Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = aerobic/anaerobic glycolysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 261
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 5242 KiB  
Article
Effects of Hypoxia and Reoxygenation on Hypoxia-Responsive Genes, Physiological and Biochemical Indices in Hybrid Catfish (Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂)
by Jie Yan, Faling Zhang, Fenfei Liang, Cheng Zhao, Shaowu Yin and Guosong Zhang
Biology 2025, 14(8), 915; https://doi.org/10.3390/biology14080915 - 23 Jul 2025
Viewed by 291
Abstract
Hypoxia represents a critical environmental stressor in aquaculture, significantly disrupting aquatic organisms’ physiological homeostasis and thereby constraining the sustainable development of aquaculture industries. To elucidate the mechanisms underlying hypoxia-induced metabolic regulation in aquatic species, this study employed hybrid yellow catfish (Pelteobagrus vachelli [...] Read more.
Hypoxia represents a critical environmental stressor in aquaculture, significantly disrupting aquatic organisms’ physiological homeostasis and thereby constraining the sustainable development of aquaculture industries. To elucidate the mechanisms underlying hypoxia-induced metabolic regulation in aquatic species, this study employed hybrid yellow catfish (Pelteobagrus vachelli ♀ × Leiocassis longirostris ♂) as a model organism to systematically investigate the multidimensional physiological responses in brain, liver, and muscle tissues under hypoxia (0.7 mg/L) and reoxygenation (7.0 mg/L) conditions. Through qRT-PCR and enzymatic activity analyses, we comprehensively assessed molecular alterations associated with oxygen sensing (HIF-1α gene), respiratory metabolism (PFKL, HK1, PK, CS, and LDHA genes and corresponding enzyme activities), oxidative stress (SOD1, SOD2, GSH-PX, and CAT genes, along with LPO, MDA, PCO, T-SOD, GSH-PX, and CAT levels), apoptosis (Caspase-3, Bax/Bcl-2), inflammatory response (IL-1β, IKKβ), and mitochondrial function (COXIV, PGC-1α, ATP5A1). Key findings demonstrated pronounced HIF-1α activation across all examined tissues. Hepatic tissues exhibited adaptive metabolic reprogramming from aerobic to anaerobic metabolism, whereas cerebral tissues displayed suppressed anaerobic glycolysis during prolonged hypoxia, and muscular tissues manifested concurrent inhibition of both glycolytic and aerobic metabolic pathways. Notably, skeletal muscle exhibited marked oxidative stress accompanied by mitochondrial dysfunction, exacerbated inflammation, and apoptosis activation during hypoxia/reoxygenation cycles. This study delineates tissue-specific adaptive mechanisms to hypoxia in yellow catfish, providing theoretical foundations for both piscine hypoxia physiology research and aquaculture practices. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Figure 1

19 pages, 1018 KiB  
Opinion
The Feud over Lactate and Its Role in Brain Energy Metabolism: An Unnecessary Burden on Research and the Scientists Who Practice It
by Avital Schurr
Int. J. Mol. Sci. 2025, 26(9), 4429; https://doi.org/10.3390/ijms26094429 - 7 May 2025
Viewed by 1050
Abstract
Ever since the monocarboxylate, lactate, was shown to be more than a useless end-product of anaerobic glycolysis, the members of the brain energy metabolism research community are divided by two issues: First, could lactate replace glucose as the oxidative mitochondrial energy substrate? Second, [...] Read more.
Ever since the monocarboxylate, lactate, was shown to be more than a useless end-product of anaerobic glycolysis, the members of the brain energy metabolism research community are divided by two issues: First, could lactate replace glucose as the oxidative mitochondrial energy substrate? Second, should glycolysis continue to be divided into aerobic and anaerobic pathways? This opinion paper examined both the history and the reasons for this division and offered a unifying solution. Some readers may find this paper somewhat slanted, although many aspects of my opinion are backed, whenever possible, by data. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

30 pages, 3689 KiB  
Review
Tumor Microenvironment Lactate: Is It a Cancer Progression Marker, Immunosuppressant, and Therapeutic Target?
by Eugene Y. Kim, Joyce Abides, Chandler R. Keller, Steve R. Martinez and Weimin Li
Molecules 2025, 30(8), 1763; https://doi.org/10.3390/molecules30081763 - 15 Apr 2025
Viewed by 2471
Abstract
The “Warburg effect” is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, [...] Read more.
The “Warburg effect” is a term coined a century ago for the preferential use of glycolysis over aerobic respiration in tumor cells for energy production, even under aerobic conditions. Although this is a less efficient mechanism of generating energy from glucose, aerobic glycolysis, in addition to the canonical anaerobic glycolysis, is an effective means of lactate production. The abundant waste product, lactate, yielded by the dual glycolysis in a tumor, has been discovered to be a major biomolecule that drives cancer progression. Lactate is a metabolic energy source that, via cell membrane lactate transporters, shuttles in and out of cancer cells as well as cancer cell-associated stromal cells and immune cells within the tumor microenvironment (TME). Additionally, lactate serves as a pH tuner, signaling ligand and transducer, epigenetic and gene transcription regulator, TME modifier, immune suppressor, chemoresistance modulator, and prognostic marker. With such broad functionalities, the production–consumption–reproduction of TME lactate fuels tumor growth and dissemination. Here, we elaborate on the lactate sources that contribute to the pool of lactate in the TME, the functions of TME lactate, the influence of the TME lactate on immune cell function and local tissue immunity, and anticancer therapeutic approaches adopting lactate manipulations and their efficacies. By scrutinizing these properties of the TME lactate and others that have been well addressed in the field, it is expected that a better weighing of the influence of the TME lactate on cancer development, progression, prognosis, and therapeutic efficacy can be achieved. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

16 pages, 2936 KiB  
Article
The Modulatory Effect of Selol (Se IV) on Pro-Inflammatory Pathways in RAW 264.7 Macrophages
by Gwan Yong Lim, Emilia Grosicka-Maciąg, Maria Szumiło, Daniel Graska, Iwonna Rahden-Staroń and Dagmara Kurpios-Piec
Int. J. Mol. Sci. 2025, 26(2), 559; https://doi.org/10.3390/ijms26020559 - 10 Jan 2025
Viewed by 1175
Abstract
Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown. The aim of our study was to investigate [...] Read more.
Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown. The aim of our study was to investigate the ability of Selol to exert anti-inflammatory effects in a RAW 264.7 cell line model of LPS (lipopolysaccharide)-induced inflammation. Cells were treated either with Selol 5% (4 or 8 µg Se/mL) or LPS (1 µg/mL) alone or with Selol given concomitantly with LPS. The parameters studied were reactive oxygen species (ROS) production, glutathione and thioredoxin (Txn) levels, and nuclear factor kappa B (NF-κB) activation, as well as nitric oxide/prostaglandin E2 (NO/PGE2) production. The presented research also included the effect of Selol and/or LPS on glucose (Glc) catabolism; for this purpose, the levels of key enzymes of the glycolysis pathway were determined. The results showed that Selol exhibited pro-oxidative properties. It induced ROS generation with a significant increase in the level of Txn; however, it did not affect the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. Selol moderately activated NF-κB but failed to affect NO/PGE2 production. The effect of Selol on glucose catabolism was not significant. However, the simultaneous administration of Selol with LPS exerted a statistically significant anti-inflammatory effect via a decrease in the production of pro-inflammatory mediators and NF-κB activation. Our study also showed that as a result of LPS action in cells, the anaerobic glycolysis activity was increased, and incubation with Selol caused a partial reprogramming of Glc metabolism towards aerobic metabolism. This may indicate different pharmacological and molecular effects of Selol action in physiological and pathological conditions. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Human and Animal Health)
Show Figures

Figure 1

21 pages, 1116 KiB  
Review
Adaptations of Rice Seed Germination to Drought and Hypoxic Conditions: Molecular and Physiological Insights
by Uttam Bahadur Kunwar, Jiancheng Wen, Roshan Subedi, Naresh Singh Bist and Naba Raj Pandit
Seeds 2024, 3(4), 656-676; https://doi.org/10.3390/seeds3040043 - 2 Dec 2024
Cited by 3 | Viewed by 2621
Abstract
Seed germination is crucial for plant survival, crop stand establishment, and achieving optimal grain yield. The main objective of this review is to explore the physiological and molecular mechanisms governing rice seed germination under aerobic (water stress) and anaerobic (hypoxic) conditions in direct-seeded [...] Read more.
Seed germination is crucial for plant survival, crop stand establishment, and achieving optimal grain yield. The main objective of this review is to explore the physiological and molecular mechanisms governing rice seed germination under aerobic (water stress) and anaerobic (hypoxic) conditions in direct-seeded rice (DSR) systems. Moreover, it discusses the recent genomic advancements and innovations to improve rice seed germination. Here, we discuss how coleoptile and mesocotyl elongation plays a vital role in anaerobic germination (AG) and the function of raised antioxidants, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in maintaining Reactive Oxygen Species (ROS), and malondialdehyde (MDA) homeostasis for stabilizing seed germination in water-scarce conditions. This study comprehensively highlights the functions and dynamics of phytohormones—GA (gibberellic acid) and ABA (abscisic acid)—key regulatory genes, transcription factors (TFs), key proteins, and regulatory metabolic pathways, including glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid cycle (TCA), in regulating seed germination under both conditions. Conventional agronomic and cultural practices, such as seed selection, seed priming, seed coating, and hardening, have proven to improve seed germination. Moreover, the utilization of molecular and novel approaches—such as clustered regularly interspaced short palindromic repeat (CRISPR-Cas9) mediated genome editing, marker-assisted selection (MAS), genome-wide associations studies (GWAS), single nucleotide polymorphisms (SNPs), multi-omics, RNA sequencing—combined with beneficial quantitative trait loci (QTLs) has expanded knowledge of crop genomics and inheritance. These advancements aid the development of specific traits for enhancing seed germination in DSR. Full article
Show Figures

Figure 1

20 pages, 3078 KiB  
Review
Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion—Revisiting the Warburg Effect
by Michael Niepmann
Cancers 2024, 16(13), 2290; https://doi.org/10.3390/cancers16132290 - 21 Jun 2024
Cited by 5 | Viewed by 2596
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon—the “Warburg Effect”—is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and [...] Read more.
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon—the “Warburg Effect”—is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the “emergency exit” from the cell by lactate secretion to maintain the cytosolic redox balance. Full article
(This article belongs to the Special Issue The Warburg Effect in Cancers)
Show Figures

Figure 1

16 pages, 7035 KiB  
Article
Integrative Metabolomics, Enzymatic Activity, and Gene Expression Analysis Provide Insights into the Metabolic Profile Differences between the Slow-Twitch Muscle and Fast-Twitch Muscle of Pseudocaranx dentex
by Huan Wang, Busu Li, Ang Li, Changting An, Shufang Liu and Zhimeng Zhuang
Int. J. Mol. Sci. 2024, 25(11), 6131; https://doi.org/10.3390/ijms25116131 - 1 Jun 2024
Cited by 4 | Viewed by 1684
Abstract
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types [...] Read more.
The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Biology)
Show Figures

Figure 1

13 pages, 1586 KiB  
Opinion
How the ‘Aerobic/Anaerobic Glycolysis’ Meme Formed a ‘Habit of Mind’ Which Impedes Progress in the Field of Brain Energy Metabolism
by Avital Schurr
Int. J. Mol. Sci. 2024, 25(3), 1433; https://doi.org/10.3390/ijms25031433 - 24 Jan 2024
Cited by 8 | Viewed by 8934
Abstract
The division of glycolysis into two separate pathways, aerobic and anaerobic, depending on the presence or absence of oxygen, respectively, was formulated over eight decades ago. The former ends with pyruvate, while the latter ends with lactate. Today, this division is confusing and [...] Read more.
The division of glycolysis into two separate pathways, aerobic and anaerobic, depending on the presence or absence of oxygen, respectively, was formulated over eight decades ago. The former ends with pyruvate, while the latter ends with lactate. Today, this division is confusing and misleading as research over the past 35 years clearly has demonstrated that glycolysis ends with lactate not only in cancerous cells but also in healthy tissues and cells. The present essay offers a review of the history of said division and the more recent knowledge that has been gained about glycolysis and its end-product, lactate. Then, it presents arguments in an attempt to explain why separating glycolysis into aerobic and anaerobic pathways persists among scientists, clinicians and teachers alike, despite convincing evidence that such division is not only wrong scientifically but also hinders progress in the field of energy metabolism. Full article
(This article belongs to the Special Issue Mitochondria as a Cellular Hub in Neurological Disorders 2.0)
Show Figures

Figure 1

30 pages, 15097 KiB  
Article
Integrated Transcriptomics and Metabolomics Reveal Changes in Cell Homeostasis and Energy Metabolism in Trachinotus ovatus in Response to Acute Hypoxic Stress
by Qing-Hua Wang, Ren-Xie Wu, Jiao-Na Ji, Jing Zhang, Su-Fang Niu, Bao-Gui Tang, Ben-Ben Miao and Zhen-Bang Liang
Int. J. Mol. Sci. 2024, 25(2), 1054; https://doi.org/10.3390/ijms25021054 - 15 Jan 2024
Cited by 11 | Viewed by 2430
Abstract
Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress [...] Read more.
Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L−1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L−1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid β-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1752 KiB  
Review
CD147/Basigin Is Involved in the Development of Malignant Tumors and T-Cell-Mediated Immunological Disorders via Regulation of Glycolysis
by Takuro Kanekura
Int. J. Mol. Sci. 2023, 24(24), 17344; https://doi.org/10.3390/ijms242417344 - 11 Dec 2023
Cited by 13 | Viewed by 3579
Abstract
CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in [...] Read more.
CD147/Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, is a multifunctional molecule with various binding partners. CD147 binds to monocarboxylate transporters (MCTs) and supports their expression on plasma membranes. MTC-1 and MCT-4 export the lactic acid that is converted from pyruvate in glycolysis to maintain the intracellular pH level and a stable metabolic state. Under physiological conditions, cellular energy production is induced by mitochondrial oxidative phosphorylation. Glycolysis usually occurs under anaerobic conditions, whereas cancer cells depend on glycolysis under aerobic conditions. T cells also require glycolysis for differentiation, proliferation, and activation. Human malignant melanoma cells expressed higher levels of MCT-1 and MCT-4, co-localized with CD147 on the plasma membrane, and showed an increased glycolysis rate compared to normal human melanocytes. CD147 silencing by siRNA abrogated MCT-1 and MCT-4 membrane expression and disrupted glycolysis, inhibiting cancer cell activity. Furthermore, CD147 is involved in psoriasis. MCT-1 was absent on CD4+ T cells in CD147-deficient mice. The naïve CD4+ T cells from CD147-deficient mice exhibited a low capacity to differentiate into Th17 cells. Imiquimod-induced skin inflammation was significantly milder in the CD147-deficient mice than in the wild-type mice. Overall, CD147/Basigin is involved in the development of malignant tumors and T-cell-mediated immunological disorders via glycolysis regulation. Full article
(This article belongs to the Special Issue Molecular Advances in Skin Diseases 2.0)
Show Figures

Figure 1

28 pages, 2286 KiB  
Review
Plant Life with and without Oxygen: A Metabolomics Approach
by Vladislav V. Yemelyanov, Roman K. Puzanskiy and Maria F. Shishova
Int. J. Mol. Sci. 2023, 24(22), 16222; https://doi.org/10.3390/ijms242216222 - 12 Nov 2023
Cited by 19 | Viewed by 3397
Abstract
Oxygen deficiency is an environmental challenge which affects plant growth, the development and distribution in land and aquatic ecosystems, as well as crop yield losses worldwide. The capacity to exist in the conditions of deficiency or the complete lack of oxygen depends on [...] Read more.
Oxygen deficiency is an environmental challenge which affects plant growth, the development and distribution in land and aquatic ecosystems, as well as crop yield losses worldwide. The capacity to exist in the conditions of deficiency or the complete lack of oxygen depends on a number of anatomic, developmental and molecular adaptations. The lack of molecular oxygen leads to an inhibition of aerobic respiration, which causes energy starvation and the acceleration of glycolysis passing into fermentations. We focus on systemic metabolic alterations revealed with the different approaches of metabolomics. Oxygen deprivation stimulates the accumulation of glucose, pyruvate and lactate, indicating the acceleration of the sugar metabolism, glycolysis and lactic fermentation, respectively. Among the Krebs-cycle metabolites, only the succinate level increases. Amino acids related to glycolysis, including the phosphoglycerate family (Ser and Gly), shikimate family (Phe, Tyr and Trp) and pyruvate family (Ala, Leu and Val), are greatly elevated. Members of the Asp family (Asn, Lys, Met, Thr and Ile), as well as the Glu family (Glu, Pro, Arg and GABA), accumulate as well. These metabolites are important members of the metabolic signature of oxygen deficiency in plants, linking glycolysis with an altered Krebs cycle and allowing alternative pathways of NAD(P)H reoxidation to avoid the excessive accumulation of toxic fermentation products (lactate, acetaldehyde, ethanol). Reoxygenation induces the downregulation of the levels of major anaerobically induced metabolites, including lactate, succinate and amino acids, especially members of the pyruvate family (Ala, Leu and Val), Tyr and Glu family (GABA and Glu) and Asp family (Asn, Met, Thr and Ile). The metabolic profiles during native and environmental hypoxia are rather similar, consisting in the accumulation of fermentation products, succinate, fumarate and amino acids, particularly Ala, Gly and GABA. The most intriguing fact is that metabolic alterations during oxidative stress are very much similar, with plant response to oxygen deprivation but not to reoxygenation. Full article
Show Figures

Figure 1

13 pages, 822 KiB  
Review
Lactate Metabolism, Signaling, and Function in Brain Development, Synaptic Plasticity, Angiogenesis, and Neurodegenerative Diseases
by Anika Wu, Daehoon Lee and Wen-Cheng Xiong
Int. J. Mol. Sci. 2023, 24(17), 13398; https://doi.org/10.3390/ijms241713398 - 29 Aug 2023
Cited by 53 | Viewed by 10221
Abstract
Neural tissue requires a great metabolic demand despite negligible intrinsic energy stores. As a result, the central nervous system (CNS) depends upon a continuous influx of metabolic substrates from the blood. Disruption of this process can lead to impairment of neurological functions, loss [...] Read more.
Neural tissue requires a great metabolic demand despite negligible intrinsic energy stores. As a result, the central nervous system (CNS) depends upon a continuous influx of metabolic substrates from the blood. Disruption of this process can lead to impairment of neurological functions, loss of consciousness, and coma within minutes. Intricate neurovascular networks permit both spatially and temporally appropriate metabolic substrate delivery. Lactate is the end product of anaerobic or aerobic glycolysis, converted from pyruvate by lactate dehydrogenase-5 (LDH-5). Although abundant in the brain, it was traditionally considered a byproduct or waste of glycolysis. However, recent evidence indicates lactate may be an important energy source as well as a metabolic signaling molecule for the brain and astrocytes—the most abundant glial cell—playing a crucial role in energy delivery, storage, production, and utilization. The astrocyte–neuron lactate-shuttle hypothesis states that lactate, once released into the extracellular space by astrocytes, can be up-taken and metabolized by neurons. This review focuses on this hypothesis, highlighting lactate’s emerging role in the brain, with particular emphasis on its role during development, synaptic plasticity, angiogenesis, and disease. Full article
(This article belongs to the Special Issue Insulin Resistance in Neurodegenerative Diseases)
Show Figures

Figure 1

11 pages, 2095 KiB  
Article
Hypoxia-Inducible Factor–Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia
by Yves Schild, Jonah Bosserhoff, Freya Droege, Elisabeth Littwitz-Salomon, Joachim Fandrey and Anna Wrobeln
Life 2023, 13(8), 1708; https://doi.org/10.3390/life13081708 - 9 Aug 2023
Cited by 1 | Viewed by 1811
Abstract
The interplay between hypoxia-inducible factors (HIFs) and transforming growth factor beta (TGF-β) is critical for both inflammation and angiogenesis. In hereditary hemorrhagic telangiectasia (HHT), we have previously observed that impairment of the TGF-β pathway is associated with downregulation of HIF-1α. HIF-1α accumulation is [...] Read more.
The interplay between hypoxia-inducible factors (HIFs) and transforming growth factor beta (TGF-β) is critical for both inflammation and angiogenesis. In hereditary hemorrhagic telangiectasia (HHT), we have previously observed that impairment of the TGF-β pathway is associated with downregulation of HIF-1α. HIF-1α accumulation is mandatory in situations of altered energy demand, such as during infection or hypoxia, by adjusting cell metabolism. Leukocytes undergo a HIF-1α-dependent switch from aerobic mitochondrial respiration to anaerobic glycolysis (glycolytic switch) after stimulation and during differentiation. We postulate that the decreased HIF-1α accumulation in HHT leads to a clinically observed immunodeficiency in these patients. Examination of HIF-1α and its target genes in freshly isolated peripheral blood mononuclear cells (PBMCs) from HHT patients revealed decreased gene expression and protein levels of HIF-1α and HIF-1α-regulated glycolytic enzymes. Treatment of these cells with the HIF–prolyl hydroxylase inhibitor, Roxadustat, rescued their ability to accumulate HIF-1α protein. Functional analysis of metabolic flux using a Seahorse FX extracellular flux analyzer showed that the extracellular acidification rate (indicator of glycolytic turnover) after Roxadustat treatment was comparable to non-HHT controls, while oxygen consumption (indicator of mitochondrial respiration) was slightly reduced. HIF stabilization may be a potential therapeutic target in HHT patients suffering from infections. Full article
(This article belongs to the Section Medical Research)
Show Figures

Graphical abstract

13 pages, 2840 KiB  
Article
Cofactor Metabolic Engineering of Escherichia coli for Aerobic L-Malate Production with Lower CO2 Emissions
by Zhiming Jiang, Youming Jiang, Hao Wu, Wenming Zhang, Fengxue Xin, Jiangfeng Ma and Min Jiang
Bioengineering 2023, 10(8), 881; https://doi.org/10.3390/bioengineering10080881 - 25 Jul 2023
Cited by 5 | Viewed by 2420
Abstract
Escherichia coli has been engineered for L-malate production via aerobic cultivation. However, the maximum yield obtained through this mode is inferior to that of anaerobic fermentation due to massive amounts of CO2 emissions. Here, we aim to address this issue by reducing [...] Read more.
Escherichia coli has been engineered for L-malate production via aerobic cultivation. However, the maximum yield obtained through this mode is inferior to that of anaerobic fermentation due to massive amounts of CO2 emissions. Here, we aim to address this issue by reducing CO2 emissions of recombinant E. coli during aerobic L-malate production. Our findings indicated that NADH oxidation and ATP-synthesis-related genes were down-regulated with 2 g/L of YE during aerobic cultivations of E. coli E23, as compared to 5 g/L of YE. Then, E23 was engineered via the knockout of nuoA and the introduction of the nonoxidative glycolysis (NOG) pathway, resulting in a reduction of NAD+ and ATP supplies. The results demonstrate that E23 (ΔnuoA, NOG) exhibited decreased CO2 emissions, and it produced 21.3 g/L of L-malate from glucose aerobically with the improved yield of 0.43 g/g. This study suggests that a restricted NAD+ and ATP supply can prompt E. coli to engage in incomplete oxidization of glucose, leading to the accumulation of metabolites instead of utilizing them in cellular respiration. Full article
Show Figures

Figure 1

Back to TopTop