Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,177)

Search Parameters:
Keywords = advanced packaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1507 KiB  
Article
DNA Transfer Between Items Within an Evidence Package
by Yong Sheng Lee and Christopher Kiu-Choong Syn
Genes 2025, 16(8), 894; https://doi.org/10.3390/genes16080894 - 28 Jul 2025
Abstract
Background/Objectives: Advancements in DNA profiling have made it possible to retrieve intact DNA profiles from increasingly minute biological samples. This increased sensitivity in DNA detection has highlighted crucial considerations to be made when handling and packing items from the crime scene to [...] Read more.
Background/Objectives: Advancements in DNA profiling have made it possible to retrieve intact DNA profiles from increasingly minute biological samples. This increased sensitivity in DNA detection has highlighted crucial considerations to be made when handling and packing items from the crime scene to minimize potential contamination from either direct or indirect transfer of DNA. To investigate potential DNA transfer between items stored within the same evidence package, we conducted a simulation study with items commonly encountered during forensic casework. Methods: Participants were grouped in pairs, each of them handling the same type of item to simulate the activity conducted at the crime scene. The items were then collected from each pair of participants and stored in the same evidence package for 4 to 5 days. To evaluate the basal DNA transfer between items within the same package, the packed items were not subjected to friction, force, or long-distance movement in this study. Results: We have observed the occurrence of DNA transfer on 39% of the studied items inside the package, which changed the source attribution of the DNA profiles for 10% of the recovered samples. Our results showed that the types of items were associated with the number of transferred alleles and the amount of DNA recovered, while no association was found between the number of transferred alleles and the amount of DNA on the studied items. Conclusions: Taken together, the results from this study reiterate the importance of packing each item from the crime scene separately, especially when packing items together may impact the interpretation of source attribution. Full article
(This article belongs to the Special Issue Advanced Research in Forensic Genetics)
Show Figures

Figure 1

22 pages, 3504 KiB  
Article
Improving Geometric Formability in 3D Paper Forming Through Ultrasound-Assisted Moistening and Radiative Preheating for Sustainable Packaging
by Heike Stotz, Matthias Klauser, Johannes Rauschnabel and Marek Hauptmann
J. Manuf. Mater. Process. 2025, 9(8), 253; https://doi.org/10.3390/jmmp9080253 - 26 Jul 2025
Viewed by 52
Abstract
In response to increasing sustainability demands, the packaging industry is shifting toward paper-based alternatives to replace polymer packaging. However, achieving complex, three-dimensional geometries comparable to plastics remains challenging due to the limited stretchability of paper. This study investigates advanced preconditioning techniques to enhance [...] Read more.
In response to increasing sustainability demands, the packaging industry is shifting toward paper-based alternatives to replace polymer packaging. However, achieving complex, three-dimensional geometries comparable to plastics remains challenging due to the limited stretchability of paper. This study investigates advanced preconditioning techniques to enhance the formability of paper materials for deep-draw packaging applications. A custom-built test rig was developed at Syntegon Technology GmbH to systematically evaluate the effects of ultrasound-assisted moistening and segmented radiative heating. Under optimized conditions, 2.67 s moistening, 70.00 °C punch temperature, and 2999 W radiation power, maximum stretchability increased from 13.00% to 26.93%. The results confirm the effectiveness of ultrasound in accelerating moisture uptake and radiation heating in achieving uniform thermal distribution across the paper substrate. Although prototype constraints, such as the absence of inline conditioning and real-time measurement, limit process stability and scalability, the findings provide a strong foundation for developing industrial 3D paper forming processes that support sustainable packaging innovation. Full article
Show Figures

Figure 1

30 pages, 3888 KiB  
Review
Advances in Nanotechnology Research in Food Production, Nutrition, and Health
by Kangran Han, Haixia Yang, Daidi Fan and Jianjun Deng
Nutrients 2025, 17(15), 2443; https://doi.org/10.3390/nu17152443 - 26 Jul 2025
Viewed by 213
Abstract
Nanotechnology, as a burgeoning interdisciplinary field, has a significant application potential in food nutrition and human health due to its distinctive structural characteristics and surface effects. This paper methodically examines the recent advancements in nanotechnology pertaining to food production, functional nutrition delivery, and [...] Read more.
Nanotechnology, as a burgeoning interdisciplinary field, has a significant application potential in food nutrition and human health due to its distinctive structural characteristics and surface effects. This paper methodically examines the recent advancements in nanotechnology pertaining to food production, functional nutrition delivery, and health intervention. In food manufacturing, nanoparticles have markedly enhanced food safety and quality stability via technologies such as antimicrobial packaging, intelligent sensing, and processing optimization. Nutritional science has used nanocarrier-based delivery systems, like liposomes, nanoemulsions, and biopolymer particles, to make active substances easier for the body to access and target. Nanotechnology offers innovative approaches for chronic illness prevention and individualized treatment in health interventions by enabling accurate nutritional delivery and functional regulation. Nonetheless, the use of nanotechnology encounters hurdles, including safety evaluations and regulatory concerns that require additional investigation. Future research should concentrate on refining the preparation process of nanomaterials, conducting comprehensive examinations of their metabolic mechanisms within the human body, and enhancing pertinent safety standards to facilitate the sustainable advancement of nanotechnology in food production, nutrition, and health. Full article
Show Figures

Figure 1

18 pages, 2377 KiB  
Article
Sustainable Adhesive Formulation and Performance Evaluation of Bacterial Nanocellulose and Aloe Vera for Packaging Applications
by Urška Vrabič-Brodnjak and Aljana Vidmar
Molecules 2025, 30(15), 3136; https://doi.org/10.3390/molecules30153136 - 26 Jul 2025
Viewed by 69
Abstract
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as [...] Read more.
The development of bio-based adhesives as sustainable alternatives to synthetic formulations presents a significant opportunity for advancing environmental sustainability in packaging applications. This research aimed to develop and evaluate a bio-based adhesive derived from bacterial nanocellulose (BNC), aloe vera and its mixtures as a potential replacement for commercial synthetic adhesives. Aloe vera, selected for its polysaccharide-rich composition, served as a natural polymeric matrix, while BNC contributed reinforcing properties. The adhesive formulations, with and without BNC, were compared to a commercial adhesive to assess their mechanical performance. T-peel and shear tests were conducted on smooth and rough paper substrates to evaluate adhesive strength. The bio-based adhesive incorporating BNC demonstrated superior shear and peel strength on rough substrates due to enhanced mechanical interlocking within the fibrous structure of paper, whereas performance on smooth surfaces was hindered by uneven BNC distribution, reducing adhesive-substrate interaction. Although the commercial adhesive achieved higher absolute maximum force values, the bio-based formulation exhibited comparable mechanical stability under specific conditions. These findings underscore the influence of substrate properties and application methods on adhesive performance, highlighting the potential of bio-based adhesives in packaging applications and the need for further formulation optimization to fully realize their advantages over traditional synthetic adhesives. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Figure 1

32 pages, 4464 KiB  
Review
Multifunctional Polyimide for Packaging and Thermal Management of Electronics: Design, Synthesis, Molecular Structure, and Composite Engineering
by Xi Chen, Xin Fu, Zhansheng Chen, Zaiteng Zhai, Hongkang Miu and Peng Tao
Nanomaterials 2025, 15(15), 1148; https://doi.org/10.3390/nano15151148 - 24 Jul 2025
Viewed by 296
Abstract
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. [...] Read more.
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. Recent advances have focused on molecular design and composite engineering strategies to address these limitations. This review first summarizes the intrinsic properties of polyimides, followed by a systematic discussion of chemical synthesis, surface modification approaches, molecular design principles, and composite fabrication methods. We comprehensively examine both conventional polymerization synthetic routes and emerging techniques such as microwave-assisted thermal imidization and chemical vapor deposition. Special emphasis is placed on porous structure engineering via solid-template and liquid-template methods. Three key modification strategies are highlighted: (1) surface modifications for enhanced hydrophobicity, chemical stability, and tribological properties; (2) molecular design for optimized dielectric performance and thermal stability; and (3) composite engineering for developing high-thermal-conductivity materials with improved mechanical strength and electromagnetic interference (EMI) shielding capabilities. The dielectric constant of polyimide is reduced while chemical stability and wear resistance can be enhanced through the introduction of fluorine groups. Ultra-low dielectric constant and high-temperature resistance can be achieved by employing rigid monomers and porous structures. Furthermore, the incorporation of fillers such as graphene and boron nitride can endow the composite materials with high thermal conductivity, excellent EMI shielding efficiency, and improved mechanical properties. Finally, we discuss representative applications of polyimide and composites in electronic device packaging, EMI shielding, and thermal management systems, providing insights into future development directions. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Figure 1

23 pages, 1012 KiB  
Review
Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
by Antonia Terpou, Divakar Dahiya and Poonam Singh Nigam
Gels 2025, 11(8), 569; https://doi.org/10.3390/gels11080569 - 23 Jul 2025
Viewed by 276
Abstract
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins [...] Read more.
The growing demand for sustainable, functional ingredients in the food industry has driven interest in marine-derived biopolymers. Among marine sources, microalgae represent a promising yet underexplored reservoir of bioactive gel-forming compounds, particularly extracellular polysaccharides (EPSs), both sulfated and non-sulfated, as well as proteins that exhibit unique gelling, emulsifying, and stabilizing properties. This study focuses on microalgal species with demonstrated potential to produce viscoelastic, shear-thinning gels, making them suitable for applications in food stabilization, texture modification, and nutraceutical delivery. Recent advances in biotechnology and cultivation methods have improved access to high-value strains, which exhibit promising physicochemical properties for the development of novel food textures, structured formulations, and sustainable food packaging materials. Furthermore, these microalgae-derived gels offer additional health benefits, such as antioxidant and prebiotic activities, aligning with current trends toward functional foods containing prebiotic materials. Key challenges in large-scale production, including low EPS productivity, high processing costs, and lack of regulatory frameworks, are critically discussed. Despite these barriers, advances in cultivation technologies and biorefinery approaches offer new avenues for commercial application. Overall, microalgal gels hold significant promise as sustainable, multifunctional ingredients for clean-label food formulations. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Graphical abstract

17 pages, 8708 KiB  
Article
Optimizing Single-Particle Analysis Workflow: Comparative Analysis of the Symmetry Parameter and Particle Quantity upon Reconstruction of the Molecular Complex
by Myeong Seon Jeong, Han-ul Kim, Mi Young An, Yoon Ho Park, Sun Hee Park, Sang J. Chung, Yoon-Sun Yi, Sangmi Jun, Young Kwan Kim and Hyun Suk Jung
Biophysica 2025, 5(3), 30; https://doi.org/10.3390/biophysica5030030 - 22 Jul 2025
Viewed by 110
Abstract
Recent major advancements in cryo-electron microscopy (cryo-EM) have enabled high-resolution structural analysis, accompanied by developments in image processing software packages for single-particle analysis (SPA). SPA facilitates the 3D reconstruction of proteins and macromolecular complexes from numerous individual particles. In this study, we systematically [...] Read more.
Recent major advancements in cryo-electron microscopy (cryo-EM) have enabled high-resolution structural analysis, accompanied by developments in image processing software packages for single-particle analysis (SPA). SPA facilitates the 3D reconstruction of proteins and macromolecular complexes from numerous individual particles. In this study, we systematically evaluated the impact of symmetry parameters and particle quantity on the 3D reconstruction efficiency using the dihydrolipoyl acetyltransferase (E2) inner core of the pyruvate dehydrogenase complex (PDC). We specifically examined how inappropriate symmetry constraints can introduce structural artifacts and distortions, underscoring the necessity for accurate symmetry determination through rigorous validation methods such as directional Fourier shell correlation (FSC) and local-resolution mapping. Additionally, our analysis demonstrates that efficient reconstructions can be achieved with a moderate particle number, significantly reducing computational costs without compromising structural accuracy. We further contextualize these results by discussing recent developments in SPA workflows and hardware optimization, highlighting their roles in enhancing reconstruction accuracy and computational efficiency. Overall, our comprehensive benchmarking provides strategic insights that will facilitate the optimization of SPA experiments, particularly in resource-limited settings, and offers practical guidelines for accurately determining symmetry and particle quantity during cryo-EM data processing. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

28 pages, 3894 KiB  
Review
Where Business Meets Location Intelligence: A Bibliometric Analysis of Geomarketing Research in Retail
by Cristiana Tudor, Aura Girlovan and Cosmin-Alin Botoroga
ISPRS Int. J. Geo-Inf. 2025, 14(8), 282; https://doi.org/10.3390/ijgi14080282 - 22 Jul 2025
Viewed by 345
Abstract
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of [...] Read more.
We live in an era where digitalization and omnichannel strategies significantly transform retail landscapes, and accurate spatial analytics from Geographic Information Systems (GIS) can deliver substantial competitive benefits. Nonetheless, despite evident practical advantages for specific targeting strategies and operational efficiency, the degree of GIS integration into academic marketing literature remains ambiguous. Clarifying this uncertainty is beneficial for advancing theoretical understanding and ensuring retail strategies fully leverage robust, data-driven spatial intelligence. To examine the intellectual development of the field, co-occurrence analysis, topic mapping, and citation structure visualization were performed on 4952 peer-reviewed articles using the Bibliometrix R package (version 4.3.3) within R software (version 4.4.1). The results demonstrate that although GIS-based methods have been effectively incorporated into fields like site selection and spatial segmentation, traditional marketing research has not yet entirely adopted them. One of the study’s key findings is the distinction between “author keywords” and “keywords plus,” where researchers concentrate on novel topics like omnichannel retail, artificial intelligence, and logistics. However, “Keywords plus” still refers to more traditional terms such as pricing, customer satisfaction, and consumer behavior. This discrepancy presents a misalignment between current research trends and indexed classification practices. Although the mainstream retail research lacks terminology connected to geomarketing, a theme evolution analysis reveals a growing focus on technology-driven and sustainability-related concepts associated with the Retail 4.0 and 5.0 paradigms. These findings underscore a conceptual and structural deficiency in the literature and indicate the necessity for enhanced integration of GIS and spatial decision support systems (SDSS) in retail marketing. Full article
Show Figures

Figure 1

46 pages, 1185 KiB  
Review
Shared Producer Responsibility for Sustainable Packaging in FMCG: The Convergence of SDGs, ESG Reporting, and Stakeholder Engagement
by Fotios Misopoulos and Priyanka Bajiraj
Sustainability 2025, 17(14), 6654; https://doi.org/10.3390/su17146654 - 21 Jul 2025
Viewed by 269
Abstract
Packaging waste is a major environmental issue, making the transition to sustainable solutions imperative. This article proposes the concept of Shared Producer Responsibility (SPR) as a key approach to advancing sustainable packaging in the fast-moving consumer goods (FMCG) sector. The study explores how [...] Read more.
Packaging waste is a major environmental issue, making the transition to sustainable solutions imperative. This article proposes the concept of Shared Producer Responsibility (SPR) as a key approach to advancing sustainable packaging in the fast-moving consumer goods (FMCG) sector. The study explores how the United Nations Sustainable Development Goals (SDGs), environmental, social, and governance (ESG) reporting, and stakeholder engagement converge to support this transition. The research identifies current trends, challenges, and gaps in sustainable packaging practices through a systematic literature review (SLR) and analysis of sustainability and ESG reports from leading FMCG and packaging companies. The findings highlight the need for standardised reporting frameworks and improved stakeholder cooperation to enhance transparency and accountability in sustainability efforts. This study proposes a conceptual framework for accelerating sustainable packaging adoption through combining strategies like consumer education, regulatory incentives, and clear product labelling. The proposal to implement the concept of Shared Producer Responsibility emphasises the shared accountability of FMCG companies and packaging manufacturers in managing the full environmental lifecycle of packaging materials. This approach is crucial for achieving SDG 12 (responsible consumption and production) and SDG 13 (climate action) and driving more effective and sustainable packaging practices across the FMCG industry. Full article
Show Figures

Figure 1

19 pages, 3099 KiB  
Article
Optimizing Geophysical Inversion: Versatile Regularization and Prior Integration Strategies for Electrical and Seismic Tomographic Data
by Guido Penta de Peppo, Michele Cercato and Giorgio De Donno
Geosciences 2025, 15(7), 274; https://doi.org/10.3390/geosciences15070274 - 20 Jul 2025
Viewed by 274
Abstract
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization [...] Read more.
The increasing demand for high-resolution subsurface imaging has driven significant advances in geophysical inversion methodologies. Despite the availability of various software packages for electrical resistivity tomography (ERT), time-domain induced polarization (TDIP), and seismic refraction tomography (SRT), significant challenges remain in selecting optimal regularization parameters and in the effective incorporation of prior information into the inversion process. In this study, we propose new strategies to address these critical issues by developing versatile and flexible tools for electrical and seismic tomographic data inversion. Specifically, we introduce two automated procedures for regularization parameter selection: a full loop method (fixed-λ optimization) where the regularization parameter is kept constant during the inversion process, and a single-inversion approach (automaticLam) where it varies throughout the iterations. Additionally, we present a novel constrained inversion strategy that effectively balances prior information, minimizes data misfit, and promotes model smoothness. This approach is thoroughly compared with the state-of-the-art methods, demonstrating its superiority in maintaining model reliability and reducing dependence on subjective operator choices. Applications to synthetic, laboratory, and real-world case studies validate the efficacy of our strategies, showcasing their potential to enhance the robustness of geophysical models and standardize the inversion process, ensuring its independence from operator decisions. Full article
(This article belongs to the Special Issue Geophysical Inversion)
Show Figures

Figure 1

38 pages, 9771 KiB  
Article
Global Research Trends in Biomimetic Lattice Structures for Energy Absorption and Deformation: A Bibliometric Analysis (2020–2025)
by Sunny Narayan, Brahim Menacer, Muhammad Usman Kaisan, Joseph Samuel, Moaz Al-Lehaibi, Faisal O. Mahroogi and Víctor Tuninetti
Biomimetics 2025, 10(7), 477; https://doi.org/10.3390/biomimetics10070477 - 19 Jul 2025
Viewed by 493
Abstract
Biomimetic lattice structures, inspired by natural architectures such as bone, coral, mollusk shells, and Euplectella aspergillum, have gained increasing attention for their exceptional strength-to-weight ratios, energy absorption, and deformation control. These properties make them ideal for advanced engineering applications in aerospace, biomedical devices, [...] Read more.
Biomimetic lattice structures, inspired by natural architectures such as bone, coral, mollusk shells, and Euplectella aspergillum, have gained increasing attention for their exceptional strength-to-weight ratios, energy absorption, and deformation control. These properties make them ideal for advanced engineering applications in aerospace, biomedical devices, and structural impact protection. This study presents a comprehensive bibliometric analysis of global research on biomimetic lattice structures published between 2020 and 2025, aiming to identify thematic trends, collaboration patterns, and underexplored areas. A curated dataset of 3685 publications was extracted from databases like PubMed, Dimensions, Scopus, IEEE, Google Scholar, and Science Direct and merged together. After the removal of duplication and cleaning, about 2226 full research articles selected for the bibliometric analysis excluding review works, conference papers, book chapters, and notes using Cite space, VOS viewer version 1.6.20, and Bibliometrix R packages (4.5. 64-bit) for mapping co-authorship networks, institutional affiliations, keyword co-occurrence, and citation relationships. A significant increase in the number of publications was found over the past year, reflecting growing interest in this area. The results identify China as the most prolific contributor, with substantial institutional support and active collaboration networks, especially with European research groups. Key research focuses include additive manufacturing, finite element modeling, machine learning-based design optimization, and the performance evaluation of bioinspired geometries. Notably, the integration of artificial intelligence into structural modeling is accelerating a shift toward data-driven design frameworks. However, gaps remain in geometric modeling standardization, fatigue behavior analysis, and the real-world validation of lattice structures under complex loading conditions. This study provides a strategic overview of current research directions and offers guidance for future interdisciplinary exploration. The insights are intended to support researchers and practitioners in advancing next-generation biomimetic materials with superior mechanical performance and application-specific adaptability. Full article
(This article belongs to the Special Issue Nature-Inspired Science and Engineering for Sustainable Future)
Show Figures

Figure 1

61 pages, 2268 KiB  
Review
Biodegradable Polymers: Properties, Applications, and Environmental Impact
by Rashid Dallaev, Nikola Papež, Mohammad M. Allaham and Vladimír Holcman
Polymers 2025, 17(14), 1981; https://doi.org/10.3390/polym17141981 - 18 Jul 2025
Viewed by 370
Abstract
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such [...] Read more.
The accelerating global demand for sustainable materials has brought biodegradable polymers to the forefront of scientific and industrial innovation. These polymers, capable of decomposing through biological processes into environmentally benign byproducts, are increasingly seen as viable alternatives to conventional plastics in sectors such as packaging, agriculture, and biomedicine. However, despite significant advancements, the field remains fragmented due to the diversity of raw materials, synthesis methods, degradation mechanisms, and application requirements. This review aims to provide a comprehensive synthesis of the current state of biodegradable polymer development, including their classifications, sources (natural, synthetic, and microbially derived), degradation pathways, material properties, and commercial applications. It highlights critical scientific and technological challenges—such as optimizing degradation rates, ensuring mechanical performance, and scaling up production from renewable feedstocks. By consolidating recent research findings and regulatory considerations, this review serves as a crucial reference point for researchers, material scientists, and policymakers. It strives to bridge knowledge gaps in order to accelerate the deployment of biodegradable polymers as integral components of a circular and low-impact material economy. Full article
Show Figures

Figure 1

18 pages, 5039 KiB  
Article
Global Research Trends on Water Contamination by Microorganisms: A Bibliometric Analysis
by Zoila Isabel Cárdenas Tirado, Isaías Wilmer Duenas Sayaverde, Rosario del Socorro Avellaneda Yajahuanca, Sdenka Caballero Aparicio, Kelly Myriam Jiménez de Aliaga, Edo Gallegos Aparicio, Maria Antonieta Rubio Tyrrel, Maria do Livramento Fortes Figueiredo, José Wicto Pereira Borges, Rosilane de Lima Brito Magalhães, Denise Andrade, Daniela Reis Joaquim de Freitas, Ana Raquel Batista de Carvalho and Maria Eliete Batista Moura
Int. J. Environ. Res. Public Health 2025, 22(7), 1128; https://doi.org/10.3390/ijerph22071128 - 17 Jul 2025
Viewed by 299
Abstract
Water is an essential resource for life; however, the quality of available water on the planet has been compromised due to various factors, including microbiological contamination. Objective: To analyze the global scientific production of microbiological water contamination using bibliometric methods. Method: A search [...] Read more.
Water is an essential resource for life; however, the quality of available water on the planet has been compromised due to various factors, including microbiological contamination. Objective: To analyze the global scientific production of microbiological water contamination using bibliometric methods. Method: A search for scientific articles was conducted using the advanced query function in the Web of Science™ database, specifically in its core collection, on 26 February 2025. Data from 2000 articles were analyzed using the Bibliometrix package in R (version 4.2.1) and the Biblioshiny application (version 2.0). Results: The evaluated articles were published between 1952 and 2025, with a peak in publications in 2022. The journal Water Research stood out as the most relevant, publishing 128 articles. The Egyptian Knowledge Bank was identified as the most productive institution, while China had the highest number of contributing authors. The most cited article received 475 citations. Additionally, KeyWords Plus™ highlighted the focus of the studies on ecological and biotechnological methods for contaminant removal, as well as the presence of waterborne pathogens and their inactivation methods. Conclusions: The results show a growing interest in the development of ecological and biotechnological methods for contaminant removal and pathogen inactivation in water. The integration of artificial intelligence with real-time monitoring systems emerges as a promising strategy for improving water quality management. These findings highlight the relevance of the topic for public health and health education. Full article
Show Figures

Figure 1

72 pages, 22031 KiB  
Article
AI-Enabled Sustainable Manufacturing: Intelligent Package Integrity Monitoring for Waste Reduction in Supply Chains
by Mohammad Shahin, Ali Hosseinzadeh and F. Frank Chen
Electronics 2025, 14(14), 2824; https://doi.org/10.3390/electronics14142824 - 14 Jul 2025
Viewed by 283
Abstract
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic [...] Read more.
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic decision-making, real-time quality control (QC) on conveyor lines remains predominantly analog. This study proposes an intelligent package integrity monitoring system that integrates waste reduction strategies with both narrow and Generative AI approaches. Narrow AI models were deployed to detect package damage at full line speed, aiming to minimize manual intervention and reduce waste. Using a synthetically generated dataset of 200 paired top-and-side package images, we developed and evaluated 10 distinct detection pipelines combining various algorithms, image enhancements, model architectures, and data processing strategies. Several pipeline variants demonstrated high accuracy, precision, and recall, particularly those utilizing a YOLO v8 segmentation model. Notably, targeted preprocessing increased top-view MobileNetV2 accuracy from chance to 67.5%, advanced feature extractors with full enhancements achieved 77.5%, and a segmentation-based ensemble with feature extraction and binary classification reached 92.5% accuracy. These results underscore the feasibility of deploying AI-driven, real-time QC systems for sustainable and efficient manufacturing operations. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Intelligent Manufacturing)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 660
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop