Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = aeronautical aluminum alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5785 KiB  
Article
Retrofitting of a High-Performance Aerospace Component via Topology Optimization and Additive Manufacturing
by Jorge Crespo-Sánchez, Claudia Solek, Sergio Fuentes del Toro, Ana M. Camacho and Alvaro Rodríguez-Prieto
Machines 2025, 13(8), 700; https://doi.org/10.3390/machines13080700 - 8 Aug 2025
Viewed by 196
Abstract
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the [...] Read more.
This research presents a novel methodology for lightweighting and cost reduction of components with high structural demands by integrating advanced design and manufacturing techniques. Specifically, it combines topology optimization (TO) with additive manufacturing (AM), also known as 3D printing. Unlike conventional approaches, the proposed method first determines the optimal geometry using an artificially stiff material, and only then evaluates real materials for structural and manufacturing feasibility. This design-first, material-second strategy enables broader material screening and maximizes weight reduction without compromising performance. The proposed workflow is applied to the design of a turbofan air intake—an aeronautical component operating under supersonic conditions—addressing both structural integrity and manufacturing feasibility. Three materials from distinct classes are assessed: two metallic alloys (aluminum alloy 6061 and titanium alloy, Ti6Al4V) and a high-performance polymer (polyetheretherketone, PEEK). This last option is preliminarily discarded after being analyzed for this specific application. Finite element (FE) simulations are used to evaluate the mechanical behavior of the optimized geometries, including bird-strike conditions. Among the evaluated manufacturing techniques, Selective Laser Melting (SLM) is identified as the most suitable for the metallic materials selected, providing an effective balance between performance, manufacturability, and aerospace compliance. This study illustrates the potential of TO–AM synergy as a sustainable and efficient design approach for next-generation aerospace components. Simulation results demonstrate a weight reduction of up to 71% while preserving critical functional regions and maintaining structural integrity in Al 6061 and Ti6Al4V cases, under the diverse loading conditions typical of real flight scenarios, while PEEK remains an attractive option for uses where mechanical demands are less stringent. Full article
Show Figures

Figure 1

15 pages, 2621 KiB  
Article
Comparative Analysis of the Corrosion and Mechanical Behavior of an Al-SiC Composite and AA 2024 Alloy Fabricated by Powder Metallurgy for Aeronautical Applications
by Willian Aperador, Jonnathan Aperador and Giovany Orozco-Hernández
Metals 2024, 14(12), 1462; https://doi.org/10.3390/met14121462 - 20 Dec 2024
Cited by 1 | Viewed by 1363
Abstract
This study presents a comparative analysis of the corrosion and mechanical properties of an Al-SiC composite and an AA 2024 aluminum alloy, focusing on their suitability for aeronautical applications. The Al-SiC composite was fabricated using advanced powder metallurgy techniques, incorporating a 20% volume [...] Read more.
This study presents a comparative analysis of the corrosion and mechanical properties of an Al-SiC composite and an AA 2024 aluminum alloy, focusing on their suitability for aeronautical applications. The Al-SiC composite was fabricated using advanced powder metallurgy techniques, incorporating a 20% volume of silicon carbide (SiC) particles, averaging 1.6 µm in size, to enhance its structural and electrochemical performance. Electrochemical evaluations in an aerated 3.5% NaCl solution revealed a significant improvement in the corrosion resistance of the Al-SiC composite. This enhancement is attributed to the cathodic nature of the SiC particles, which promote the formation of a protective aluminum oxide layer, reducing pitting corrosion and preserving the material’s structural integrity. In terms of the mechanical properties, the Al-SiC composite demonstrated a higher yield strength and ultimate tensile strength compared to the AA 2024 alloy. While it exhibited a slightly lower elongation at failure, the composite maintained a favorable balance between strength and ductility. Additionally, the composite showed a higher Young’s modulus indicating improved resistance to deformation under load. These findings underscore the potential of the Al-SiC composite for demanding aerospace applications, offering valuable insights into the development of materials capable of withstanding extreme operational environments. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

21 pages, 7672 KiB  
Article
Study of Cutting Forces in Drilling of Aluminum Alloy 2024-T351
by Răzvan Sebastian Crăciun, Virgil Gabriel Teodor, Nicușor Baroiu, Viorel Păunoiu and Georgiana-Alexandra Moroșanu
Machines 2024, 12(12), 937; https://doi.org/10.3390/machines12120937 - 20 Dec 2024
Viewed by 1038
Abstract
Duralumin 2024-T351 is an alloy characterized by a good mechanical strength, relatively high hardness and corrosion resistance frequently used in the aeronautical, automotive, defense etc. industries. In this paper, the variation of axial forces and torques when drilling aluminum alloy 2024-T351 was investigated, [...] Read more.
Duralumin 2024-T351 is an alloy characterized by a good mechanical strength, relatively high hardness and corrosion resistance frequently used in the aeronautical, automotive, defense etc. industries. In this paper, the variation of axial forces and torques when drilling aluminum alloy 2024-T351 was investigated, analyzing the measured values for different cutting regimes. Experimental data on the forces and moments generated during the drilling process were collected using specialized equipment, and these data were preprocessed and analyzed using MatLab R218a. The experimental plan included 27 combinations of the parameters of the cutting regime (cutting depth, cutting speed, and feed), for which energetic cutting parameters were measured, the axial force and the torsion moment, respectively Based on these data, a neural network was trained, using the Bayesian regularization algorithm, in order to predict the optimal values of the cutting energy parameters. The neural model proved to be efficient, providing predictions with a relative error below 10%, indicating a good agreement between measured and simulated values. In conclusion, neural networks offer an accurate alternative to classical analytical models, being more suitable for materials with complex behavior, such as aluminum alloys. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

18 pages, 12529 KiB  
Article
Crystallographic Texture Evolution of Aluminum Samples with a Rectangular Cross-Section During Equal Channel Angular Pressing Processing
by Andrea Mireles-Ramos and Francisco García-Pastor
Metals 2024, 14(12), 1460; https://doi.org/10.3390/met14121460 - 20 Dec 2024
Cited by 1 | Viewed by 954
Abstract
The evolution of the crystallographic texture after severe plastic deformation (SPD) of the aluminum alloy AA7075, commonly used in the aeronautical and automotive industries, depends on the parameters of the applied deformation process. In this paper, a combination between experimental ECAP processing and [...] Read more.
The evolution of the crystallographic texture after severe plastic deformation (SPD) of the aluminum alloy AA7075, commonly used in the aeronautical and automotive industries, depends on the parameters of the applied deformation process. In this paper, a combination between experimental ECAP processing and numerical simulation using the visco-plastic self-consistent methodology (VPSC) was carried out. The limitations in the homogeneity of the mechanical properties and texture of the parts processed via ECAP can be improved by an adequate choice of the processing route. According to the literature, the most effective route to increase the properties of this material is the Bc route. However, due to the two-fold symmetry along the extrusion axis, the Bc route cannot be used in the components under study. Because of this, it was decided to study C and modified C routes. The simulation results showed the characteristic fibers of the ECAP process measured through X-ray diffraction. The texture analysis shows that the most effective route to obtain a more homogenous shear deformation and therefore reduce the grain size is the Bc route, followed by the modified C route and finally the C route. Full article
(This article belongs to the Special Issue Design, Modeling and Simulation of Metal Forming Processes)
Show Figures

Figure 1

15 pages, 7518 KiB  
Review
Al-Mg-Zn(-Cu) Cross-Over Alloys: The New Frontier in High-Strength and Radiation-Resistant Lightweight Materials
by Alessandra Ceci, Girolamo Costanza and Maria Elisa Tata
Compounds 2024, 4(4), 664-678; https://doi.org/10.3390/compounds4040040 - 16 Oct 2024
Viewed by 2288
Abstract
Over the past few years, researchers have developed the alloy Al-Mg-Zn(-Cu), a new aluminum alloy based on the technique of ‘crossover alloying’. The main strengthening phase of this novel alloy is T-Mg32(Al, X)49(X is Zn and Cu) after ageing [...] Read more.
Over the past few years, researchers have developed the alloy Al-Mg-Zn(-Cu), a new aluminum alloy based on the technique of ‘crossover alloying’. The main strengthening phase of this novel alloy is T-Mg32(Al, X)49(X is Zn and Cu) after ageing and hardening. This alloy system has exceptional strength and corrosion resistance, making it a promising candidate for applications in fields like automotive, marine, aerospace, and many others. In this work, the research progress of the Al-Mg-Zn(-Cu) alloy based on microstructure control, composition, design, and properties has been reviewed. Future directions for the research of this alloy are highlighted, too. In this work, crossover alloys are presented as a potential novel class of Al alloys implicating a pioneering design approach, with particular emphasis on the aeronautical and aerospace field in which radiation resistance results are one hundred times higher than traditional precipitation hardening alloys. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Figure 1

26 pages, 8146 KiB  
Article
A Comparative Study of Different Milling Strategies on Productivity, Tool Wear, Surface Roughness, and Vibration
by Francisco J. G. Silva, Rui P. Martinho, Luís L. Magalhães, Filipe Fernandes, Rita C. M. Sales-Contini, Luís M. Durão, Rafaela C. B. Casais and Vitor F. C. Sousa
J. Manuf. Mater. Process. 2024, 8(3), 115; https://doi.org/10.3390/jmmp8030115 - 30 May 2024
Cited by 9 | Viewed by 3088
Abstract
Strategies for obtaining deep slots in soft materials can vary significantly. Conventionally, the tool travels along the slot, removing material mainly with the side cutting edges. However, a “plunge milling” strategy is also possible, performing the cut vertically, taking advantage of the tip [...] Read more.
Strategies for obtaining deep slots in soft materials can vary significantly. Conventionally, the tool travels along the slot, removing material mainly with the side cutting edges. However, a “plunge milling” strategy is also possible, performing the cut vertically, taking advantage of the tip cutting edges that almost reach the center of the tool. Although both strategies are already commonly used, there is a clear gap in the literature in studies that compare tool wear, surface roughness, and productivity in each case. This paper describes an experimental study comparing the milling of deep slots in AA7050-T7451 aluminum alloy, coated with a novel DLCSiO500W3.5O2 layer to minimize the aluminum adhesion to the tool, using conventional and plunge milling strategies. The main novelty of this paper is to present a broad study regarding different factors involved in machining operations and comparing two distinct strategies using a novel tool coating in the milling of aeronautical aluminum alloy. Tool wear is correlated with the vibrations of the tools in each situation, the cycle time is compared between the cases studied, and the surface roughness of the machined surfaces is analyzed. This study concludes that the cycle time of plunge milling can be about 20% less than that of conventional milling procedures, favoring economic sustainability and modifying the wear observed on the tools. Plunge milling can increase productivity, does not increase tool tip wear, and avoids damaging the side edges of the tool, which can eventually be used for final finishing operations. Therefore, it can be said that the plunge milling strategy improves economic and environmental sustainability as it uses all the cutting edges of the tools in a more balanced way, with less global wear. Full article
Show Figures

Figure 1

14 pages, 8960 KiB  
Article
Experimental and Computational Study of Microhardness Evolution in the HAZ for Al–Cu–Li Alloys
by Stavroula Maritsa, Stavros Deligiannis, Petros E. Tsakiridis and Anna D. Zervaki
Crystals 2024, 14(3), 246; https://doi.org/10.3390/cryst14030246 - 1 Mar 2024
Cited by 1 | Viewed by 1782
Abstract
The Laser Beam Welding (LBW) of aluminum alloys has attracted significant interest from industrial sectors, including the shipbuilding, automotive and aeronautics industries, as it expects to contribute to significant cost reduction associated with the production of high-quality welds. To comprehend the behavior of [...] Read more.
The Laser Beam Welding (LBW) of aluminum alloys has attracted significant interest from industrial sectors, including the shipbuilding, automotive and aeronautics industries, as it expects to contribute to significant cost reduction associated with the production of high-quality welds. To comprehend the behavior of welded structures in regard to their damage tolerance, the application of fracture mechanics serves as the instrumental tool. However, the methods employed overlook the changes in the microstructure within the Heat-Affected Zone (HAZ), which leads to the degradation of the mechanical properties of the material. The purpose of this study is to simulate microhardness evolution in the HAZ of AA2198-T351 LBW. The material represents the latest generation of Al-Cu-Li alloys, which exhibit improved mechanical properties, enhanced damage tolerance behavior, lower density and better corrosion and fatigue crack growth resistance than conventional Al-Cu alloys. In this work, the microhardness profile of LBW AA2198 was measured, and subsequently, through isothermal heat treatments on samples, the microhardness values of the HAZ were replicated. The conditions of the heat treatments (T, t) were selected in line with the thermal cycles that each area of the HAZ experienced during welding. ThermoCalc and DICTRA were employed in order to identify the strengthening precipitates and their evolution (dissolution and coarsening) during the weld thermal cycle. The microstructure of the heat-treated samples was studied employing LOM and TEM, and the strengthening precipitates and their characteristics (volume fraction and size) were defined and correlated to the calculations and the experimental conditions employed during welding. The main conclusion of this study is that it is feasible to imitate the microstructure evolution within the HAZ through the implementation of isothermal heat treatments. This implies that it is possible to fabricate samples for fatigue crack growth tests, enabling the experimental examination of the damage tolerance behavior in welded structures. Full article
Show Figures

Figure 1

15 pages, 5039 KiB  
Article
Eco-Friendly Sol–Gel Coatings with Organic Corrosion Inhibitors for Lightweight AZ61 Alloy
by Jorge Domínguez-Martínez, Jesús López-Sánchez, Federico García-Galván, Aída Serrano, Violeta Barranco, Juan Carlos Galván, Óscar Rodríguez de la Fuente and Noemí Carmona
Gels 2024, 10(3), 168; https://doi.org/10.3390/gels10030168 - 27 Feb 2024
Cited by 2 | Viewed by 2344
Abstract
The latest advances in technology and materials science have catalyzed a transformative shift towards the adoption of environmentally conscious and lightweight materials across key sectors such as aeronautics, biomedical, and automotive industries. Noteworthy among these innovations are the magnesium-aluminum (Mg-Al) alloys employed in [...] Read more.
The latest advances in technology and materials science have catalyzed a transformative shift towards the adoption of environmentally conscious and lightweight materials across key sectors such as aeronautics, biomedical, and automotive industries. Noteworthy among these innovations are the magnesium-aluminum (Mg-Al) alloys employed in aeronautical applications, contributing to the overall reduction in aircraft weight and subsequently diminishing fuel consumption and mitigating atmospheric emissions. The present work delves into a study of the anti-corrosive properties inherent in various sol-gel coatings, leveraging a range of environmentally friendly corrosion inhibitors, specifically tailored for samples of the AZ61 alloy. Methodologically, the work involves the synthesis and application of sol-gel coatings on AZ61 alloy containing eco-friendly inhibitors: L-cysteine, N-acetyl-cysteine, curcumin and methylene blue. Subsequently, an accelerated corrosion test in a simulated saline environment is performed. Through microstructural and compositional analyses, the best inhibitors responses are achieved with inhibitors containing S, N heteroatoms and conjugated double bonds in their structure, probably due to the creation of a continuous MgCl2 layer. This research contributes to the ongoing discourse on protective eco-coatings, aligning with the broader paradigm shift towards sustainable and lightweight materials in key industries. Full article
Show Figures

Graphical abstract

16 pages, 11135 KiB  
Article
Effectiveness of Nanotechnology Treatments in Composite Aircraft Applications
by Enrico Cestino, Juri Catapano, Francesco Galvano, Andrea Felis, Sabrina Zuccalà, Valentina Martilla, Vito Sapienza and Lorenzo Chesta
Appl. Sci. 2024, 14(5), 1721; https://doi.org/10.3390/app14051721 - 20 Feb 2024
Cited by 8 | Viewed by 2076
Abstract
This paper aims to verify the effectiveness of a process of superficial protection based on nanotechnologies produced by 4Ward360 and specifically developed for aeronautical applications on composite material aircraft. The Dardo aircraft, a composite VLA category manufactured by CFM Air, was taken as [...] Read more.
This paper aims to verify the effectiveness of a process of superficial protection based on nanotechnologies produced by 4Ward360 and specifically developed for aeronautical applications on composite material aircraft. The Dardo aircraft, a composite VLA category manufactured by CFM Air, was taken as a reference case and two application/investigation areas were identified. The potential anticorrosive behavior of the nanotechnology treatment was investigated when applied to the metal joints of the aircraft, such as the wing–fuselage attachments usually made of Al-2024-T3 aluminum alloy. Furthermore, the potential increased effectiveness in cleaning was investigated as another possible application concerning the parts made of composite material both solid and in a sandwich configuration and the plexiglass parts of the canopy. Full article
(This article belongs to the Special Issue Additive Manufacturing Technology and Applications for Aerospace)
Show Figures

Figure 1

18 pages, 5207 KiB  
Article
Electrochemical Noise Analysis Using Experimental Chaos Theory, Power Spectral Density and Hilbert–Huang Transform in Anodized Aluminum Alloys in Tartaric–Phosphoric–Sulfuric Acid Solutions
by Cynthia Martínez-Ramos, Javier Olguin-Coca, Luis Daimir Lopez-Leon, Citlalli Gaona-Tiburcio, María Lara-Banda, Erick Maldonado-Bandala, Ivan Castañeda-Robles, Jesús M. Jaquez-Muñoz, Jose Cabral-Miramontes, Demetrio Nieves-Mendoza and Facundo Almeraya-Calderón
Metals 2023, 13(11), 1850; https://doi.org/10.3390/met13111850 - 4 Nov 2023
Cited by 10 | Viewed by 1985
Abstract
Aluminum and its alloys find widespread applications across diverse industries such as the automotive, construction, and aeronautics industries. When these alloys come into contact with ambient air, an Al2O3 thin oxide layer is naturally formed, typically measuring 2 to 4 [...] Read more.
Aluminum and its alloys find widespread applications across diverse industries such as the automotive, construction, and aeronautics industries. When these alloys come into contact with ambient air, an Al2O3 thin oxide layer is naturally formed, typically measuring 2 to 4 nm and exhibiting remarkable hardness and protective qualities, rendering the alloys corrosion-resistant in specific atmospheric and chemical environments. This study aimed to characterize the electrochemical behaviors of anodized AA2024 and AA7075 alloys within a complex three-component electrolyte composed of tartaric–phosphoric–sulfuric acid (TPSA) solutions. The anodized specimens were subsequently exposed to 3.5 wt.% NaCl solution at room temperature, and their electrochemical performances were meticulously evaluated using an electrochemical noise (EN) analysis in accordance with ASTM G-199, respectively. In the EN, three methods of data analysis were used: the time domain analysis (chaos analysis: application of Lyapunov exponent and dimension correlation), the frequency domain analysis (power spectral density, PSD), and the time–frequency domains analysis (Hilbert–Huang transform, HHT). Scanning electron microscopy (SEM) was used to observe the morphologies of the anodized surfaces. The results indicated that the AA2024-0, AA2024-1, and AA2024-2 alloys and the AA7075-2 and AA7075-3 samples exhibited mixed corrosion according to the Lyapunov constant, with a notable inclination towards localized corrosion when analyzed using the PSD and HHT methods. The surface was not homogenous, and the corrosion process was predominately localized in specific zones. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

16 pages, 6726 KiB  
Article
Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al2O3 Sinter
by Paweł Szymański, Paweł Popielarski, Dorota Czarnecka-Komorowska, Robert Sika and Katarzyna Gawdzińska
Materials 2023, 16(18), 6106; https://doi.org/10.3390/ma16186106 - 7 Sep 2023
Cited by 1 | Viewed by 1667
Abstract
Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of [...] Read more.
Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known for having excellent abrasive properties, which makes them an attractive material in certain fields of technology. The biggest problem in their production process is their low ability to infiltrate ceramics with alloys and consequently the difficulty of filling a ceramic preform. The castability of such composites has not yet been researched in detail. The aim of this study was to create aluminum metal matrix composite castings based on aluminum alloys (AlSi11) reinforced with an Al2O3 sinter preform using a Castability Trials spiral mold, and then to determine the degree of saturation with the liquid metal of the produced ceramic shaped body (Castability Trials spiral). For the selected AlSi11 alloy, the liquidus (Tl) and solidus (Ts) temperatures were determined by performing thermal-derivation analysis during cooling, which is Tl—579.3 °C and Ts—573.9 °C. The resultant pressure necessary for the infiltration process was estimated for the reinforcement capillaries with the following dimensions: 10, 15, 20, 25, 30 and 35 microns. The following values were used to determine the capillary pressure (Pk): surface tension of the alloy—σ = 840 mN/m; the extreme wetting angle of the reinforcement by the metal—θ = 136°. It has been experimentally confirmed that for the vacuum saturation process, the estimated resultant pressure enables saturation of reinforcement with capillaries larger than 25 microns, provided that the alloy temperature does not drop lower than the infiltration temperature. After the experiment, the time and route of the liquid metal flow in the spiral were determined. On the basis of the obtained values, a simulation was developed and initial assumptions such as saturation time, alloy temperature, reinforcement and mold temperature were verified. The energy balance showed that the saturation limit temperature was Tk = 580.7 °C for the reinforcement temperature of 575 °C. In contrast to the above, the assumption that the temperature of the metal after equalizing the temperature of the composite components must be higher than the liquidus temperature (Tliq = 579.3 °C) for the aluminum alloy used must be fulfilled. After the experiment, the time and path of the liquid metal flow in the spiral were determined. Then, on the basis of the obtained values, a simulation was developed, and the initial assumptions (saturation time and temperature) were verified. Full article
(This article belongs to the Special Issue Modern Foundry Materials and Technologies)
Show Figures

Figure 1

14 pages, 7187 KiB  
Article
Structure–Property Correlation between Friction-Welded Work Hardenable Al-4.9Mg Alloy Joints
by Aditya M. Mahajan, K. Vamsi Krishna, M. J. Quamar, Ateekh Ur Rehman, Bharath Bandi and N. Kishore Babu
Crystals 2023, 13(7), 1119; https://doi.org/10.3390/cryst13071119 - 18 Jul 2023
Cited by 2 | Viewed by 1631
Abstract
Friction welding of aluminum alloys holds immense potential for replacing riveted joints in the structural sections of the aeronautical and automotive sectors. This research aims to investigate the effects on the microstructural and mechanical properties when AA5083 H116 joints are subjected to rotary [...] Read more.
Friction welding of aluminum alloys holds immense potential for replacing riveted joints in the structural sections of the aeronautical and automotive sectors. This research aims to investigate the effects on the microstructural and mechanical properties when AA5083 H116 joints are subjected to rotary friction welding. To evaluate the quality of the welds, optical and scanning electron microanalysis techniques were utilized, revealing the formation of sound welds without porosity. The microstructural examination revealed distinct weld zones within the weldment, including the dynamically recrystallized zone (DRZ), thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ), and base metal (BM). During the friction-welding process, grain refinement occurred, leading to the development of fine equiaxed grains in the DRZ/weld zone. Tensile testing revealed that the weldment exhibited higher strength (YS: 301 ± 6 MPa; UTS: 425 ± 7 MPa) in the BM region compared to the base metal (YS: 207 ± 5 MPa; UTS: 385 ± 9 MPa). However, the weldment demonstrated slightly lower elongation (%El: 13 ± 2) compared to the base metal (%El: 15 ± 3). The decrease in ductility observed in the weldment can be attributed to the presence of distinct weld zones within the welded sample. Also, the tensile graph of the BM showed serrations throughout the curve, which is a characteristic phenomenon known as the Portevin–Le Chatelier effect (serrated yielding) in Al-Mg alloys. This effect occurs due to the influence of dynamic strain aging on the material’s macroscopic plastic deformation. Fractography analysis showcased a wide range of dimple sizes, indicating a ductile fracture mode in the weldment. These findings contribute to understanding the microstructural and mechanical behavior of AA5083 H116 joints subjected to rotary friction welding. Full article
Show Figures

Figure 1

33 pages, 8245 KiB  
Review
Additive Manufacturing of Aluminum Alloys for Aeronautic Applications: Advantages and Problems
by Roberto Montanari, Alessandra Palombi, Maria Richetta and Alessandra Varone
Metals 2023, 13(4), 716; https://doi.org/10.3390/met13040716 - 5 Apr 2023
Cited by 39 | Viewed by 9543
Abstract
In aeronautics, additive manufacturing (AM) leads to specific benefits, mainly connected to topological optimization for weight reduction, the decrease in “buy-to-fly” ratio, and the operations of maintenance, repair, and overhaul. Al alloys processed by AM technologies are extensively investigated and play an increasing [...] Read more.
In aeronautics, additive manufacturing (AM) leads to specific benefits, mainly connected to topological optimization for weight reduction, the decrease in “buy-to-fly” ratio, and the operations of maintenance, repair, and overhaul. Al alloys processed by AM technologies are extensively investigated and play an increasing role in the production of aircraft structural parts. Based on the recent literature and research activity of the authors, this work examines advantages and drawbacks involved in the printing of Al alloys. Defects, microstructure, mechanical properties, development of new alloys, and postprocess treatments are described and critically discussed by focusing the attention on the effects of the specific alloy composition, AM process, and process parameters. Full article
(This article belongs to the Special Issue Recent Developments in Aerospace Alloys)
Show Figures

Figure 1

27 pages, 9121 KiB  
Article
Numerical Simulation of Temperature Fields during Laser Welding–Brazing of Al/Ti Plates
by Mária Behúlová and Eva Babalová
Materials 2023, 16(6), 2258; https://doi.org/10.3390/ma16062258 - 11 Mar 2023
Cited by 12 | Viewed by 3244
Abstract
The formation of dissimilar weld joints, including Al/Ti joints, is an area of research supported by the need for weight reduction and corrosion resistance in automotive, aircraft, aeronautic, and other industries. Depending on the cooling rates and chemical composition, rapid solidification of Al/Ti [...] Read more.
The formation of dissimilar weld joints, including Al/Ti joints, is an area of research supported by the need for weight reduction and corrosion resistance in automotive, aircraft, aeronautic, and other industries. Depending on the cooling rates and chemical composition, rapid solidification of Al/Ti alloys during laser welding can lead to the development of different metastable phases and the formation of brittle intermetallic compounds (IMCs). The effort to successfully join aluminum to titanium alloys is associated with demands to minimize the thickness of brittle IMC zones by selecting appropriate welding parameters or applying suitable filler materials. The paper is focused on the numerical simulation of the laser welding–brazing of 2.0 mm thick titanium Grade 2 and EN AW5083 aluminum alloy plates using 5087 aluminum filler wire. The developed simulation model was used to study the impact of laser welding–brazing parameters (laser power, welding speed, and laser beam offset) on the transient temperature fields and weld-pool characteristics. The results of numerical simulations were compared with temperatures measured during the laser welding–brazing of Al/Ti plates using a TruDisk 4002 disk laser, and macrostructural and microstructural analyses, and weld tensile strength measurements, were conducted. The ultimate tensile strength (UTS) of welded–brazed joints increases with an increase in the laser beam offset to the Al side and with an increase in welding speed. The highest UTS values at the level of 220 MPa and 245 MPa were measured for joints produced at a laser power of 1.8 kW along with a welding speed of 30 mm·s−1 and a laser beam offset of 300 μm and 460 μm, respectively. When increasing the laser power to 2 kW, the UTS decreased. The results exhibited that the tensile strength of Al/Ti welded–brazed joints was dependent, regardless of the welding parameters, on the amount of melted Ti Grade 2, which, during rapid solidification, determines the thickness and morphology of the IMC layer. A simple formula was proposed to predict the tensile strength of welded–brazed joints using the computed cross-sectional Ti weld metal area. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

24 pages, 6148 KiB  
Article
Effect of Heat Treatment on the Electrochemical Behavior of AA2055 and AA2024 Alloys for Aeronautical Applications
by Heriberto Rivera-Cerezo, Citlalli Gaona-Tiburcio, Jose Cabral-Miramontes, Raúl Germán Bautista-Margulis, Demetrio Nieves-Mendoza, Erick Maldonado-Bandala, Francisco Estupiñán-López and Facundo Almeraya-Calderón
Metals 2023, 13(2), 429; https://doi.org/10.3390/met13020429 - 19 Feb 2023
Cited by 7 | Viewed by 2421
Abstract
Since their development, third-generation aluminum–lithium alloys have been used in aeronautical and other applications due to their good properties, replacing conventional Al-Cu and Al-Zn alloys and resulting in an increase in payload and fuel efficiency. The aim of this work was to investigate [...] Read more.
Since their development, third-generation aluminum–lithium alloys have been used in aeronautical and other applications due to their good properties, replacing conventional Al-Cu and Al-Zn alloys and resulting in an increase in payload and fuel efficiency. The aim of this work was to investigate the influence of different heat treatments on the electrochemical corrosion behavior of the alloys AA2055 and AA2024 in the presence of three different electrolytes at room temperature, using an electrochemical noise (EN) technique in accordance with the ASTM-G199 standard. In the time domain, the polynomial method was employed to obtain the noise resistance (Rn), the localization index (IL), skewness, and kurtosis, and in the frequency domain, employing power spectral density analysis (PSD). The microstructure and mechanical properties of the alloys were characterized using scanning electron microscopy (SEM) and the Vickers microhardness test (HV). The results demonstrated better mechanical properties of the AA2055 alloy, which had a Vickers hardness of 77, 174, and 199 in the heat treatments T0, T6, and T8, respectively. An electrochemical noise resistance (Rn) of 2.72 × 105 Ω·cm2 was obtained in the AA2055 T8 alloy evaluated in a NaCl solution, while the lowest Rn resistance of 2.87 × 101 Ω·cm2 occurred in the AA2024 T8 alloy, which was evaluated in a HCl solution. The highest electrochemical noise resistance (Rn) was obtained in the AA2055 alloys, which had received the T6 and T8 heat treatments in the three solutions. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

Back to TopTop