Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = advance firing angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1899 KB  
Article
A Highly Hydrophobic and Flame-Retardant Melamine Sponge for Emergency Oil Spill Response
by Chengyong Zheng, Bo Wang, Wei Xie and Shuilai Qiu
Nanomaterials 2025, 15(24), 1897; https://doi.org/10.3390/nano15241897 - 17 Dec 2025
Viewed by 331
Abstract
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies [...] Read more.
Frequent crude oil spills during offshore oil and gas production and transportation have inflicted irreversible detrimental effects on both human activities and marine ecosystems; with particular risks of secondary disasters such as combustion and explosions. To address these challenges; advanced oil sorption technologies have been developed to overcome the inherent limitations of conventional remediation methods. In this study, a flame-retardant protective coating was fabricated on melamine sponge (MS) through precipitation polymerization of octa-aminopropyl polyhedral oligomeric silsesquioxane (POSS) and hexachlorocyclotriphosphazene (HCCP), endowing the MS@PPOS-PDMS-Si composite with exceptional char-forming capability. Secondary functional layer: By coupling the complementary physicochemical properties of polydimethylsiloxane (PDMS) and SiO2 nanofibers, we enabled them to function jointly, achieving superior performance in the material systems; this conferred enhanced hydrophobicity and structural stability to the MS matrix. Characterization results demonstrated a progressive reduction in peak heat release rate (PHRR) from 137.66 kW/m2 to118.35 kW/m2, 91.92 kW/m2, and ultimately 46.23 kW/m2, accompanied by a decrease in total smoke production (TSP) from 1.62 m2 to 0.76 m2, indicating significant smoke suppression. Furthermore, the water contact angle (WCA) exhibited substantial improvement from 0° (superhydrophilic) to 140.7° (highly hydrophobic). Cyclic sorption–desorption testing revealed maintained oil–water separation efficiency exceeding 95% after 10 operational cycles. These findings position the MS@PPOS-PDMS-Si composite as a promising candidate for emergency oil spill response and marine pollution remediation applications, demonstrating superior performance in fire safety, environmental durability, and operational reusability. Full article
Show Figures

Graphical abstract

18 pages, 1321 KB  
Article
Enhanced AI-Driven Harmonic Optimization in 36-Pulses Converters for SCADA Integration
by Antonio Valderrabano-Gonzalez and Carlos E. Castañeda
Electronics 2025, 14(18), 3623; https://doi.org/10.3390/electronics14183623 - 12 Sep 2025
Viewed by 829
Abstract
This paper presents an integrated approach for optimizing the performance of a 36-pulses converter system by using artificial intelligence (AI) techniques to be included in a Supervisory Control and Data Acquisition (SCADA) environment. The focus of the proposal is on enhancing harmonic reduction [...] Read more.
This paper presents an integrated approach for optimizing the performance of a 36-pulses converter system by using artificial intelligence (AI) techniques to be included in a Supervisory Control and Data Acquisition (SCADA) environment. The focus of the proposal is on enhancing harmonic reduction through intelligent adjustment of switching angles and coordinated control of the reinjection transformer included in the power converter topology. A key component of the proposed methodology involves a simulation-based process to determine optimal firing angles (α1, α2, and α3), based on Selective Harmonic Elimination (SHE) theory, that minimize Total Harmonic Distortion (THD). Using MATLAB with Simulink and PLECS models, a parametric sweep of the firing angles, generating a comprehensive dataset of THD outcomes. This dataset, consisting of THD evaluations across fine-grained angle variations, serves as the training foundation for supervised machine learning models—specifically, neural network regressors—that approximate the nonlinear mapping between firing angles and harmonic distortion. These predictive models are then employed as surrogates to estimate THD rapidly and guide the selection of optimal switching angles in real time without requiring iterative numerical solvers. Optimization heuristics and predictive models are then deployed to dynamically adapt system parameters in real time under varying load conditions. The proposed method demonstrates significant improvements in power quality and operational reliability, highlighting the potential of AI-assisted SCADA systems in advanced power electronics applications. Implementation results performed on a 36-pulses voltage source converter prototype are included to illustrate the appropriateness of the proposal. Full article
Show Figures

Figure 1

24 pages, 12286 KB  
Article
A UAV-Based Multi-Scenario RGB-Thermal Dataset and Fusion Model for Enhanced Forest Fire Detection
by Yalin Zhang, Xue Rui and Weiguo Song
Remote Sens. 2025, 17(15), 2593; https://doi.org/10.3390/rs17152593 - 25 Jul 2025
Cited by 1 | Viewed by 6560
Abstract
UAVs are essential for forest fire detection due to vast forest areas and inaccessibility of high-risk zones, enabling rapid long-range inspection and detailed close-range surveillance. However, aerial photography faces challenges like multi-scale target recognition and complex scenario adaptation (e.g., deformation, occlusion, lighting variations). [...] Read more.
UAVs are essential for forest fire detection due to vast forest areas and inaccessibility of high-risk zones, enabling rapid long-range inspection and detailed close-range surveillance. However, aerial photography faces challenges like multi-scale target recognition and complex scenario adaptation (e.g., deformation, occlusion, lighting variations). RGB-Thermal fusion methods integrate visible-light texture and thermal infrared temperature features effectively, but current approaches are constrained by limited datasets and insufficient exploitation of cross-modal complementary information, ignoring cross-level feature interaction. A time-synchronized multi-scene, multi-angle aerial RGB-Thermal dataset (RGBT-3M) with “Smoke–Fire–Person” annotations and modal alignment via the M-RIFT method was constructed as a way to address the problem of data scarcity in wildfire scenarios. Finally, we propose a CP-YOLOv11-MF fusion detection model based on the advanced YOLOv11 framework, which can learn heterogeneous features complementary to each modality in a progressive manner. Experimental validation proves the superiority of our method, with a precision of 92.5%, a recall of 93.5%, a mAP50 of 96.3%, and a mAP50-95 of 62.9%. The model’s RGB-Thermal fusion capability enhances early fire detection, offering a benchmark dataset and methodological advancement for intelligent forest conservation, with implications for AI-driven ecological protection. Full article
(This article belongs to the Special Issue Advances in Spectral Imagery and Methods for Fire and Smoke Detection)
Show Figures

Figure 1

23 pages, 5328 KB  
Article
TSSA-NBR: A Burned Area Extraction Method Based on Time-Series Spectral Angle with Full Spectral Shape
by Dongyi Liu, Yonghua Qu, Xuewen Yang and Qi Zhao
Remote Sens. 2025, 17(13), 2283; https://doi.org/10.3390/rs17132283 - 3 Jul 2025
Cited by 2 | Viewed by 1271
Abstract
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific [...] Read more.
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific spectral bands while neglecting full spectral shape information, which encapsulates overall spectral characteristics. This limitation compromises adaptability to diverse vegetation types and environmental conditions, particularly across varying spatial scales. To address these challenges, we propose the time-series spectral-angle-normalized burn index (TSSA-NBR). This unsupervised BA extraction method integrates normalized spectral angle and normalized burn ratio (NBR) to leverage full spectral shape and temporal features derived from Sentinel-2 time-series data. Seven globally distributed study areas with diverse climatic conditions and vegetation types were selected to evaluate the method’s adaptability and scalability. Evaluations compared Sentinel-2-derived BA with moderate-resolution products and high-resolution PlanetScope-derived BA, focusing on spatial scale and methodological performance. TSSA-NBR achieved a Dice Coefficient (DC) of 87.81%, with commission (CE) and omission errors (OE) of 8.52% and 15.58%, respectively, demonstrating robust performance across all regions. Across diverse land cover types, including forests, grasslands, and shrublands, TSSA-NBR exhibited high adaptability, with DC values ranging from 0.53 to 0.97, CE from 0.03 to 0.27, and OE from 0.02 to 0.61. The method effectively captured fire scars and outperformed band-specific and threshold-dependent approaches by integrating spectral shape features with fire indices, establishing a data-driven framework for BA detection. These results underscore its potential for fire monitoring and broader applications in detecting surface anomalies and environmental disturbances, advancing global ecological monitoring and management strategies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

12 pages, 5052 KB  
Protocol
Automated Measurement of Grid Cell Firing Characteristics
by Nate M. Sutton, Blanca E. Gutiérrez-Guzmán, Holger Dannenberg and Giorgio A. Ascoli
Algorithms 2025, 18(3), 139; https://doi.org/10.3390/a18030139 - 3 Mar 2025
Cited by 2 | Viewed by 1243
Abstract
We describe GridMet as open-source software that automatically measures the spatial tuning parameters of grid cells, such as firing field size, spacing, and orientation angles. Applying these metrics to experimental data can help quantify changes in the geometric characteristics of grid cell firing [...] Read more.
We describe GridMet as open-source software that automatically measures the spatial tuning parameters of grid cells, such as firing field size, spacing, and orientation angles. Applying these metrics to experimental data can help quantify changes in the geometric characteristics of grid cell firing across experimental conditions. GridMet uses clustering and other advanced methods to detect and characterize fields, increasing accuracy compared to alternative methods such as those based on peak firing. Novel contributions of this work include an effective approach for automated field size estimation and an original method for estimating field spacing that can overcome challenges encountered in other software. The user-friendly yet flexible design of GridMet aims to facilitate widespread community adoption. Specifically, GridMet allows basic usage with default parameter settings while also enabling the expert configuration of many parameter values for more advanced applications. Free release of the MATLAB source code will encourage the development of custom variations or integration with other software packages. At the same time, we also provide a runtime version of GridMet, thus avoiding the requirement to purchase any separate licenses. We have optimized GridMet for batch scripting workflows to aid investigations of multi-trial data on multiple grid cells. Full article
(This article belongs to the Special Issue Advancements in Signal Processing and Machine Learning for Healthcare)
Show Figures

Figure 1

20 pages, 2856 KB  
Article
Design of High-Performance Electrospun Membranes for Protective Clothing Applications
by Anca Filimon, Diana Serbezeanu, Daniela Rusu, Alexandra Bargan and Lavinia Lupa
Membranes 2024, 14(11), 244; https://doi.org/10.3390/membranes14110244 - 20 Nov 2024
Cited by 3 | Viewed by 2350
Abstract
The integration of nanomaterials into the textile industry has significantly advanced the development of high-performance fabrics, offering enhanced properties such as UV blocking, fire resistance, breathability, hydrophobicity, antimicrobial activity, and dust rejection. In this context, our research explores the development and characterization of [...] Read more.
The integration of nanomaterials into the textile industry has significantly advanced the development of high-performance fabrics, offering enhanced properties such as UV blocking, fire resistance, breathability, hydrophobicity, antimicrobial activity, and dust rejection. In this context, our research explores the development and characterization of electrospun membranes composed of polyether ether ketone (PEEK) and various polyimides (PIs (1–6)), focusing on their application in protective clothing. The combination of phosphorus-containing polyimides and PEEK, along with the electrospinning process, enhances the distinctive properties of both PEEK and polyimides, leading to composite membranes that stand out according to key parameters essential for maintaining physiological balance. The structural and morphological characteristics of these membranes have been evaluated using Fourier transform infrared spectroscopy (FTIR) to identify the functional groups and scanning electron microscopy (SEM) to examine their morphology. These analyses provide critical insights into these materials’ properties, which influence key performance parameters such as moisture management, breathability, and barrier functions. The membranes’ breathability and impermeability were assessed through the water vapor transmission rate (WVTR), contact angle measurements, water and air permeability, and flame resistance tests. The results obtained indicate that PEEK/polyimide composite membranes meet the complex requirements of modern protective textiles, ensuring both safety and comfort for users through their optimized structural properties and enhanced functional capabilities. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

25 pages, 2927 KB  
Article
Optimization of an IPMSM for Constant-Angle Square-Wave Control of a BLDC Drive
by Mitja Garmut, Simon Steentjes and Martin Petrun
Mathematics 2024, 12(10), 1418; https://doi.org/10.3390/math12101418 - 7 May 2024
Cited by 4 | Viewed by 1747
Abstract
Interior permanent magnet synchronous machines (IPMSMs) driven with a square-wave control (i.e., six-step, block, or 120° control), known commonly as brushless direct current (BLDC) drives, are used widely due to their high power density and control simplicity. The advance firing (AF) angle is [...] Read more.
Interior permanent magnet synchronous machines (IPMSMs) driven with a square-wave control (i.e., six-step, block, or 120° control), known commonly as brushless direct current (BLDC) drives, are used widely due to their high power density and control simplicity. The advance firing (AF) angle is employed to achieve improved operation characteristics of the drive. The AF angle is, in general, applied to compensate for the commutation effects. In the case of an IPMSM, the AF angle can also be adjusted to exploit reluctance torque. In this paper, a detailed study was performed to understand its effect on the drive’s performance in regard to reluctance torque. Furthermore, a multi-objective optimization of the machine’s cross-section using neural network models was conducted to enhance performance at a constant AF angle. The reference and improved machine designs were evaluated in a system-level simulation, where the impact was considered of the commutation of currents. A significant improvement in the machine performance was achieved after optimizing the geometry and implementing a fixed AF angle of 10°. Full article
Show Figures

Figure 1

17 pages, 5801 KB  
Article
Construction of Multifunctional Hierarchical Biofilms for Highly Sensitive and Weather-Resistant Fire Warning
by Tongtong Ma, Qianqian Zhou, Chaozheng Liu, Liping Li, Chuigen Guo and Changtong Mei
Polymers 2023, 15(18), 3666; https://doi.org/10.3390/polym15183666 - 6 Sep 2023
Cited by 6 | Viewed by 1908
Abstract
Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocellulose nanofibrils (LCNFs), carbon [...] Read more.
Multifunctional biofilms with early fire-warning capabilities are highly necessary for various indoor and outdoor applications, but a rational design of intelligent fire alarm films with strong weather resistance remains a major challenge. Herein, a multiscale hierarchical biofilm based on lignocellulose nanofibrils (LCNFs), carbon nanotubes (CNTs) and TiO2 was developed through a vacuum-assisted alternate self-assembly and dipping method. Then, an early fire-warning system that changes from an insulating state to a conductive one was designed, relying on the rapid carbonization of LCNFs together with the unique electronic excitation characteristics of TiO2. Typically, the L-CNT-TiO2 film exhibited an ultrasensitive fire-response signal of ~0.30 s and a long-term warning time of ~1238 s when a fire disaster was about to occur, demonstrating a reliable fire-alarm performance and promising flame-resistance ability. More importantly, the L-CNT-TiO2 biofilm also possessed a water contact angle (WCA) of 166 ± 1° and an ultraviolet protection factor (UPF) as high as 2000, resulting in excellent superhydrophobicity, antifouling, self-cleaning as well as incredible anti-ultraviolet (UV) capabilities. This work offers an innovative strategy for developing advanced intelligent films for fire safety and prevention applications, which holds great promise for the field of building materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

14 pages, 2217 KB  
Article
Early Stage Forest Fire Detection from Himawari-8 AHI Images Using a Modified MOD14 Algorithm Combined with Machine Learning
by Naoto Maeda and Hideyuki Tonooka
Sensors 2023, 23(1), 210; https://doi.org/10.3390/s23010210 - 25 Dec 2022
Cited by 15 | Viewed by 4790
Abstract
The early detection and rapid extinguishing of forest fires are effective in reducing their spread. Based on the MODIS Thermal Anomaly (MOD14) algorithm, we propose an early stage fire detection method from low-spatial-resolution but high-temporal-resolution images, observed by the Advanced Himawari Imager (AHI) [...] Read more.
The early detection and rapid extinguishing of forest fires are effective in reducing their spread. Based on the MODIS Thermal Anomaly (MOD14) algorithm, we propose an early stage fire detection method from low-spatial-resolution but high-temporal-resolution images, observed by the Advanced Himawari Imager (AHI) onboard the geostationary meteorological satellite Himawari-8. In order to not miss early stage forest fire pixels with low temperature, we omit the potential fire pixel detection from the MOD14 algorithm and parameterize four contextual conditions included in the MOD14 algorithm as features. The proposed method detects fire pixels from forest areas using a random forest classifier taking these contextual parameters, nine AHI band values, solar zenith angle, and five meteorological values as inputs. To evaluate the proposed method, we trained the random forest classifier using an early stage forest fire data set generated by a time-reversal approach with MOD14 products and time-series AHI images in Australia. The results demonstrate that the proposed method with all parameters can detect fire pixels with about 90% precision and recall, and that the contribution of contextual parameters is particularly significant in the random forest classifier. The proposed method is applicable to other geostationary and polar-orbiting satellite sensors, and it is expected to be used as an effective method for forest fire detection. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 8458 KB  
Article
Effects of Injection Timing and Injection Volume on the Combustion and Emissions of a Two-Stroke Kerosene Direct Injection Engine
by Taixue Bei, Bo Lu, Rui Liu, Junhui Huang and Bing Zhang
Processes 2022, 10(9), 1728; https://doi.org/10.3390/pr10091728 - 31 Aug 2022
Cited by 4 | Viewed by 2601
Abstract
To study the influence of injection time and injection volume on the working process of a two-stroke kerosene direct injection engine, an experimental study was carried out on an improved two-stroke inline three-cylinder gasoline engine, combined with calculations and analysis with GT-POWER and [...] Read more.
To study the influence of injection time and injection volume on the working process of a two-stroke kerosene direct injection engine, an experimental study was carried out on an improved two-stroke inline three-cylinder gasoline engine, combined with calculations and analysis with GT-POWER and AVL FIRE software. The results showed that when the injection end angle increased from 50° to 70° before the top dead center (BTDC), the average pressure and temperature in the cylinder increased rapidly, the peak value of pressure and temperature and the cumulative heat release increased, and the combustion process in the cylinder was more sufficient. The fuel injection volume was set to 7.5 mg, 8 mg, and 8.5 mg. With increasing fuel injection volume, the average pressure and average temperature first increased and then decreased, the peak value gradually increased, the heat release rate and cumulative heat release increased sharply, the corresponding time gradually advanced, and the peak value gradually increased. With increasing fuel injection volume, CO, NO, and soot gradually increased, while CO2 slightly decreased. Full article
(This article belongs to the Special Issue Combustion and Emission Performance of Internal Combustion Engines)
Show Figures

Figure 1

20 pages, 28376 KB  
Article
Evaluating Orientation Effects on the Fire Reaction Properties of Flax-Polypropylene Composites
by Swagata Dutta, Nam Kyeun Kim, Raj Das and Debes Bhattacharyya
Polymers 2021, 13(16), 2586; https://doi.org/10.3390/polym13162586 - 4 Aug 2021
Cited by 5 | Viewed by 2715
Abstract
In this work, the fire reaction properties of flax-polypropylene (PP) composites were investigated at multiple sample angles both experimentally and numerically under two different heat flux conditions (35 and 50 kW/m2) in the cone calorimeter environment. An innovative testing setup which [...] Read more.
In this work, the fire reaction properties of flax-polypropylene (PP) composites were investigated at multiple sample angles both experimentally and numerically under two different heat flux conditions (35 and 50 kW/m2) in the cone calorimeter environment. An innovative testing setup which can accommodate a wide range of angles between 0° and 90° for the sample angle frame was developed to perform cone calorimeter tests at different sample angles. An advanced numerical predictive model based on the finite volume method was developed using the fire dynamics simulator (FDS) to quantify the dependency of ignition and combustion properties with sample angles. The numerical model was validated against experimental data from the cone calorimeter tests. The experimental and numerical analyses were conducted to quantify the effects of sample orientation on the different fire reaction properties i.e., ignition time, ignition temperature, burn time, heat release rate (HRR), critical heat flux, etc. The numerical method was utilised to analyse the mechanisms controlling the effect of heat convection and radiation blockage on the heating process. The study establishes that the sample orientation (with respect to the heat flux normal) has a significant influence on the fire reaction properties of natural fibre composites. Full article
(This article belongs to the Special Issue Performance and Application of Novel Biocomposites II)
Show Figures

Graphical abstract

13 pages, 12951 KB  
Article
Durable Flame-Resistant and Ultra-Hydrophobic Aramid Fabrics via Plasma-Induced Graft Polymerization
by Eshraga A. A. Siddig, Yu Zhang, Baojing Yang, Tianshu Wang, Jianjun Shi, Ying Guo, Yu Xu and Jing Zhang
Coatings 2020, 10(12), 1257; https://doi.org/10.3390/coatings10121257 - 18 Dec 2020
Cited by 9 | Viewed by 4432
Abstract
A durable flame-resistant and ultra-hydrophobic phosphorus–fluoride coating on aramid fabrics was achieved by plasma-induced graft polymerization. The aramid fabrics were activated and roughed through the low-pressure plasma firstly, which involves the sequential coating of a mixture of phosphorus–fluoride emulsion copolymer. When potentially exposed [...] Read more.
A durable flame-resistant and ultra-hydrophobic phosphorus–fluoride coating on aramid fabrics was achieved by plasma-induced graft polymerization. The aramid fabrics were activated and roughed through the low-pressure plasma firstly, which involves the sequential coating of a mixture of phosphorus–fluoride emulsion copolymer. When potentially exposed to flame or water, such a surface produces a dual effect in which it is intumescent and waterproof, successfully giving the coated fabrics flame-resistant ultra-hydrophobic bifunctional properties. Thus, adhesive coatings provide a convenient way to resolve the issue of washing durability of the coatings. The as-prepared fabrics last for 10 repeatable washing cycles without losing their flame resistance and superhydrophobicity, suggesting future applications as advanced multifunctional textiles. Compared to an untreated coating, its char length was less than 1 cm with no measurable after-flame or after-glow times, and its static water contact angle remained stable above 170°. Meanwhile, the control sample was unable to extinguish the fire with a damage length of 10.6 cm and a water contact angle of 100°. All the results indicate that plasma-reactive polar groups interact between phosphorus and fluorine elements, leading to an increased relative atom ratio P and F through Energy-Dispersive Spectrometer (EDS) spectra and XPS analysis, which inhibits the flammability and wettability. Full article
(This article belongs to the Special Issue Science and Technology of Fabric Coatings)
Show Figures

Figure 1

13 pages, 6195 KB  
Article
Comparison of an Off-Line Optimized Firing Angle Modulation and Torque Sharing Functions for Switched Reluctance Motor Control
by Peter Bober and Želmíra Ferková
Energies 2020, 13(10), 2435; https://doi.org/10.3390/en13102435 - 12 May 2020
Cited by 16 | Viewed by 3605
Abstract
In this paper, a comparison of the simple firing angle modulation method (FAM) and the more advanced torque sharing function (TSF)-based control of switched reluctance motor (SRM) is presented. The off-line procedure to tailor and optimize the parameters of chosen methods for off-the-shelf [...] Read more.
In this paper, a comparison of the simple firing angle modulation method (FAM) and the more advanced torque sharing function (TSF)-based control of switched reluctance motor (SRM) is presented. The off-line procedure to tailor and optimize the parameters of chosen methods for off-the-shelf SRM is explained. Objective functions for optimization are motor efficiency, torque ripple, and integral square error. The off-line optimization uses a finite element method (FEM) model of the SRM. The model was verified by measurement on the SRM. Simulation results showed that FAM has comparable efficiency to TSF, but has a much higher value of torque ripple. The presented off-line procedure can be used for single or multi-objective optimization. Full article
(This article belongs to the Special Issue Advances in Rotating Electric Machines)
Show Figures

Graphical abstract

15 pages, 4524 KB  
Article
Electrical Treeing in Power Cable Insulation under Harmonics Superimposed on Unfiltered HVDC Voltages
by Mehrtash Azizian Fard, Mohamed Emad Farrag, Alistair Reid and Faris Al-Naemi
Energies 2019, 12(16), 3113; https://doi.org/10.3390/en12163113 - 14 Aug 2019
Cited by 21 | Viewed by 5576
Abstract
Insulation degradation is an irreversible phenomenon that can potentially lead to failure of power cable systems. This paper describes the results of an experimental investigation into the influence of direct current (DC) superimposed with harmonic voltages on both partial discharge (PD) activity and [...] Read more.
Insulation degradation is an irreversible phenomenon that can potentially lead to failure of power cable systems. This paper describes the results of an experimental investigation into the influence of direct current (DC) superimposed with harmonic voltages on both partial discharge (PD) activity and electrical tree (ET) phenomena within polymeric insulations. The test samples were prepared from a high voltage direct current (HVDC) cross linked polyethylene (XLPE) power cable. A double electrode arrangement was employed to produce divergent electric fields within the test samples that could possibly result in formation of electrical trees. The developed ETs were observed via an optical method and, at the same time, the emanating PD pulses were measured using conventional techniques. The results show a tenable relation between ETs, PD activities, and the level of harmonic voltages. An increase in harmonic levels has a marked effect on development of electrical trees as the firing angle increases, which also leads to higher activity of partial discharges. This study of the influencing operational parameters of HVDC converters on power cable insulation is predicted to contribute to enhancements in cable design and progressive advancement in condition monitoring and insulation diagnostic techniques that can lead to more effective asset management in HVDC systems. Full article
Show Figures

Figure 1

15 pages, 2307 KB  
Article
Drifting Effects of NOAA Satellites on Long-Term Active Fire Records of Europe
by Helga Weber and Stefan Wunderle
Remote Sens. 2019, 11(4), 467; https://doi.org/10.3390/rs11040467 - 25 Feb 2019
Cited by 11 | Viewed by 4694
Abstract
Explicit knowledge of different error sources in long-term climate records from space is required to understand and mitigate their impacts on resulting time series. Imagery of the heritage Advanced Very High Resolution Radiometer (AVHRR) provides unique potential for climate research dating back to [...] Read more.
Explicit knowledge of different error sources in long-term climate records from space is required to understand and mitigate their impacts on resulting time series. Imagery of the heritage Advanced Very High Resolution Radiometer (AVHRR) provides unique potential for climate research dating back to the 1980s, flying onboard a series of successive National Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational (MetOp) satellites. However, the NOAA satellites are affected by severe orbital drift that results in spurious trends in time series. We identified the impact and extent of the orbital drift in 1 km AVHRR long-term active fire data. This record contains data of European fire activity from 1985–2016 and was analyzed on a regional scale and extended across Europe. Inconsistent sampling of the diurnal active fire cycle due to orbital drift with a maximum delay of ∼5 h over NOAA-14 lifetime revealed a ∼90% decline in the number of observed fires. However, interregional results were less conclusive and other error sources as well as interannual variability were more pronounced. Solar illumination, measured by the sun zenith angle (SZA), related changes in background temperatures were significant for all regions and afternoon satellites with major changes in −0.03 to −0.09 K deg 1 for B T 34 (p 0 . 001). Based on example scenes, we simulated the influence of changing temperatures related to changes in the SZA on the detection of active fires. These simulations showed a profound influence of the active fire detection capabilities dependent on biome and land cover characteristics. The strong decrease in the relative changes in the apparent number of active fires calculated over the satellites lifetime highlights that a correction of the orbital drift effect is essential even over short time periods. Full article
Show Figures

Graphical abstract

Back to TopTop