Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = adriamycin resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2106 KiB  
Article
ERα36 Promotes MDR1-Mediated Adriamycin Resistance via Non-Genomic Signaling in Triple-Negative Breast Cancer
by Muslimbek Mukhammad Ugli Poyonov, Anh Thi Ngoc Bui, Seung-Yeon Lee, Gi-Ho Lee and Hye-Gwang Jeong
Int. J. Mol. Sci. 2025, 26(15), 7200; https://doi.org/10.3390/ijms26157200 - 25 Jul 2025
Viewed by 187
Abstract
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role [...] Read more.
Drug resistance remains a critical barrier to effective treatment in several cancers, particularly triple-negative breast cancer (TNBC). Estrogen receptor α36 (ERα36), a variant of the estrogen receptor in ER-negative breast cancer cells, plays important roles in cancer cell proliferation. We investigated the role of ERα36 in regulating multidrug resistance protein 1 (MDR1) in MDA-MB-231 human breast cancer cells. The activation of ERα36 by BSA-conjugated estradiol (BSA-E2) increased cell viability under Adriamycin exposure, suggesting its involvement in promoting drug resistance. BSA-E2 treatment significantly reduced the intracellular rhodamine-123 levels by activating the MDR1 efflux function, which was linked to increased MDR1 transcription and protein expression. The mechanical ERα36-mediated BSA-E2-induced activation of EGFR and downstream signaling via c-Src led to an activation of the Akt/ERK pathways and transcription factors, NF-κB and CREB. Additionally, ERα36 is involved in activating Wnt/β-catenin pathways to induce MDR1 expression. The silencing of ERα36 inhibited the BSA-E2-induced phosphorylation of Akt and ERK, thereby reducing MDR1 expression via downregulation of NF-κB and CREB as well as Wnt/β-catenin signaling. These findings demonstrated that ERα36 promotes MDR1 expression through multiple non-genomic signaling cascades, including Akt/ERK-NF-κB/CREB and Wnt/β-catenin pathways, and highlight the role of ERα36 as a promising target to enhance chemotherapeutic efficacy in TNBC. Full article
(This article belongs to the Special Issue Drug Resistance Mechanisms in Human Cancer Cells to Anticancer Drugs)
Show Figures

Figure 1

23 pages, 4069 KiB  
Article
Engineered Sustainable Mxene-PVA Hydrogel as an Inspiring Co-Delivery Carrier for Targeting Solid Tumors
by Elham Ghazizadeh, Mahya Sadeghi, Hans-Peter Deigner and Ali Neshastehriz
Pharmaceutics 2025, 17(7), 823; https://doi.org/10.3390/pharmaceutics17070823 - 25 Jun 2025
Viewed by 537
Abstract
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, [...] Read more.
Background: Solid tumors have long presented a significant challenge in the field of oncology due to their ability to develop resistance to multiple drugs, known as multidrug resistance (MDR). This phenomenon often leads to treatment failure and poor patient outcomes. In recent years, researchers have been exploring innovative approaches to combat MDR, including the use of hydrogels for localized drug delivery. Methods: Through the biological crosslinking of an MB-smDNA-MB agent to form a pH sensitive hydrogel matrix, we introduce the injection coating of a novel PVA-MB-smDNA-MB-Mxene (PMSDMM) carrier for Adriamycin (a potent chemotherapy drug) and miR-375 (as tumor-suppressive microRNA) delivery. Results: We aimed to enhance the effectiveness of drug delivery to solid tumors while minimizing systemic toxicity via the pH-sensitive characteristics of methylene blue at the end of smDNA as a dsDNA biological crosslinking agent, i.e., anti-miR-375 PMSDMM ADR. Our hydrogel was shown to improve the release of the drug in the acid tumor environment. In the first 24 h, the cumulative release rate was higher at pH = 5.5 than at pH = 7.4. Conclusions: We show that this DNA bio-inspired PMSDMM hydrogel has potential in hydrogel injection applications for tumor suppression and tissue regeneration after the surgical resection of tumors. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 3920 KiB  
Article
Ferroptosis Inducers Erastin and RSL3 Enhance Adriamycin and Topotecan Sensitivity in ABCB1/ABCG2-Expressing Tumor Cells
by Lalith Perera, Shalyn M. Brown, Brian B. Silver, Erik J. Tokar and Birandra K. Sinha
Int. J. Mol. Sci. 2025, 26(2), 635; https://doi.org/10.3390/ijms26020635 - 14 Jan 2025
Cited by 1 | Viewed by 1898
Abstract
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the [...] Read more.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters—such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins—play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line. Here, we examined the effects of both Erastin and RSL3 (Ras-Selected Ligand 3) on reversing Adriamycin resistance in these cell lines. Our results show that Erastin significantly enhanced Adriamycin uptake in NCI/ADR-RES cells without affecting sensitive cells. Furthermore, we observed that Erastin enhanced Adriamycin cytotoxicity in a time-dependent manner. The selective iNOS inhibitor, 1400W, reduced both uptake and cytotoxicity of Adriamycin in P-gp-expressing NCI/ADR-RES cells only. These findings were also confirmed in a BCRP-expressing human breast cancer cell line (MCF-7/MXR), which was selected for resistance to Mitoxantrone. Both Erastin and RSL3 were found to be cytotoxic to MCF-7/MXR cells. Erastin significantly enhanced the uptake of Hoechst dye, a well-characterized BCRP substrate, sensitizing MCF-7/MXR cells to Topotecan. The effect of Erastin was inhibited by 1400W, indicating that iNOS is involved in Erastin-mediated enhancement of Topotecan cytotoxicity. RSL3 also significantly increased Topotecan cytotoxicity. Our findings—demonstrating increased cytotoxicity of Adriamycin and Topotecan in P-gp- and BCRP-expressing cells—suggest that ferroptosis inducers may be highly valuable in combination with other chemotherapeutics to manage patients’ cancer burden in the clinical setting. Full article
Show Figures

Figure 1

20 pages, 5989 KiB  
Article
Drug Target Investigation of N-p-Coumaroyl-N’-Caffeoylputrescine, a Naturally-Occurring Alkaloid Derived from Saxifraga tangutica
by Chuang Liu, Jun Dang and Minchen Wu
Antioxidants 2025, 14(1), 12; https://doi.org/10.3390/antiox14010012 - 25 Dec 2024
Cited by 1 | Viewed by 948
Abstract
The exploration of drug targets has always been a priority in new drug research, and this work is even more essential for natural active compounds. Saxifraga tangutica is a traditional Tibetan medicine with excellent antioxidant properties. In this study, an alkaloid, N- [...] Read more.
The exploration of drug targets has always been a priority in new drug research, and this work is even more essential for natural active compounds. Saxifraga tangutica is a traditional Tibetan medicine with excellent antioxidant properties. In this study, an alkaloid, N-p-coumaroyl-N’-caffeoylputrescine (PCC), was first isolated from the plant, Saxifraga tangutica, with a DPPH scavenging rate of 0.936 μg/mL. To further identify its target, the drug affinity responsive target stability technique and multiple public databases were integrated to retrieve a total of 317 common targets from comprehensive screening. A further bioinformatics analysis not only identified 13 hub targets but also indicated PCC as having biological activities against cancer and affecting metabolic diseases. Integrating reverse virtual docking, molecular dynamics simulations, and cellular thermal shift assays ultimately focused on HSP90AA1 as the target of PCC. An in vitro study on liver (HepG2) cells and breast (MCF-7) cancer cells revealed that PCC modulates HSP90AA1, subsequently affecting Mut-p53 expression, triggering a cascade effect that reduced adriamycin-induced drug resistance in cells. Furthermore, a prediction of the absorption, distribution, metabolism, excretion, and toxicity was also applied to evaluate the drug-like properties of PCC. Overall, the integrated strategy used in this study successfully identified the target of PCC, providing a valuable paradigm for future research on the action targets of natural products. Full article
Show Figures

Figure 1

22 pages, 8084 KiB  
Article
Optimization of Extraction of Luteolin from Schisandra chinensis by Ionic Liquid–Enzyme Complex System and Antioxidant Study Analysis
by Jingwei Hao, Nan Dong, Yifan Sun, Xiaoxia Lu, Yingying Pei, Yi Zhou, Xiangkun Zhou and Heming Liu
Separations 2024, 11(12), 354; https://doi.org/10.3390/separations11120354 - 19 Dec 2024
Cited by 1 | Viewed by 1190
Abstract
The luteolin in Schisandra chinensis [Schisandraceae Schisandra (Turcz.) Baill.] were extracted by ultrasonic extraction assisted by an ionic liquid–enzyme composite system, and the content of luteolins was determined using high-performance liquid chromatography (HPLC). This process was initially conducted through a one-factor experiment and [...] Read more.
The luteolin in Schisandra chinensis [Schisandraceae Schisandra (Turcz.) Baill.] were extracted by ultrasonic extraction assisted by an ionic liquid–enzyme composite system, and the content of luteolins was determined using high-performance liquid chromatography (HPLC). This process was initially conducted through a one-factor experiment and a Box–Behnken combinatorial design of response surface method. The extraction process was optimized, and the results demonstrated that the optimal extraction conditions were 13.31% enzyme addition, 0.53 mol/L ionic liquid concentration, 173.47 min ultrasonic shaking, and 0.2266 mg/g, which was 4.88 times higher than that of the traditional reflux extraction. Secondly, the antioxidant function of luteolins was studied based on network pharmacology. For the study of the antioxidant mechanism of luteolin, the herb group identification database, SwissTargetPrediction on luteolins target prediction, and GeneCards database to achieve the antioxidant target were used. For the analysis of the intersection of the target protein interactions, GO bioanalysis and KEGG signaling pathway enrichment analysis were used. There were 57 overlapping targets of luteolin and antioxidants, including AKT1, MMP9, ESR1, EGFR, and SRC. GO function and KEGG pathway enrichment analysis showed that luteolin antioxidants were related to zoerythromycin metabolic process, adriamycin metabolic process, negative regulation of apoptotic process, endocrine resistance and oxidoreductase. The key targets in the pathways, such as luteolin AKT1 and MMP9, exert antioxidant effects. The antioxidant activity of luteolins was investigated by determining the scavenging ability of luteolins against two types of free radicals: 2,2-bipyridine-bis(3-ethyl-benzothiazole-6-sulfonic acid) diammonium salt (ABTS+) free radicals and 1,1-diphenyl-2-trinitrophenylhydrazine free radicals (DPPH-). The results of the antioxidant test demonstrated that the ABTS radical scavenging rate was 87.26%, and the DPPH radical scavenging rate was 93.85% when the quality concentration of Schisandra luteolins was 0.1 mg/g, indicating the potential of this natural antioxidant. This method of extracting Schisandra chinensis luteolins is highly productive, environmentally friendly, and practical, and it facilitates the development and utilization of industrial Schisandra chinensis. Full article
Show Figures

Figure 1

17 pages, 7289 KiB  
Article
Nano-Reactors Based on Ovotransferrin Organic Skeleton through a Ferroptosis-like Strategy Efficiently Enhance Antibacterial Activity
by Zihan Zhuo, Chunfang Yin, Zhenqing Zhang, Yumeng Han, Haoye Teng, Qi Xu and Changming Li
J. Funct. Biomater. 2024, 15(8), 205; https://doi.org/10.3390/jfb15080205 - 24 Jul 2024
Cited by 1 | Viewed by 1473
Abstract
The issue of bacterial resistance is an escalating problem due to the misuse of antibiotics worldwide. This study introduces a new antibacterial mechanism, the ferroptosis-like death (FLD) of bacteria, and an approach to creating green antibacterial nano-reactors. This innovative method leverages natural iron-containing [...] Read more.
The issue of bacterial resistance is an escalating problem due to the misuse of antibiotics worldwide. This study introduces a new antibacterial mechanism, the ferroptosis-like death (FLD) of bacteria, and an approach to creating green antibacterial nano-reactors. This innovative method leverages natural iron-containing ovotransferrin (OVT) assembled into an organic skeleton to encapsulate low-concentration adriamycin (ADM) for synthesizing eco-friendly nano-reactors. FLD utilizes the Fenton reaction of reactive oxygen species and ferrous ions to continuously produce ·OH, which can attack the bacterial cell membrane and destroy the cell structure to achieve bacteriostasis. The OVT@ADM nano-reactors are nearly spherical, with an average diameter of 247.23 nm and uniform particle sizing. Vitro simulations showed that Fe3+ in OVT@ADM was reduced to Fe2+ by glutathione in the bacterial periplasmic space, which made the structure of OVT loose, leading to a sustained slow release of ADM from OVT@ADM. The H2O2 continuously produced by ADM oxidized Fe2+ through the Fenton reaction to produce ·OH and Fe3+. The results of the antibacterial assay showed that OVT@ADM had a satisfactory antibacterial effect against S. aureus, and the inhibition rate was as high as 99.3%. The cytotoxicity results showed that the mitigation strategy significantly reduced the cytotoxicity caused by ADM. Based on the FLD mechanism, OVT@ADM nano-reactors were evaluated and applied to bacteriostasis. Therefore, the novel antibacterial mechanism and OVT@ADM by the green synthesis method have good application prospects. Full article
(This article belongs to the Special Issue State of the Art in Biomaterials for Drug Delivery)
Show Figures

Graphical abstract

16 pages, 9862 KiB  
Article
The Protective Role of KANK1 in Podocyte Injury
by Keiko Oda, Kan Katayama, Liqing Zang, Masaaki Toda, Akiko Tanoue, Ryosuke Saiki, Taro Yasuma, Corina N. D’Alessandro-Gabazza, Yasuhito Shimada, Mutsuki Mori, Yasuo Suzuki, Tomohiro Murata, Toshinori Hirai, Karl Tryggvason, Esteban C. Gabazza and Kaoru Dohi
Int. J. Mol. Sci. 2024, 25(11), 5808; https://doi.org/10.3390/ijms25115808 - 27 May 2024
Cited by 1 | Viewed by 1976
Abstract
Approximately 30% of steroid-resistant nephrotic syndromes are attributed to monogenic disorders that involve 27 genes. Mutations in KANK family members have also been linked to nephrotic syndrome; however, the precise mechanism remains elusive. To investigate this, podocyte-specific Kank1 knockout mice were generated to [...] Read more.
Approximately 30% of steroid-resistant nephrotic syndromes are attributed to monogenic disorders that involve 27 genes. Mutations in KANK family members have also been linked to nephrotic syndrome; however, the precise mechanism remains elusive. To investigate this, podocyte-specific Kank1 knockout mice were generated to examine phenotypic changes. In the initial assessment under normal conditions, Kank1 knockout mice showed no significant differences in the urinary albumin-creatinine ratio, blood urea nitrogen, serum creatinine levels, or histological features compared to controls. However, following kidney injury with adriamycin, podocyte-specific Kank1 knockout mice exhibited a significantly higher albumin-creatinine ratio and a significantly greater sclerotic index than control mice. Electron microscopy revealed more extensive foot process effacement in the knockout mice than in control mice. In addition, KANK1-deficient human podocytes showed increased detachment and apoptosis following adriamycin exposure. These findings suggest that KANK1 may play a protective role in mitigating podocyte damage under pathological conditions. Full article
(This article belongs to the Special Issue New Insights into Kidney Diseases)
Show Figures

Figure 1

12 pages, 3156 KiB  
Article
Development and Characterization of a Novel FVB-PrkdcR2140C Mouse Model for Adriamycin-Induced Nephropathy
by Masaki Watanabe, Yuki Ishii, Kazuki Hashimoto, Hayato R. Takimoto and Nobuya Sasaki
Genes 2024, 15(4), 456; https://doi.org/10.3390/genes15040456 - 4 Apr 2024
Cited by 2 | Viewed by 1987
Abstract
The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of [...] Read more.
The Adriamycin (ADR) nephropathy model, which induces podocyte injury, is limited to certain mouse strains due to genetic susceptibilities, such as the PrkdcR2140C polymorphism. The FVB/N strain without the R2140C mutation resists ADR nephropathy. Meanwhile, a detailed analysis of the progression of ADR nephropathy in the FVB/N strain has yet to be conducted. Our research aimed to create a novel mouse model, the FVB-PrkdcR2140C, by introducing PrkdcR2140C into the FVB/NJcl (FVB) strain. Our study showed that FVB-PrkdcR2140C mice developed severe renal damage when exposed to ADR, as evidenced by significant albuminuria and tubular injury, exceeding the levels observed in C57BL/6J (B6)-PrkdcR2140C. This indicates that the FVB/N genetic background, in combination with the R2140C mutation, strongly predisposes mice to ADR nephropathy, highlighting the influence of genetic background on disease susceptibility. Using RNA sequencing and subsequent analysis, we identified several genes whose expression is altered in response to ADR nephropathy. In particular, Mmp7, Mmp10, and Mmp12 were highlighted for their differential expression between strains and their potential role in influencing the severity of kidney damage. Further genetic analysis should lead to identifying ADR nephropathy modifier gene(s), aiding in early diagnosis and providing novel approaches to kidney disease treatment and prevention. Full article
(This article belongs to the Topic Animal Models of Human Disease 2.0)
Show Figures

Figure 1

19 pages, 4275 KiB  
Article
Long-Term Treatment with Gadopentetic Acid or Gadodiamide Increases TRPC5 Expression and Decreases Adriamycin Nuclear Accumulation in Breast Cancer Cells
by Weiheng Zhang, Mengyuan Wang, Weizhen Lv, Fletcher A. White, Xingjuan Chen and Alexander G. Obukhov
Cells 2023, 12(9), 1304; https://doi.org/10.3390/cells12091304 - 3 May 2023
Cited by 2 | Viewed by 2580
Abstract
Gadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation [...] Read more.
Gadopentetic acid and gadodiamide are paramagnetic gadolinium-based contrast agents (GBCAs) that are routinely used for dynamic contrast-enhanced magnetic resonance imaging (MRI) to monitor disease progression in cancer patients. However, growing evidence indicates that repeated administration of GBCAs may lead to gadolinium (III) cation accumulation in the cortical bone tissue, skin, basal ganglia, and cerebellum, potentially leading to a subsequent slow long-term discharge of Gd3+. Gd3+ is a known activator of the TRPC5 channel that is implicated in breast cancer’s resistance to chemotherapy. Herein, we found that gadopentetic acid (Gd-DTPA, 1 mM) potentiated the inward and outward currents through TRPC5 channels, which were exogenously expressed in HEK293 cells. Gd-DTPA (1 mM) also activated the Gd3+-sensitive R593A mutant of TRPC5, which exhibits a reduced sensitivity to GPCR-Gq/11-PLC dependent gating. Conversely, Gd-DTPA had no effect on TRPC5-E543Q, a Gd3+ insensitive TRPC5 mutant. Long-term treatment (28 days) of human breast cancer cells (MCF-7 and SK-BR-3) and adriamycin-resistant MCF-7 cells (MCF-7/ADM) with Gd-DTPA (1 mM) or gadodiamide (GDD, 1 mM) did not affect the IC50 values of ADM. However, treatment with Gd-DTPA or GDD significantly increased TRPC5 expression and decreased the accumulation of ADM in the nuclei of MCF-7 and SK-BR-3 cells, promoting the survival of these two breast cancer cells in the presence of ADM. The antagonist of TRPC5, AC1903 (1 μM), increased ADM nuclear accumulation induced by Gd-DTPA-treatment. These data indicate that prolonged GBCA treatment may lead to increased breast cancer cell survival owing to the upregulation of TRPC5 expression and the increased ADM resistance. We propose that while focusing on providing medical care of the best personalized quality in the clinic, excessive administration of GBCAs should be avoided in patients with metastatic breast cancer to reduce the risk of promoting breast cancer cell drug resistance. Full article
(This article belongs to the Special Issue Advances in Cellular and Molecular Research in Breast Cancer)
Show Figures

Figure 1

23 pages, 11337 KiB  
Article
GelMA, Click-Chemistry Gelatin and Bioprinted Polyethylene Glycol-Based Hydrogels as 3D Ex Vivo Drug Testing Platforms for Patient-Derived Breast Cancer Organoids
by Nathalie Bock, Farzaneh Forouz, Luke Hipwood, Julien Clegg, Penny Jeffery, Madeline Gough, Tirsa van Wyngaard, Christopher Pyke, Mark N. Adams, Laura J. Bray, Laura Croft, Erik W. Thompson, Thomas Kryza and Christoph Meinert
Pharmaceutics 2023, 15(1), 261; https://doi.org/10.3390/pharmaceutics15010261 - 12 Jan 2023
Cited by 32 | Viewed by 7735
Abstract
3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. [...] Read more.
3D organoid model technologies have led to the development of innovative tools for cancer precision medicine. Yet, the gold standard culture system (Matrigel®) lacks the ability for extensive biophysical manipulation needed to model various cancer microenvironments and has inherent batch-to-batch variability. Tunable hydrogel matrices provide enhanced capability for drug testing in breast cancer (BCa), by better mimicking key physicochemical characteristics of this disease’s extracellular matrix. Here, we encapsulated patient-derived breast cancer cells in bioprinted polyethylene glycol-derived hydrogels (PEG), functionalized with adhesion peptides (RGD, GFOGER and DYIGSR) and gelatin-derived hydrogels (gelatin methacryloyl; GelMA and thiolated-gelatin crosslinked with PEG-4MAL; GelSH). Within ranges of BCa stiffnesses (1–6 kPa), GelMA, GelSH and PEG-based hydrogels successfully supported the growth and organoid formation of HR+,−/HER2+,− primary cancer cells for at least 2–3 weeks, with superior organoid formation within the GelSH biomaterial (up to 268% growth after 15 days). BCa organoids responded to doxorubicin, EP31670 and paclitaxel treatments with increased IC50 concentrations on organoids compared to 2D cultures, and highest IC50 for organoids in GelSH. Cell viability after doxorubicin treatment (1 µM) remained >2-fold higher in the 3D gels compared to 2D and doxorubicin/paclitaxel (both 5 µM) were ~2.75–3-fold less potent in GelSH compared to PEG hydrogels. The data demonstrate the potential of hydrogel matrices as easy-to-use and effective preclinical tools for therapy assessment in patient-derived breast cancer organoids. Full article
(This article belongs to the Special Issue Hydrogels in Pharmaceutical and Biomedical Applications)
Show Figures

Figure 1

16 pages, 3948 KiB  
Article
Gene Expression Profiling Elucidates Cellular Responses to NCX4040 in Human Ovarian Tumor Cells: Implications in the Mechanisms of Action of NCX4040
by Birandra K. Sinha, Erik J. Tokar, Jianying Li and Pierre R. Bushel
Cancers 2023, 15(1), 285; https://doi.org/10.3390/cancers15010285 - 31 Dec 2022
Cited by 11 | Viewed by 1869
Abstract
The nitric oxide donor, NCX4040 is a non-steroidal anti-inflammatory-NO donor and has been shown to be extremely cytotoxic to a number of human tumors, including ovarian tumors cells. We have found that NCX4040 is cytotoxic against both OVCAR-8 and its adriamycin-selected OVCAR-8 variant [...] Read more.
The nitric oxide donor, NCX4040 is a non-steroidal anti-inflammatory-NO donor and has been shown to be extremely cytotoxic to a number of human tumors, including ovarian tumors cells. We have found that NCX4040 is cytotoxic against both OVCAR-8 and its adriamycin-selected OVCAR-8 variant (NCI/ADR-RES) tumor cell lines. While the mechanism of action of NCX4040 is not entirely clear, we as well as others have shown that NCX4040 generates reactive oxygen species (ROS) and induces DNA damage in tumor cells. Recently, we have reported that NCX4040 treatment resulted in a significant depletion of cellular glutathione, and formation of both reactive oxygen and nitrogen species (ROS/RNS), resulting in oxidative stress in these tumor cells. Furthermore, our results indicated that more ROS/RNS were generated in OVCAR-8 cells than in NCI/ADR-RES cells due to increased activities of superoxide dismutase (SOD), glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. Further studies suggested that NCX4040-induced cell death may be mediated by peroxynitrite formed from NCX4040 in cells. In this study we used microarray analysis following NCX4040 treatment of both OVCAR-8 and its ADR-resistant variant to identify various molecular pathways involved in NCX4040-induced cell death. Here, we report that NCX4040 treatment resulted in the differential induction of oxidative stress genes, inflammatory response genes (TNF, IL-1, IL-6 and COX2), DNA damage response and MAP kinase response genes. A mechanism of tumor cell death is proposed based on our findings where oxidative stress is induced by NCX4040 from simultaneous induction of NOX4, TNF-α and CHAC1 in tumor cell death. Full article
Show Figures

Figure 1

20 pages, 2263 KiB  
Article
Label-Free Quantitative Proteomics Analysis of Adriamycin Selected Multidrug Resistant Human Lung Cancer Cells
by Esen Efeoglu, Michael Henry, Martin Clynes and Paula Meleady
Biomolecules 2022, 12(10), 1401; https://doi.org/10.3390/biom12101401 - 1 Oct 2022
Cited by 7 | Viewed by 3387
Abstract
The development of drug resistance in lung cancer is a major clinical challenge, leading to a 5-year survival rate of only 18%. Therefore, unravelling the mechanisms of drug resistance and developing novel therapeutic strategies is of crucial importance. This study systematically explores the [...] Read more.
The development of drug resistance in lung cancer is a major clinical challenge, leading to a 5-year survival rate of only 18%. Therefore, unravelling the mechanisms of drug resistance and developing novel therapeutic strategies is of crucial importance. This study systematically explores the novel biomarkers of drug resistance using a lung cancer model (DLKP) with a series of drug-resistant variants. In-depth label-free quantitative mass spectrometry-based proteomics and gene ontology analysis shows that parental DLKP cells significantly differ from drug-resistant variants, and the cellular proteome changes even among the drug-resistant subpopulations. Overall, ABC transporter proteins and lipid metabolism were determined to play a significant role in the formation of drug resistance in DKLP cells. A series of membrane-related proteins such as HMOX1, TMB1, EPHX2 and NEU1 were identified to be correlated with levels of drug resistance in the DLKP subpopulations. The study also showed enrichment in biological processes and molecular functions such as drug metabolism, cellular response to the drug and drug binding. In gene ontology analysis, 18 proteins were determined to be positively or negatively correlated with resistance levels. Overall, 34 proteins which potentially have a therapeutic and diagnostic value were identified. Full article
Show Figures

Figure 1

15 pages, 2296 KiB  
Article
Ceramide Metabolism Regulated by Sphingomyelin Synthase 2 Is Associated with Acquisition of Chemoresistance via Exosomes in Human Leukemia Cells
by Makoto Taniguchi, Shingo Nagaya, Kohei Yuyama, Ai Kotani, Yasuyuki Igarashi and Toshiro Okazaki
Int. J. Mol. Sci. 2022, 23(18), 10648; https://doi.org/10.3390/ijms231810648 - 13 Sep 2022
Cited by 18 | Viewed by 2769
Abstract
Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide metabolism and exosome-mediated cancer [...] Read more.
Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide metabolism and exosome-mediated cancer malignancy is unclear. In this study, we elucidated the role of ceramide metabolism via the SM cycle in exosomes and drug resistance in human leukemia HL-60 and adriamycin-resistant HL-60/ADR cells. HL-60/ADR cells showed significantly increased exosome production and release compared with parental chemosensitive HL-60 cells. In HL-60/ADR cells, increased SM synthase (SMS) activity reduced ceramide levels, although released exosomes exhibited a high ceramide ratio in both HL-60- and HL-60/ADR-derived exosomes. Overexpression of SMS2 but not SMS1 suppressed intracellular ceramide levels and accelerated exosome production and release in HL-60 cells. Notably, HL-60/ADR exosomes conferred cell proliferation and doxorubicin resistance properties to HL-60 cells. Finally, microRNA analysis in HL-60 and HL-60/ADR cells and exosomes showed that miR-484 elevation in HL-60/ADR cells and exosomes was associated with exosome-mediated cell proliferation. This suggests that intracellular ceramide metabolism by SMS2 regulates exosome production and release, leading to acquisition of drug resistance and enhanced cell proliferation in leukemia cells. Full article
(This article belongs to the Special Issue Advances in Ceramide Properties in Biological Processes)
Show Figures

Graphical abstract

18 pages, 5054 KiB  
Article
Molecular Mechanisms of Cytotoxicity of NCX4040, the Non-Steroidal Anti-Inflammatory NO-Donor, in Human Ovarian Cancer Cells
by Birandra K. Sinha, Erik J. Tokar and Carl D. Bortner
Int. J. Mol. Sci. 2022, 23(15), 8611; https://doi.org/10.3390/ijms23158611 - 3 Aug 2022
Cited by 7 | Viewed by 2087
Abstract
NCX4040, the non-steroidal anti-inflammatory-NO donor, is cytotoxic to several human tumors, including ovarian tumor cells. We have found that NCX4040 is also cytotoxic against both OVCAR-8 and its adriamycin resistant (NCI/ADR-RES) tumor cell lines. Here, we have examined mechanism(s) for the cytotoxicity of [...] Read more.
NCX4040, the non-steroidal anti-inflammatory-NO donor, is cytotoxic to several human tumors, including ovarian tumor cells. We have found that NCX4040 is also cytotoxic against both OVCAR-8 and its adriamycin resistant (NCI/ADR-RES) tumor cell lines. Here, we have examined mechanism(s) for the cytotoxicity of NCX4040 in OVCAR-8 and NCI/ADR-RES cell lines. We found that NCX4040 induced significant apoptosis in both cell lines. Furthermore, NCX4040 treatment caused significant depletion of cellular glutathione, causing oxidative stress due to the formation of reactive oxygen/nitrogen species (ROS/RNS). Significantly more ROS/RNS were detected in OVCAR-8 cells than in NCI/ADR-RES cells which may have resulted from increased activities of SOD, glutathione peroxidase and transferases expressed in NCI/ADR-RES cells. NCX4040 treatment resulted in the formation of double-strand DNA breaks in both cells; however, more of these DNA breaks were detected in OVCAR-8 cells. RT-PCR studies indicated that NCX4040-induced DNA damage was not repaired as efficiently in NCI/ADR-RES cells as in OVCAR-8 cells which may lead to a differential cell death. Pretreatment of OVCAR-8 cells with N-acetylcysteine (NAC) significantly decreased cytotoxicity of NCX4040 in OVCAR-8 cells; however, NAC had no effects on NCX4040 cytotoxicity in NCI/ADR-RES cells. In contrast, FeTPPS, a peroxynitrite scavenger, completely blocked NCX4040-induced cell death in both cells, suggesting that NCX4040-induced cell death could be mediated by peroxynitrite formed from NCX4040 following cellular metabolism. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

22 pages, 8435 KiB  
Article
HDAC2- and EZH2-Mediated Histone Modifications Induce PDK1 Expression through miR-148a Downregulation in Breast Cancer Progression and Adriamycin Resistance
by Yunxia Xie, Zhumei Shi, Yingchen Qian, Chengfei Jiang, Wenjing Liu, Bingjie Liu and Binghua Jiang
Cancers 2022, 14(15), 3600; https://doi.org/10.3390/cancers14153600 - 23 Jul 2022
Cited by 12 | Viewed by 3230
Abstract
Background: Breast cancer has one of highest morbidity and mortality rates for women. Abnormalities regarding epigenetics modification and pyruvate dehydrogenase kinase 1 (PDK1)-induced unusual metabolism contribute to breast cancer progression and chemotherapy resistance. However, the role and mechanism of epigenetic change in regulating [...] Read more.
Background: Breast cancer has one of highest morbidity and mortality rates for women. Abnormalities regarding epigenetics modification and pyruvate dehydrogenase kinase 1 (PDK1)-induced unusual metabolism contribute to breast cancer progression and chemotherapy resistance. However, the role and mechanism of epigenetic change in regulating PDK1 in breast cancer remains to be elucidated. Methods: Gene set enrichment analysis (GSEA) and Pearson’s correlation analysis were performed to analyze the relationship between histone deacetylase 2 (HDAC2), enhancer of zeste homologue 2 (EZH2), and PDK1 in database and human breast cancer tissues. Dual luciferase reporters were used to test the regulation between PDK1 and miR-148a. HDAC2 and EZH2 were found to regulate miR-148a expression through Western blotting assays, qRT-PCR and co-immunoprecipitation assays. The effects of PDK1 and miR-148a in breast cancer were investigated by immunofluorescence (IF) assay, Transwell assay and flow cytometry assay. The roles of miR-148a/PDK1 in tumor growth were investigated in vivo. Results: We found that PDK1 expression was upregulated by epigenetic alterations mediated by HDAC2 and EZH2. At the post-transcriptional level, PDK1 was a new direct target of miR-148a and was upregulated in breast cancer cells due to miR-148a suppression. PDK1 overexpression partly reversed the biological function of miR-148a—including miR-148a’s ability to increase cell sensitivity to Adriamycin (ADR) treatment—inhibiting cell glycolysis, invasion and epithelial–mesenchymal transition (EMT), and inducing apoptosis and repressing tumor growth. Furthermore, we identified a novel mechanism: DNMT1 directly bound to EZH2 and recruited EZH2 and HDAC2 complexes to the promoter region of miR-148a, leading to miR-148a downregulation. In breast cancer tissues, HDAC2 and EZH2 protein expression levels also were inversely correlated with levels of miR-148a expression. Conclusion: Our study found a new regulatory mechanism in which EZH2 and HDAC2 mediate PDK1 upregulation by silencing miR-148a expression to regulate cancer development and Adriamycin resistance. These new findings suggest that the HDAC2/EZH2/miR-148a/PDK1 axis is a novel mechanism for regulating cancer development and is a potentially promising target for therapeutic options in the future. Full article
Show Figures

Figure 1

Back to TopTop