 2024, 10(11), 728; https://doi.org/10.3390/gels10110728 - 10 Nov 2024
Cited by 1 | Viewed by 1557
Abstract
Polyacrylonitrile (PAN) gels create significant obstacles in industrial fiber spinning by forming insoluble networks that compromise solution stability and uniformity. This study investigates the rheological properties of PAN/dimethyl sulfoxide (DMSO) solutions, examining how aging time, moisture content, and polymer concentration affect gelation behavior. [...] Read more.
Polyacrylonitrile (PAN) gels create significant obstacles in industrial fiber spinning by forming insoluble networks that compromise solution stability and uniformity. This study investigates the rheological properties of PAN/dimethyl sulfoxide (DMSO) solutions, examining how aging time, moisture content, and polymer concentration affect gelation behavior. Dynamic rheological analysis revealed that both physical and chemical crosslinks play crucial roles in gel formation, with gelation accelerating markedly when moisture content exceeds 3% and aging progresses. Under heat treatment at 80 °C, samples with increased moisture content demonstrated rapid transitions to solid-like states, indicating a critical moisture threshold for enhanced gelation kinetics. Additionally, reductions in polymer concentration disrupted physical crosslink density, thereby mitigating gel formation. These results underscore the importance of precisely controlling moisture and concentration parameters in PAN solutions to stabilize solution properties and minimize gel formation, thus enhancing process efficiency and quality in PAN-based carbon fiber production. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization (2nd Edition))
Show Figures

Graphical abstract

24 pages, 12219 KiB  
Article
Ionogels in Aqueous Media: From Conductometric Probing of the Ionic Liquid Washout to the Design of More Stable Materials
by Sergei Yu. Kottsov, Alexandra O. Badulina, Vladimir K. Ivanov, Alexander E. Baranchikov, Aleksey V. Nelyubin, Nikolay P. Simonenko, Nikita A. Selivanov, Marina E. Nikiforova and Aslan Yu. Tsivadze
ChemEngineering 2024, 8(6), 111; https://doi.org/10.3390/chemengineering8060111 - 1 Nov 2024
Cited by 1 | Viewed by 1881
Abstract
Although the most promising applications of ionogels require their contact with aqueous media, few data are available on the stability of ionogels upon exposure to water. In this paper, a simple, easy-to-setup and precise method is presented, which was developed based on the [...] Read more.
Although the most promising applications of ionogels require their contact with aqueous media, few data are available on the stability of ionogels upon exposure to water. In this paper, a simple, easy-to-setup and precise method is presented, which was developed based on the continuous conductivity measurements of an aqueous phase, to study the washout of imidazolium ionic liquids (IL) from various silica-based ionogels immersed in water. The accuracy of the method was verified using HPLC, its reproducibility was confirmed, and its systematic errors were estimated. The experimental data show the rapid and almost complete (>90% in 5 h) washout of the hydrophilic IL (1-butyl-3-methylimidazolium dicyanamide) from the TMOS-derived silica ionogel. To lower the rate and degree of washout, several approaches were analysed, including decreasing IL content in ionogels, using ionogels in a monolithic form instead of a powder, constructing ionogels by gelation of silica in an ionic liquid, ageing ionogels after sol–gel synthesis and constructing ionogels from both hydrophobic IL and hydrophobic silica. All these approaches inhibited IL washout; the lowest level of washout achieved was ~14% in 24 h. Insights into the ionogels’ structure and composition, using complementary methods (XRD, TGA, FTIR, SEM, NMR and nitrogen adsorption), revealed the washout mechanism, which was shown to be governed by three main processes: the diffusion of (1) IL and (2) water, and (3) IL dissolution in water. Washout was shown to follow pseudo-second-order kinetics, with the kinetic constants being in the range of 0.007–0.154 mol−1·s−1. Full article
Show Figures

Figure 1

19 pages, 4625 KiB  
Article
Diffusion Wave Spectroscopy Microrheological Characterization of Gelling Agarose Solutions
by Nuria Mancebo, Ramon G. Rubio, Francisco Ortega, Carlo Carbone, Eduardo Guzmán, Fernando Martínez-Pedrero and Miguel A. Rubio
Polymers 2024, 16(18), 2618; https://doi.org/10.3390/polym16182618 - 16 Sep 2024
Viewed by 1556
Abstract
This work investigated the gelation kinetics and mechanical properties of agarose hydrogels studied at different concentrations (in the range 1–5 g/L) and temperatures. Rheological measurements were performed by diffusing wave spectroscopy (DWS) using polystyrene and titanium dioxide particles as probes. The study emphasized [...] Read more.
This work investigated the gelation kinetics and mechanical properties of agarose hydrogels studied at different concentrations (in the range 1–5 g/L) and temperatures. Rheological measurements were performed by diffusing wave spectroscopy (DWS) using polystyrene and titanium dioxide particles as probes. The study emphasized the influence of gelation kinetics on the mechanical behavior of the hydrogels. The results showed that the gel properties were closely related to the thermal history and aging time of the samples. The insights gained from this study are critical for optimizing the performance of agarose hydrogels in specific applications and highlight the importance of controlling the concentration and thermal conditions during hydrogel preparation. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 9267 KiB  
Article
Ag-Incorporated Cr-Doped BaTiO3 Aerogel toward Enhanced Photocatalytic Degradation of Methyl Orange
by Jun Wu, Gaofeng Shao, Xiaodong Wu, Sheng Cui and Xiaodong Shen
Nanomaterials 2024, 14(10), 848; https://doi.org/10.3390/nano14100848 - 13 May 2024
Cited by 5 | Viewed by 1621
Abstract
A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness [...] Read more.
A novel Cr-doped BaTiO3 aerogel was successfully synthesized using a co-gelation technique that involves two metallic alkoxides and a supercritical drying method. This freshly prepared aerogel has a high specific surface area of over 100 m2/g and exhibits improved responsiveness to the simulated sunlight spectrum. Methyl orange (MO) was chosen as the simulated pollutant, and the results reveal that the Cr-doped BaTiO3 aerogel, when modified with the noble metal silver (Ag), achieves a pollutant removal rate approximately 3.2 times higher than that of the commercially available P25, reaching up to 92% within 60 min. The excellent photocatalytic performance of the Ag-modified Cr-doped BaTiO3 aerogel can be primarily attributed to its extensive specific surface area and three-dimensional porous architecture. Furthermore, the incorporation of Ag nanoparticles effectively suppresses the recombination of photo-generated electrons and holes. Stability and reusability tests have confirmed the reliability of the Ag-modified Cr-doped BaTiO3 aerogel. Therefore, this material emerges as a highly promising candidate for the treatment of textile wastewater. Full article
(This article belongs to the Special Issue Nanomaterials in Aerogel Composites)
Show Figures

Figure 1

13 pages, 247 KiB  
Article
The Influence of Sodium Hexametaphosphate Chain Length on the Physicochemical Properties of High-Milk Protein Dispersions
by Baheeja J. Zaitoun and Jayendra K. Amamcharla
Foods 2024, 13(9), 1383; https://doi.org/10.3390/foods13091383 - 30 Apr 2024
Cited by 1 | Viewed by 1961
Abstract
Protein–protein and protein–mineral interactions can result in defects, such as sedimentation and age gelation, during the storage of high-protein beverages. It is well known that age gelation can be delayed by adding cyclic polyphosphates such as sodium hexametaphosphate (SHMP). This study aims to [...] Read more.
Protein–protein and protein–mineral interactions can result in defects, such as sedimentation and age gelation, during the storage of high-protein beverages. It is well known that age gelation can be delayed by adding cyclic polyphosphates such as sodium hexametaphosphate (SHMP). This study aims to assess the influence of different phosphate chain lengths of SHMP on the physicochemical properties of high-protein dispersions. The effect of adding different SHMP concentrations at 0%, 0.15%, and 0.25% (w/w) before and after heating of 6%, 8%, and 10% (w/w) milk protein concentrate dispersions was studied. The phosphate chain lengths of SHMPs used in this study were 16.47, 13.31, and 9.88, and they were classified as long-, medium-, and short-chain SHMPs, respectively. Apparent viscosity, particle size, heat coagulation time (HCT), color, and turbidity were evaluated. It was observed that the addition of SHMP (0.15% and 0.25%) increased the apparent viscosity of MPC dispersions. However, the chain length and the concentration of the added SHMP had no significant (p > 0.05) effect on the apparent viscosity after heating the dispersions. The HCT of a dispersion containing 6%, 8%, and 10% protein with no SHMP added was 15.28, 15.61, and 11.35 min, respectively. The addition of SHMP at both levels (0.15% and 0.25%) significantly increased the HCT. Protein dispersions (6%, 8%, and 10%) containing 0.25% short-chain SHMP had the highest HCT at 19.29, 19.61, and 16.09 min, respectively. Therefore, the chain length and concentration of added SHMP significantly affected the HCT of unheated protein dispersion (p < 0.05). Full article
15 pages, 3909 KiB  
Article
Age Gelation in Direct Steam Infusion Ultra-High-Temperature Milk: Different Heat Treatments Produce Different Gels
by Peipei Wu, Mengyuan Guo, Pengjie Wang, Yi Wang, Ke Fan, Hui Zhou, Wentao Qian, Hongliang Li, Menghui Wang, Xiaojun Wei, Fazheng Ren and Jie Luo
Foods 2024, 13(8), 1236; https://doi.org/10.3390/foods13081236 - 18 Apr 2024
Cited by 6 | Viewed by 2403
Abstract
To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-scale steam infusion heat treatment was used to process milk samples over a wide temperature of 142–157 °C for 0.116–6 s, followed by storage at 4 °C, 25 °C, and 37 °C. [...] Read more.
To investigate the gelation process of direct ultra-high-temperature (UHT) milk, a pilot-scale steam infusion heat treatment was used to process milk samples over a wide temperature of 142–157 °C for 0.116–6 s, followed by storage at 4 °C, 25 °C, and 37 °C. The results of the physicochemical properties of milk showed that the particle sizes and plasmin activities of all milk samples increased during storage at 25 °C, but age gelation only occurred in three treated samples, 147 °C/6 s, 142 °C/6 s, and 142 °C/3 s, which all had lower plasmin activities. Furthermore, the properties of formed gels were further compared and analyzed by the measures of structure and intermolecular interaction. The results showed that the gel formed in the 147 °C/6 s-treated milk with a higher C* value had a denser network structure and higher gel strength, while the 142 °C/6 s-treated milk had the highest porosity. Furthermore, disulfide bonds were the largest contributor to the gel structure, and there were significant differences in disulfide bonds, hydrophobic interaction forces, hydrogen bonds, and electrostatic force among the gels. Our results showed that the occurrence of gel was not related to the thermal load, and the different direct UHT treatments produced different age gels in the milk. Full article
Show Figures

Figure 1

Back to TopTop