Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,005)

Search Parameters:
Keywords = aerial motions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Viewed by 164
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

20 pages, 3364 KiB  
Article
Inverse Kinematics of a Serial Manipulator with a Free Joint for Aerial Manipulation
by Alberto Pasetto, Mattia Pedrocco, Riccardo Zenari and Silvio Cocuzza
Appl. Sci. 2025, 15(15), 8390; https://doi.org/10.3390/app15158390 - 29 Jul 2025
Viewed by 151
Abstract
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, [...] Read more.
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, thus reducing the torque applied to the base from the manipulator. In this paper, a novel approach to solve the inverse kinematics of an aerial manipulator with a free revolute joint is presented. The approach exploits the Generalized Jacobian to deal with the presence of a mobile base, and the dynamics of the system is considered to predict the motion of the non-actuated joint; external forces acting on the system are also included. The method is implemented in MATLAB for a planar case considering the parameters of a real manipulator attached to a real octocopter. The tracking of a trajectory with the end-effector and a load picking task are simulated for a non-redundant and for a redundant manipulator. Simulation results demonstrate the capability of this approach in following the desired trajectories and reducing rotation and horizontal translation of the base. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

46 pages, 2814 KiB  
Review
From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Xiandan Du, Ruiqi Fan, Qianxia Li and Youyan Huang
Appl. Sci. 2025, 15(15), 8304; https://doi.org/10.3390/app15158304 - 25 Jul 2025
Viewed by 259
Abstract
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected [...] Read more.
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected 4985 peer-reviewed articles from the Web of Science Core Collection and conducted a comprehensive scientometric analysis using CiteSpace v.6.2.R4, Origin 2022, and Excel. We examined publication trends, country/institutional collaboration networks, keyword co-occurrence clusters, and emerging research fronts. Results reveal an exponential growth in UAV-RS research since 2015, dominated by application-driven studies. Hotspots include vegetation indices, structure from motion modeling, and deep learning integration. However, foundational challenges—such as platform endurance, sensor coordination, and data standardization—remain underexplored. The global collaboration network exhibits a “strong hubs, weak bridges” pattern, limiting transnational knowledge integration. This review highlights the imbalance between surface-level innovation and deep technological maturity and calls for a paradigm shift from fragmented application responses to integrated systems development. Our findings provide strategic insights for researchers, policymakers, and funding agencies to guide the next stage of UAV-RS evolution. Full article
Show Figures

Figure 1

12 pages, 3174 KiB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 276
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

22 pages, 4017 KiB  
Article
Mapping and Estimating Blue Carbon in Mangrove Forests Using Drone and Field-Based Tree Height Data: A Cost-Effective Tool for Conservation and Management
by Ali Karimi, Behrooz Abtahi and Keivan Kabiri
Forests 2025, 16(7), 1196; https://doi.org/10.3390/f16071196 - 20 Jul 2025
Viewed by 491
Abstract
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of [...] Read more.
Mangrove forests are vital blue carbon (BC) ecosystems that significantly contribute to climate change mitigation through carbon sequestration. Accurate, scalable, and cost-effective methods for estimating carbon stocks in these environments are essential for conservation planning. In this study, we assessed the potential of drones, also known as unmanned aerial vehicles (UAVs), for estimating above-ground biomass (AGB) and BC in Avicennia marina stands by integrating drone-based canopy measurements with field-measured tree heights. Using structure-from-motion (SfM) photogrammetry and a consumer-grade drone, we generated a canopy height model and extracted structural parameters from individual trees in the Melgonze mangrove patch, southern Iran. Field-measured tree heights served to validate drone-derived estimates and calibrate an allometric model tailored for A. marina. While drone-based heights differed significantly from field measurements (p < 0.001), the resulting AGB and BC estimates showed no significant difference (p > 0.05), demonstrating that crown area (CA) and model formulation effectively compensate for height inaccuracies. This study confirms that drones can provide reliable estimates of BC through non-invasive means—eliminating the need to harvest, cut, or physically disturb individual trees—supporting their application in mangrove monitoring and ecosystem service assessments, even under challenging field conditions. Full article
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 310
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

30 pages, 4651 KiB  
Article
Differential Flatness-Based Singularity-Free Control of a Class of 5-DOF Aerial Platforms with Applications to Passively Articulated Dual-UAV Systems
by Jiali Sun, Yushu Yu, Zhe Chen, Meichen Jiang and Xin Meng
Drones 2025, 9(7), 503; https://doi.org/10.3390/drones9070503 - 17 Jul 2025
Viewed by 380
Abstract
This paper focuses on a class of 5-degrees-of-freedom (5-DOF) aerial platforms, particularly the Passively Articulated Dual UAVs (PADUAVs). These platforms have the potential to achieve omnidirectional motion, as their joints are free from position constraints. However, PADUAVs encounter singularity issues in certain configurations. [...] Read more.
This paper focuses on a class of 5-degrees-of-freedom (5-DOF) aerial platforms, particularly the Passively Articulated Dual UAVs (PADUAVs). These platforms have the potential to achieve omnidirectional motion, as their joints are free from position constraints. However, PADUAVs encounter singularity issues in certain configurations. To address this challenge, we propose a novel singularity-avoidance control strategy. The approach begins with an analysis of the flat outputs of the 5-DOF aerial system. Based on this analysis, we design a careful allocation strategy that maps position control to attitude control via the flat outputs. A variable intermediate attitude is introduced to ensure that this allocation remains singularity-free across all configurations of the 5-DOF aerial vehicle. The stability of the proposed controller is rigorously proven. We then apply the proposed control method to the PADUAV platform, providing detailed modeling, analysis, and dynamic decoupling of the system. Due to the presence of additional sub-vehicle dynamics in the PADUAV, an auxiliary attitude allocation module is also developed. The proposed position and attitude control allocation strategies enable the controller to maintain singularity-free stability across all configurations. Finally, we implement a 5-DOF tracking control strategy specifically tailored for the PADUAV. Numerical simulations validate the effectiveness of the proposed approach, demonstrating its robustness and reliability in aerial manipulation tasks. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

19 pages, 3520 KiB  
Article
Vision-Guided Maritime UAV Rescue System with Optimized GPS Path Planning and Dual-Target Tracking
by Suli Wang, Yang Zhao, Chang Zhou, Xiaodong Ma, Zijun Jiao, Zesheng Zhou, Xiaolu Liu, Tianhai Peng and Changxing Shao
Drones 2025, 9(7), 502; https://doi.org/10.3390/drones9070502 - 16 Jul 2025
Viewed by 502
Abstract
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven [...] Read more.
With the global increase in maritime activities, the frequency of maritime accidents has risen, underscoring the urgent need for faster and more efficient search and rescue (SAR) solutions. This study presents an intelligent unmanned aerial vehicle (UAV)-based maritime rescue system that combines GPS-driven dynamic path planning with vision-based dual-target detection and tracking. Developed within the Gazebo simulation environment and based on modular ROS architecture, the system supports stable takeoff and smooth transitions between multi-rotor and fixed-wing flight modes. An external command module enables real-time waypoint updates. This study proposes three path-planning schemes based on the characteristics of drones. Comparative experiments have demonstrated that the triangular path is the optimal route. Compared with the other schemes, this path reduces the flight distance by 30–40%. Robust target recognition is achieved using a darknet-ROS implementation of the YOLOv4 model, enhanced with data augmentation to improve performance in complex maritime conditions. A monocular vision-based ranging algorithm ensures accurate distance estimation and continuous tracking of rescue vessels. Furthermore, a dual-target-tracking algorithm—integrating motion prediction with color-based landing zone recognition—achieves a 96% success rate in precision landings under dynamic conditions. Experimental results show a 4% increase in the overall mission success rate compared to traditional SAR methods, along with significant gains in responsiveness and reliability. This research delivers a technically innovative and cost-effective UAV solution, offering strong potential for real-world maritime emergency response applications. Full article
Show Figures

Figure 1

26 pages, 31908 KiB  
Article
Dynamic Bearing–Angle for Vision-Based UAV Target Motion Analysis
by Yu Luo, Hongwei Fu, Tingting Fu, Hao Cha, Bing Tian, Huatao Tang and Feng Liu
Sensors 2025, 25(14), 4396; https://doi.org/10.3390/s25144396 - 14 Jul 2025
Viewed by 347
Abstract
The Bearing–Angle algorithm effectively improves the observability of vision-based motion estimation for moving targets by combining the dimensional information of target detection frames. However, the robustness of this algorithm will be significantly reduced when the observation error increases due to sudden changes in [...] Read more.
The Bearing–Angle algorithm effectively improves the observability of vision-based motion estimation for moving targets by combining the dimensional information of target detection frames. However, the robustness of this algorithm will be significantly reduced when the observation error increases due to sudden changes in the target motion state. To address this shortcoming, this paper proposes a visual target motion estimation algorithm called the Dynamic Bearing–Angle, which aims to improve the accuracy and robustness of target motion analysis in dynamic scenarios such as unmanned aerial vehicle (UAV). The algorithm innovatively introduces a dual robustness mechanism of dynamic noise intensity adaptation and outlier suppression based on M-estimation. By adjusting the noise covariance matrix in real time and assigning low weights to the outlier observations using the Huber weight function, the Dynamic Bearing–Angle algorithm is able to effectively cope with non-Gaussian noise and sudden target maneuvers. We validate the performance of the proposed algorithm with numerical simulations and real sensor data, and the results show that the Dynamic Bearing–Angle maintains good robustness and accuracy under different noise intensities. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

26 pages, 3670 KiB  
Article
Video Instance Segmentation Through Hierarchical Offset Compensation and Temporal Memory Update for UAV Aerial Images
by Ying Huang, Yinhui Zhang, Zifen He and Yunnan Deng
Sensors 2025, 25(14), 4274; https://doi.org/10.3390/s25144274 - 9 Jul 2025
Viewed by 285
Abstract
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we [...] Read more.
Despite the pivotal role of unmanned aerial vehicles (UAVs) in intelligent inspection tasks, existing video instance segmentation methods struggle with irregular deforming targets, leading to inconsistent segmentation results due to ineffective feature offset capture and temporal correlation modeling. To address this issue, we propose a hierarchical offset compensation and temporal memory update method for video instance segmentation (HT-VIS) with a high generalization ability. Firstly, a hierarchical offset compensation (HOC) module in the form of a sequential and parallel connection is designed to perform deformable offset for the same flexible target across frames, which benefits from compensating for spatial motion features at the time sequence. Next, the temporal memory update (TMU) module is developed by employing convolutional long-short-term memory (ConvLSTM) between the current and adjacent frames to establish the temporal dynamic context correlation and update the current frame feature effectively. Finally, extensive experimental results demonstrate the superiority of the proposed HDNet method when applied to the public YouTubeVIS-2019 dataset and a self-built UAV-Seg segmentation dataset. On four typical datasets (i.e., Zoo, Street, Vehicle, and Sport) extracted from YoutubeVIS-2019 according to category characteristics, the proposed HT-VIS outperforms the state-of-the-art CNN-based VIS methods CrossVIS by 3.9%, 2.0%, 0.3%, and 3.8% in average segmentation accuracy, respectively. On the self-built UAV-VIS dataset, our HT-VIS with PHOC surpasses the baseline SipMask by 2.1% and achieves the highest average segmentation accuracy of 37.4% in the CNN-based methods, demonstrating the effectiveness and robustness of our proposed framework. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 4232 KiB  
Article
Multimodal Fusion Image Stabilization Algorithm for Bio-Inspired Flapping-Wing Aircraft
by Zhikai Wang, Sen Wang, Yiwen Hu, Yangfan Zhou, Na Li and Xiaofeng Zhang
Biomimetics 2025, 10(7), 448; https://doi.org/10.3390/biomimetics10070448 - 7 Jul 2025
Viewed by 474
Abstract
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable [...] Read more.
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable support for multimodal modeling. Based on this, to address the issue of poor image acquisition quality due to severe vibrations in aerial vehicles, this paper proposes a multi-modal signal fusion video stabilization framework. This framework effectively integrates image features and inertial sensor features to predict smooth and stable camera poses. During the video stabilization process, the true camera motion originally estimated based on sensors is warped to the smooth trajectory predicted by the network, thereby optimizing the inter-frame stability. This approach maintains the global rigidity of scene motion, avoids visual artifacts caused by traditional dense optical flow-based spatiotemporal warping, and rectifies rolling shutter-induced distortions. Furthermore, the network is trained in an unsupervised manner by leveraging a joint loss function that integrates camera pose smoothness and optical flow residuals. When coupled with a multi-stage training strategy, this framework demonstrates remarkable stabilization adaptability across a wide range of scenarios. The entire framework employs Long Short-Term Memory (LSTM) to model the temporal characteristics of camera trajectories, enabling high-precision prediction of smooth trajectories. Full article
Show Figures

Figure 1

28 pages, 47806 KiB  
Article
Experimental Validation of UAV Search and Detection System in Real Wilderness Environment
by Stella Dumenčić, Luka Lanča, Karlo Jakac and Stefan Ivić
Drones 2025, 9(7), 473; https://doi.org/10.3390/drones9070473 - 3 Jul 2025
Cited by 1 | Viewed by 344
Abstract
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we experiment with autonomous [...] Read more.
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging environments. Introducing unmanned aerial vehicles (UAVs) can enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved. Motivated by this, we experiment with autonomous UAV search for humans in Mediterranean karst environment. The UAVs are directed using the Heat equation-driven area coverage (HEDAC) ergodic control method based on known probability density and detection function. The sensing framework consists of a probabilistic search model, motion control system, and object detection enabling to calculate the target’s detection probability. This paper focuses on the experimental validation of the proposed sensing framework. The uniform probability density, achieved by assigning suitable tasks to 78 volunteers, ensures the even probability of finding targets. The detection model is based on the You Only Look Once (YOLO) model trained on a previously collected orthophoto image database. The experimental search is carefully planned and conducted, while recording as many parameters as possible. The thorough analysis includes the motion control system, object detection, and search validation. The assessment of the detection and search performance strongly indicates that the detection model in the UAV control algorithm is aligned with real-world results. Full article
Show Figures

Figure 1

24 pages, 9035 KiB  
Article
MPN-RRT*: A New Method in 3D Urban Path Planning for UAV Integrating Deep Learning and Sampling Optimization
by Yue Zheng, Ang Li, Zihan Chen, Yapeng Wang, Xu Yang and Sio-Kei Im
Sensors 2025, 25(13), 4142; https://doi.org/10.3390/s25134142 - 2 Jul 2025
Viewed by 549
Abstract
The increasing deployment of unmanned aerial vehicles (UAVs) in complex urban environments necessitates efficient and reliable path planning algorithms. While traditional sampling-based methods such as Rapidly exploring Random Tree Star (RRT*) are widely adopted, their computational inefficiency and suboptimal path quality in intricate [...] Read more.
The increasing deployment of unmanned aerial vehicles (UAVs) in complex urban environments necessitates efficient and reliable path planning algorithms. While traditional sampling-based methods such as Rapidly exploring Random Tree Star (RRT*) are widely adopted, their computational inefficiency and suboptimal path quality in intricate 3D spaces remain significant challenges. This study proposes a novel framework (MPN-RRT*) that integrates Motion Planning Networks (MPNet) with RRT* to enhance UAV navigation in 3D urban maps. A key innovation lies in reducing computational complexity through dimensionality reduction, where 3D urban terrains are sliced into 2D maze representations while preserving critical obstacle information. Transfer learning is applied to adapt a pre-trained MPNet model to the simplified maps, enabling intelligent sampling that guides RRT* toward promising regions and reduces redundant exploration. Extensive MATLAB simulations validate the framework’s efficacy across two distinct 3D environments: a sparse 200 × 200 × 200 map and a dense 800 × 800 × 200 map with no-fly zones. Compared to conventional RRT*, the MPN-RRT* achieves a 47.8% reduction in planning time (from 89.58 s to 46.77 s) and a 19.8% shorter path length (from 476.23 m to 381.76 m) in simpler environments, alongside smoother trajectories quantified by a 91.2% reduction in average acceleration (from 14.67 m/s² to 1.29 m/s²). In complex scenarios, the hybrid method maintains superior performance, reducing flight time by 14.2% and path length by 13.9% compared to RRT*. These results demonstrate that the integration of deep learning with sampling-based planning significantly enhances computational efficiency, path optimality, and smoothness, addressing critical limitations in UAV navigation for urban applications. The study underscores the potential of data-driven approaches to augment classical algorithms, providing a scalable solution for real-time autonomous systems operating in high-dimensional dynamic environments. Full article
(This article belongs to the Special Issue Recent Advances in UAV Communications and Networks)
Show Figures

Figure 1

33 pages, 15773 KiB  
Article
Surface Change and Stability Analysis in Open-Pit Mines Using UAV Photogrammetric Data and Geospatial Analysis
by Abdurahman Yasin Yiğit and Halil İbrahim Şenol
Drones 2025, 9(7), 472; https://doi.org/10.3390/drones9070472 - 2 Jul 2025
Cited by 1 | Viewed by 716
Abstract
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 [...] Read more.
Significant morphological transformations resulting from open-pit mining activities always present major problems with site safety and slope stability. This study investigates an active marble quarry in Dinar, Türkiye by combining geospatial analysis and photogrammetry based on unmanned aerial vehicles (UAV). Acquired in 2024 and 2025, high-resolution images were combined with dense point clouds produced by Structure from Motion (SfM) methods. Iterative Closest Point (ICP) registration (RMSE = 2.09 cm) and Multiscale Model-to-Model Cloud Comparison (M3C2) analysis was used to quantify the surface changes. The study found a volumetric increase of 7744.04 m3 in the dump zones accompanied by an excavation loss of 8359.72 m3, so producing a net difference of almost 615.68 m3. Surface risk factors were evaluated holistically using a variety of morphometric criteria. These measures covered surface variation in several respects: their degree of homogeneity, presence of any unevenness or texture, verticality, planarity, and linearity. Surface variation > 0.20, roughness > 0.15, and verticality > 0.25 help one to identify zones of increased instability. Point cloud modeling derived from UAVs and GIS-based spatial analysis were integrated to show that morphological anomalies are spatially correlated with possible failure zones. Full article
Show Figures

Figure 1

33 pages, 3235 KiB  
Article
Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
by Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta, Beata Krzaczek, Patryk Mieczkowski, Leszek Głowacki, Jian Yu, Jiang He and Olena Chernykh
Sustainability 2025, 17(13), 6030; https://doi.org/10.3390/su17136030 - 1 Jul 2025
Viewed by 402
Abstract
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based [...] Read more.
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. Full article
Show Figures

Figure 1

Back to TopTop