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Abstract: Ceramide levels controlled by the sphingomyelin (SM) cycle have essential roles in cancer
cell fate through the regulation of cell proliferation, death, metastasis, and drug resistance. Recent
studies suggest that exosomes confer cancer malignancy. However, the relationship between ceramide
metabolism and exosome-mediated cancer malignancy is unclear. In this study, we elucidated the
role of ceramide metabolism via the SM cycle in exosomes and drug resistance in human leukemia
HL-60 and adriamycin-resistant HL-60/ADR cells. HL-60/ADR cells showed significantly increased
exosome production and release compared with parental chemosensitive HL-60 cells. In HL-60/ADR
cells, increased SM synthase (SMS) activity reduced ceramide levels, although released exosomes
exhibited a high ceramide ratio in both HL-60- and HL-60/ADR-derived exosomes. Overexpression of
SMS2 but not SMS1 suppressed intracellular ceramide levels and accelerated exosome production and
release in HL-60 cells. Notably, HL-60/ADR exosomes conferred cell proliferation and doxorubicin
resistance properties to HL-60 cells. Finally, microRNA analysis in HL-60 and HL-60/ADR cells and
exosomes showed that miR-484 elevation in HL-60/ADR cells and exosomes was associated with
exosome-mediated cell proliferation. This suggests that intracellular ceramide metabolism by SMS2
regulates exosome production and release, leading to acquisition of drug resistance and enhanced
cell proliferation in leukemia cells.

Keywords: ceramide; doxorubicin; drug resistance; exosome; leukemia; microRNA; miR-484; sphin-
gomyelin; sphingomyelin synthase

1. Introduction

Ceramides are classified as sphingolipids and are bioactive lipids involved in cell
death, inflammation, and autophagy as well as functioning as major components of the
cellular membrane including the plasma membrane [1]. In particular, increased cellular
ceramides in response to numerous cellular stimuli such as anti-cancer drugs induce various
types of cell death including apoptosis, necroptosis, ferroptosis, and autophagy-regulated
cell death [2]. Ceramides are generated from three pathways: de novo synthesis from
L-serine and palmitoyl-CoA; the salvage pathway through recycling of other sphingolipids
such as glucosylceramide (GC); and the ceramide/sphingomyelin (SM) cycle utilizing
sphingomyelin hydrolysis by sphingomyelinase (SMase) [2,3]. Previously, we found that
malignant drug-resistant leukemia cells maintained low levels of ceramides via enhancing
SM synthesis by SM synthase (SMS) and GC synthesis by GC synthase (GCS) to prevent
ceramide-mediated cell death induced by anti-cancer drugs [4]. In addition, ceramide
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generation from SM hydrolysis by SMase involves the suppression of cancer progression
through induction of cell death in response to anti-cancer treatments such as agents or
irradiation [2].

Exosomes are small double-membrane bound vesicles (30–150 nm in diameter) that
are derived from endosomes and are released from cells [5]. Extracellular exosomes act
as intercellular transporters of cellular cargo such as proteins, mRNA, microRNA, and
lipids [5,6]. Many studies accumulated evidence that exosomes are involved in cancer
malignancy by controlling cancer cell proliferation, cancer metastasis, and drug resistance
via the delivery of their contents [7,8].

Recent research has revealed that exosomes are formed and released through mul-
tiple molecular mechanisms. One well-established pathway uses the endosomal sorting
complex required for the transport (ESCRT)-dependent pathway. In the ESCRT pathway,
four protein complexes (ESCRT-0, -I, II, and -III) are involved in exosome formation in
early endosome and cargo sorting [5,9]. As in other pathways, membrane lipids and their
metabolic enzymes have been reported to be associated with exosome formation and re-
lease [10,11]. In particular, ceramide biogenesis through the ceramide/SM cycle mediates
the curvature and budding of vesicles [12]. In this pathway, suppression of ceramide
generation by inhibition of neutral SMase (nSMase2) results in the decrease in exosome
release. SMase-generated ceramides enhanced exosome release to transfer miRNAs [13,14].
Therefore, evidence is accumulating that the production and release of exosomes regulated
by ceramide generation through the SM cycle is involved in various cellular physiolog-
ical functions. Yuyama et al. demonstrated that regulation of neuron-derived exosome
release by the SM cycle involves clearance of amyloid β-peptide [15]. In cancer, neutral
SMase2-dependent exosomal transfer of miRNA enhances angiogenesis and cancer metas-
tasis [16]. Inversely, treatment of extracellular C6-ceramide suppresses the proliferation and
angiogenic activity of human multiple myeloma cells through the enhancement of exosome
release containing tumor-suppressive miRNAs [17,18]. However, little is known about how
intracellular ceramide production via the ceramide/SM cycle is associated with anti-cancer
drug resistance and cancer malignancy through exosome generation and release.

Therefore, we examined this mechanism by utilizing drug-resistant human leukemia
HL-60/ADR cells, which show resistance to anti-cancer drugs including adriamycin
through an enhanced drug-efflux pump function, and their parental drug-sensitive HL-60
cells. In particular, the effect of intracellular ceramide metabolism by the ceramide/SM
cycle on exosome production and release was investigated. In addition, we attempted to
elucidate exosomal functions related to the drug resistance and cancer cell proliferation by
comparing the composition of microRNAs (miRNAs) in exosomes and cells.

2. Results
2.1. Exosome Release Is Promoted in Drug-Resistant Leukemia Cells

To examine the relationship between exosome production and the drug resistance of
leukemia cells, we extracted exosomes from drug-sensitive HL-60 cells and adriamycin-
resistant HL-60/ADR cells by ultracentrifugation. Exosomes extracted from both HL-60
and HL-60/ADR cells were detected as <200 nm particles under transmission electron
microscopy (Figure 1A). Western blot analysis showed that exosomal marker CD81 was
detected in exosomes without contamination of cellular organelles (Figures 11B and S1). We
then compared the size and number of HL-60 and HL-60/ADR exosomes by nanoparticle
tracking analysis (Figure 1C,D). Although exosome size was the same between HL-60
cells and HL-60/ADR cells, at 100–200 nm, exosome numbers of HL-60/ADR cells were
clearly higher than that of HL-60 cells (p = 0.0022) (Figure 1D). These results indicated that
exosome release is more active in drug-resistant HL-60/ADR cells than in parental HL-60
cells.
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cates exosome. Bars, 250 nm. (B) Western blot analysis of exosome marker CD81 and endoplasmic 
reticulum marker calnexin in exosomes and cells. (C,D) Exosome size and number were analyzed 
by nanosight tracking analysis. Particle size distribution of exosomes purified from HL-60 (left) and 
HL-60/ADR cells (right) are represented (C). Exosome numbers were normalized by cell numbers 
(D). Values indicate mean ± SD (n = 3). ** p < 0.005. 
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considering whether the ceramide ratio in exosomes affects exosome production and re-
lease, we next examined ceramide contents in exosomes and cells by liquid chromatog-
raphy tandem mass spectrometry (LC-MS/MS). As expected, exosomes showed a higher 
ratio of ceramides than the cells of both lines (Figure 2A,B). However, the d18:1/d16:0 
ceramide ratio was a little higher in HL-60/ADR exosomes than in HL-60 exosomes (Fig-
ure 2B). These data suggested that the ceramide contents of exosomes do not determine 
exosome release from cells in drug-resistant leukemia cells. 

Figure 1. Enhancement of exosome release in HL-60/ADR cells. Exosomes were prepared from
the culture media of HL-60 cells and HL-60/ADR cells by sequential ultracentrifugation methods.
(A) Purified exosomes of HL-60 were observed by transmission electron microscopy. The arrow
indicates exosome. Bars, 250 nm. (B) Western blot analysis of exosome marker CD81 and endoplasmic
reticulum marker calnexin in exosomes and cells. (C,D) Exosome size and number were analyzed
by nanosight tracking analysis. Particle size distribution of exosomes purified from HL-60 (left) and
HL-60/ADR cells (right) are represented (C). Exosome numbers were normalized by cell numbers
(D). Values indicate mean ± SD (n = 3). ** p < 0.005.

2.2. Cellular Ceramide Levels Are Related to Exosome Release in HL-60/ADR Cells

Several reports have shown that cellular ceramides are related to exosome budding
and their release from cells [12]. In addition, it has been reported that the amount and
ratio of exosomal ceramides were high in metastatic colorectal cancer (CRC) cells or CRC
patients compared with those in non-metastatic CRC cells or healthy cells [19]. Therefore,
considering whether the ceramide ratio in exosomes affects exosome production and release,
we next examined ceramide contents in exosomes and cells by liquid chromatography
tandem mass spectrometry (LC-MS/MS). As expected, exosomes showed a higher ratio of
ceramides than the cells of both lines (Figure 2A,B). However, the d18:1/d16:0 ceramide
ratio was a little higher in HL-60/ADR exosomes than in HL-60 exosomes (Figure 2B).
These data suggested that the ceramide contents of exosomes do not determine exosome
release from cells in drug-resistant leukemia cells.

It is known that SMS2, an SMS isoform, is involved in exosome production and its
budding through SM and ceramide generation [15]. In addition, we previously showed that
HL-60/ADR cells have higher SMS and GCS activity and lower ceramide levels compared
with HL-60 cells (Figures 3A and S2A,B) [4]. Therefore, we examined SM and ceramide
production through SMS in HL-60 and HL-60/ADR cells (Figure 3). SMS has two isoforms,
SMS1 and SMS2, which synthesize SM from ceramides and phosphatidylcholine [20]. As
shown in Figure 3B, the expression of both SMS1 (SGMS1) and SMS2 (SGMS2) was higher
in HL-60/ADR cells than in HL-60 cells. We next measured sphingolipid contents in HL-
60 and HL-60/ADR cells by LC-MS/MS. Consistent with our previous data, ceramides,
which are substrates of SMS, were decreased in HL-60/ADR cells compared with those in
HL-60 cells (Figure 3C). However, total SM contents in HL-60/ADR cells were the same
as that in HL-60 cells, even though some species of SM including d18:0/16:0, d18:1/24:0,
d18:1/26:1, and d18:1/26:0 were higher in HL-60/ADR cells than in HL-60 cells (Figure 3D).
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In addition, GC levels were also unchanged between HL-60 and HL-60/ADR cells, although
GCS activity in HL-60/ADR cells was higher than that in HL-60 cells (Figure S2A,B). These
data suggested that suppression of intracellular ceramide levels through enhancement
of SMS activity may be related to the elevation of exosome production and release in
HL-60/ADR cells.
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2.3. SMS2 Contributes to Exosome Release by Suppression of Ceramide Levels

The above data demonstrated the possibility that intracellular ceramides enhanced
exosome release in drug-resistant cells. Therefore, to examine whether the suppression of
ceramide levels by increased SMS activity affects exosome release, we established HL-60
cells expressing SMS1 or SMS2 (Figure 4A). In HL-60 cells, both SMS1 and SMS2 similarly
increased SMS activity (Figure 4B). However, ceramide levels were decreased only when
SMS2 was overexpressed but not SMS1 (Figure 4C). SM levels were unchanged when
both SMS1 and SMS2 were overexpressed (Figure 4C). Next, we elucidated exosome
release in SMS-overexpressing cells. As shown in Figure 4D, HL-60/SMS2 cells showed
a 4.951 ± 0.342-fold increase in the number of released exosomes compared with HL-
60/vec cells and a 2.992 ± 0.207-fold increase over HL-60/SMS1 cells. However, SMS1
overexpression also slightly increased exosome release (1.654 ± 0.088-fold). These data
suggested that SMS2 mainly regulates exosome release from cells through suppression of
ceramide levels.
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Figure 3. SMS regulates intracellular ceramide levels in HL-60/ADR cells. (A) Cellular SMS activity
was analyzed using C6-NBD-ceramide as the substrate. (B) qPCR analysis of SGMS1 (SMS1) and
SGMS2 (SMS2) in HL-60 and HL-60/ADR cells. Expression of SMSs was normalized against ACTB
expression. (C,D) Sphingomyelin (SM) (C) and ceramide (D) levels were measured by LC-MS/MS.
Values indicate mean ± SD (n = 3). * p < 0.05, ** p < 0.005.

2.4. Effect of Exosomes Derived from HL-60/ADR Cells on Cell Proliferation and Drug Resistance

To investigate how exosomes of HL-60/ADR are associated with cancer cell proliferation
and anti-cancer drug resistance, we treated HL-60 cells with exosomes extracted from HL-60
or HL-60/ADR cell culture media. Although treatment with both HL-60 and HL-60/ADR
exosomes induced the proliferation of HL-60 cells in serum-free conditions, the effect was
higher with HL-60/ADR exosomes than with HL-60 exosomes (Figure 5A). Doxorubicin (Dox),
which is major anti-cancer drug against leukemia, induced apoptosis in HL-60 cells, while
HL-60/ADR cells had resistance against Dox (Figures 5B,C and S3). As expected, HL-60
exosome treatment did not confer the resistance to Dox on HL-60 ells (Figure S4). In contrast,
treatment with HL-60/ADR exosomes decreased cell death induced by Dox in HL-60 cells
(Figure 5B,C). In addition, HL-60/ADR exosomes suppressed caspase-3 activation induced
by Dox in HL-60 cells (Figure 5D). Next, to examine whether drug elimination is enhanced
by HL-60/ADR exosome treatment in HL-60 cells, the captured Dox was detected by flow
cytometry. The remaining intracellular Dox was higher in HL-60 cells than in HL-60/ADR cells
(Figures 5E and S3D). Intracellular Dox fluorescence was decreased in HL-60 cells treated with
HL-60/ADR exosomes (Figure 5E). These data suggested that HL-60/ADR exosomes confer
drug-resistant properties to drug-sensitive HL-60 cells by enhancing the Dox elimination.
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measured by LC-MS/MS and normalized against cellular protein amounts (n = 4). (D) Exosome
numbers were measured by Nanosight (n = 3). Values indicate mean ± SD. * p < 0.05, ** p < 0.005.

2.5. miR-484 Is Associated with HL-60 Cell Proliferation through Exosomes

The above data showed that HL-60/ADR exosomes induced cell proliferation more
strongly than HL-60 exosomes (Figure 5A). miRNAs were recently demonstrated to be
involved in cancer cell proliferation [21]. To elucidate the differences between HL-60 and
HL-60/ADR exosomes, we compared exosomal and cellular miRNA expression in HL-60
and HL-60/ADR cells by miRNA microarray. In the exosomes of HL-60/ADR cells, we
identified seven miRNA candidates (miR-381-3p, miR-4697-3p, miR-484, miR-4698, miR-658,
miR491-3p, and miR2392) with more than five-fold higher expression than in HL-60 cells
(Figure 6A). Among them, miR-484 only showed higher expression in both exosomes and
cells. qPCR analysis confirmed elevation of miR-484 expression in HL-60/ADR exosomes
and cells compared with that in HL-60 cells (Figure 6B). To analyze the function of miR-484
in cell proliferation in more detail, we performed miR-484 knockdown in human embryonic
kidney fibroblast HEK293 cells, which express miR-484. miR-484 expression in the exosomes
was decreased in miR-484-knockdown HEK293 cells compared with that in the control
cells (Figure 6C). Finally, we examined the effects of exosomal miR-484 levels on HL-60 cell
proliferation. As shown in Figure 6D, control exosomes extracted from HEK293/control
cells (Exo/Cont) increased the proliferation of HL-60 cells. However, miR-484-knockdown
exosomes (Exo/shmiR-484) had a lower effect on HL-60 cell proliferation (Figure 6D). These
results suggested that miR-484, which is highly expressed in HL-60/ADR cells compared
with that in HL-60 cells, may activate cell proliferation via exosomes.
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was analyzed by flow cytometry (n = 3). Values indicate mean ± SD. * p < 0.05, ** p < 0.005. 
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Figure 5. Exosomes purified from HL-60/ADR suppress doxorubicin-induced apoptosis in HL-60
cells. (A) HL-60 and HL-60/ADR cells were treated with exosomes extracted from the media of
HL-60 (HL-60 exo) or HL-60/ADR cells (ADR exo) at the indicated concentration and cultured in
RPMI-1640 supplemented with 5 µg/mL insulin and 5 µg/mL transferrin. After 12 h, viable cells
were measured by CCK8 assay and represented as percentage of vehicle treatment (0 µg/µL) (n = 3).
(B–E) HL-60 cells were pre-treated with ADR exo for 12 h and then treated with doxorubicin (Dox) for
12 h. (B) Viable cell numbers were counted after trypan blue exclusion and indicated as percentage of
vehicle treatment (n = 4). (C) Cells were stained with FITC-conjugated annexin V and analyzed by
flow cytometry (n = 3). (D) Western blot analysis of caspase-3 and actin. (E) Dox taken up by cells
was analyzed by flow cytometry (n = 3). Values indicate mean ± SD. * p < 0.05, ** p < 0.005.
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cells. (A) Microarray experiments were performed to identify miRNAs in exosomes and cells. The
seven candidate miRNAs showed more than a 5.0-fold increase among the total 2563 miRNAs species
in HL-60/ADR cells compared with those in HL-60 cells. (B) Validation of miR-484 levels in exosomes
(left) and cells (right) was performed by qPCR. (C) Knockdown of miR-484 by shRNA (shmiR-484)
was performed by transfection of pLKO.1-shmiR-484 vector in HEK293 cells. Control cells were
introduced with pLKO.1 control vector. The expression of miR-484 in exosomes was analyzed
by qPCR. (D) HL-60 cells were treated with 3 × 109 exosomes from HEK293/control (Exo/Cont)
or HEK293/shmiR-484 (Exo/shmiR-484) for 24 h. Viable cells were detected by trypan blue dye
exclusion method. The values show the mean ± SD (n = 3). ** p < 0.005.



Int. J. Mol. Sci. 2022, 23, 10648 8 of 15

3. Discussion

Exosomes are a well-known transporter of cellular molecules including proteins,
nucleotides, and lipids [5]. Recent studies have shown that exosome-mediated cell-to-cell
interactions are involved in cancer cell proliferation, metastasis, and drug resistance, leading
to cancer malignancy [8]. In this study, we found that exosome production and release
are enhanced in adriamycin-resistant leukemia HL-60/ADR cells compared with those in
parental HL-60 cells, and SMS2 regulates intracellular ceramide metabolism, resulting in the
acquisition of drug resistance and increased proliferation. In drug-resistant HL-60/ADR
cells, intracellular ceramides were maintained at low levels through increased SMS activity.
Therefore, overexpression of SMSs in HL-60 cells increased exosome production and release,
suggesting that intracellular ceramide/SM levels are critical regulators of this process. In
addition, exosomes derived from HL-60/ADR conferred drug-sensitive HL-60 cells with
cell proliferation and drug resistance properties. Finally, we identified miR-484 as exosomal
cargo that activates cancer cell proliferation.

Intracellular ceramide metabolism is an essential regulator of exosome production
and release [12]. In addition, exosomal lipid compositions were reflected by cellular lipid
conditions [10,11]. Previously, exosomal ceramides, especially C16:0 and C24:1 ceramides,
were expressed at a higher ratio in metastatic CRC cells and CRC patient cells [19]. In
addition, in glioblastoma, exosomal ceramide levels have been shown to be higher because
they were closer to cancer stem cells [22]. These reports suggest an association between
exosomal ceramides and cancer malignancy. Therefore, we first focused on ceramide levels
in exosomes (Figure 2). However, the ceramide ratio in exosomes was almost the same
between HL-60 cells and HL-60/ADR cells, and only C16:0 ceramide was slightly elevated
in HL-60/ADR cells. Thus, we next examined the involvement between intracellular
ceramide levels and exosomes that leads to chemoresistance.

Ceramide is well known as a bioactive lipid regulating cell death, differentiation,
migration, and inflammatory responses [1,3]. In particular, in cancer, ceramide generation
is known to be effective as a therapeutic target because it leads to cancer cell death and
prevention of cancer malignancy [2]. Conversely, malignant cancer cells suppress ceramide
production through enhancing its metabolism to SM or glycosphingolipids (GSLs) [23].
We previously reported that chemoresistant leukemia cells derived from patients have
increased SMS and GCS activity, resulting in the maintenance of low ceramide levels [4]. In
this study, HL-60/ADR cells also had higher SMS and GCS activity than HL-60 cells. In a
recent study by Shammout et al., Dox-resistant human breast adenocarcinoma MCF-7 cells
also showed lower ceramide levels and higher SMS2 expression compared with parental
Dox-sensitive MCF-7 cells [24]. In particular, C16:0 and C22:0 ceramides in Dox-resistance
MCF-7 cells were more than twice as high as in parental MCF-7 cells. Similarly, Huang
et al. reported that C16:0 and C24:0 ceramides were decreased in taxol-resistant A2780
human ovarian cancer cells [25]. Inversely, SM levels became higher in chemoresistant
cancer cells compared with levels in parental chemosensitive cells. In the present study, we
confirmed increased SMS activity through the elevation of SMS expression including SMS1
and SMS2 and low ceramide levels including C16:0, C22:0, C24:1, and C24:0 ceramides
in HL-60/ADR cells. However, total SM levels were similar between HL-60 cells and
HL-60/ADR cells. Some species such as C16:0, C24:0, C26:0, and C26:1 SMs were slightly
increased. Nonetheless, many studies have reported that the generation of GSLs including
GC or hexosylceramide (HexCer) from ceramides is associated with chemoresistance [26].
Our previous study showed that overexpression of GCS enhanced resistance against Dox-
induced cell death in HL-60 cells [4]. However, our data showed that total HexCer levels
were not changed in HL-60/ADR cells compared with levels in HL-60 cells, although GCS
activity was increased in HL-60/ADR cells (Figure S2). Therefore, these results suggest that
suppression of ceramides is more important for chemoresistance in HL-60/ADR cells than
increases in SM or GSLs from ceramides.

In our data, treatment of chemosensitive HL-60 cells with exosomes derived from
chemoresistant HL-60/ADR cells enhanced cell proliferation and Dox-resistance (Figure 5).
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Exosomal cargos are associated with cancer malignancy including cell proliferation, metas-
tasis, and chemoresistance [7,8]. In particular, miRNA is considered to be an important
factor in exosome-mediated cancer malignancy [21]. Therefore, we finally examined the
differences in exosomes between HL-60 cells and HL-60/ADR cells by miRNA microarray
and identified seven miRNA candidates (miR-381-3p, miR-4697-3p, miR-4698, miR-658,
miR-491-3p, miR-2392, and miR-484) with five-fold higher expression in HL-60/ADR exo-
somes than in HL-60 exosomes (Figure 6A). Among them, only miR-484 was higher in both
HL-60/ADR cells and exosomes than in HL-60 cells and exosomes. Therefore, we focused
on the function of miR-484 in cell proliferation. Recently, miR-484 was reported to have both
physiological and pathological functions [27]. In particular, miR-484 expression exhibits the
opposite role in cancer progression. Several reports showed that low miR-484 expression in-
creases the risk of cancer cell proliferation, migration, and invasion in gastric cancer [28,29],
CRC [30–32], pancreatic cancer [33], and prostate cancer [34]. Conversely, overexpression
of miR-484 promotes tumorigenesis and malignancy in hepatocellular carcinoma [35–37],
lung cancer [38–40], and glioma [41]. In our data, knockdown of miR-484 suppressed
exosome-mediated proliferation of HL-60 cells, suggesting that miR-484 may be involved
in cancer malignancy, at least in leukemia. However, the target of miR-484 is unknown
and requires further investigation. As for the other candidates, the increased expression
of some of them is involved in cancer malignancy. Wu et al. showed that miR-4697-3p
expression was significantly higher in carboplatin-resistant ovarian cancer OVCAR3 cells
than in drug-sensitive MR182 cells [42]. miR-4697-3p increases chemoresistance through the
transcriptional regulation of MNX1-AS1 and HOXB13. Moreover, miR-4697-3p expression is
involved in the pathogenesis of gastric cancer [43]. miR-658 was high in gastric cancer tissue
and cells, resulting in tumor metastasis via activation of the PAX3–MET pathway [44,45].
In addition, Azuma et al. showed that exosomal miR-658 is increased in gefitinib-resistant
human lung adenocarcinoma PS-9/ZD cells and is associated with acquisition of chemore-
sistance in chemosensitive PS-9 cells [46]. Thus, exosome-mediated cancer proliferation
and drug resistance requires further investigation for these two miRNAs. Inversely, miR-
381-3p, miR4698, miR491-3p, and miR-2392 are reported to have tumor-suppressive effects.
Downregulation of miR-381-3p is associated with osteosarcoma growth [47], while miR-
4698 has inhibitory effects on cancer cell proliferation in glioblastoma [48], hepatocellular
carcinoma [49], and gastric carcinoma cells [50]. miR-491-3p acts as tumor suppressor and
metastasis inhibitor in non-small cell lung cancer [51] and gastric cancer [52]. miR-2392
also has suppressive effects on cancer cell proliferation and metastasis in triple-negative
breast cancer [53], hepatocellular carcinoma [54,55], and gastric cancer [56]. Therefore,
these candidates may be upregulated in HL-60/ADR exosomes as negative feedback for
chemoresistance. However, because the packaging mechanism of miRNA into exosomes
via ceramides is largely unknown, this is a topic for future investigation.

4. Materials and Methods
4.1. Materials

Doxorubicin was obtained from Sigma–Aldrich (St. Louis, MO, USA). Anti-CD81 (sc-
7637) and anti-actin (sc-1616) antibodies were purchased from Santa Cruz Biotechnologies
(Dallas, TX, USA). Anti-calnexin (610523) antibody was obtained from BD Biosciences
(San Jose, CA, USA). Anti-capase-3 antibody (9665S) was from Cell Signaling (Danvers,
MA, USA). Horseradish peroxidase-conjugated secondary antibodies were purchased from
Promega (Madison, WI, USA). The pLKO.1-TRC cloning vector (Addgene plasmid #10878)
and the pLKO.1-TRC control (Addgene plasmid #10879) were gifted from David Root and
were originally obtained from Addgene (Cambridge, MA, USA) [57].

4.2. Cell Culture

Human leukemia HL-60 cells and HL-60/ADR cells were cultured in RPMI 1640 (Wako,
Tokyo, Japan) containing 10% (v/v) fetal bovine serum (FBS), as described previously [4,58].
HL-60 cells expressing SMS1 or SMS2 were established by the retroviral infection of pDON-
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hSMS1 (HL-60/SMS1), pDON-hSMS2 (HL-60/SMS2), and empty pDON-AI (HL-60/vec) [59].
Human embryonic kidney fibroblast HEK293 cells were maintained in DMEM supplemented
with 10% (v/v) FBS. miR-484 knockdown in HEK293 cells was performed by transfection of
pLKO.1 vector containing the shRNA sequence for miR-484 (5′-AAACCCCTAAATAG) with
Lipofectamine 3000 (Thermo Fisher Scientific, Rockford, IL, USA). Viable cell numbers were
measured by Cell Counting Kit 8 (Wako, Tokyo, Japan) or counted after staining with 0.25%
(w/v) trypan blue.

4.3. Exosome Preparation

Exosomes were prepared from the culture media of HL-60 and HL-60/ADR cells as
previously described [15]. In brief, cells were cultured in RPMI-1640 containing 5 µg/mL
insulin and 5 µg/mL transferrin to avoid induction of cell death. After 24 h, the culture
media were collected, centrifuged at 2000× g for 10 min, and passed through a 0.45-µm
polyvinylidene difluoride (PVDF) filter. Then, media were centrifuged twice at 100,000× g
for 70 min to obtain the exosomes as pellets. Exosome pellets were resolved in PBS(−) and
used for other experiments.

4.4. Transmission Electron Microscopy

Transmission electron microscopy was performed as described previously [60]. Briefly,
extracted exosomes were put onto carbon-coated copper grids (400 mesh) for 10 s. After
washing with PBS, the grids were negatively stained with 2% (w/v) uranyl acetate for 1
min. Transmission images were obtained using a H-7100 transmission electron microscope
(Hitachi, Tokyo, Japan) at 100 kV.

4.5. Analysis of Particle Number and Size

The number and size of the extracted exosomes were measured by nanoparticle
tracking analysis (NTA) using a NanoSight NS300 (Malvern Instruments Ltd., Malvern,
UK) according to the manufacturer’s protocol. For NTA of exosomes, samples were diluted
with PBS(−). Three videos of 60 s each were captured with 1498 frames and a camera
level at 15 using a syringe pump with constant flow injection. The recorded videos were
analyzed with NTA software version 3.2 (Malvern Instruments Ltd., Malvern, UK) to
determine the concentration and particle size.

4.6. Western Blot Analysis

Cells and exosomes were lysed in RIPA buffer (Wako, Tokyo, Japan) for 20 min on
ice. Cell lysates were separated by SDS-polyacrylamide gel electrophoresis and transferred
to PVDF membranes (Millipore, Bedford, MA, USA). After incubation with Blocking One
solution (Nacalai Tesque, Kyoto, Japan) for 15 min at room temperature, the membranes
were incubated overnight at 4 ◦C with primary antibodies. The membranes were then
incubated with horseradish peroxidase-conjugated secondary antibodies for 45 min at
room temperature. Immunoreactive protein bands were detected with the LAS-4000 system
(Fujifilm, Tokyo, Japan).

4.7. LC-MS/MS

Lipid extractions from cells and exosomes were performed as described previously [61].
In brief, cells and exosomes were sonicated for 30 s with 0.1 mL of methanol/butanol (1:1),
and then 0.7 mL butanol, 0.05 mL of 0.5 M phosphate buffer (pH 6.0), and 0.2 mL water were
added. The samples were shaken, sonicated for 3 min, and centrifugated at 9000× g for
5 min. After collection of upper phase, remained solution was re-suspended with 0.35 mL
each of hexane and ethyl acetate. After centrifugation at 9000× g for 5 min, upper phase
was collected and mixed with first upper phase and 0.7 mL of methanol. Ten percent of this
solution was dried and used for measurements of sphingolipids including ceramides, SM,
GC, and PC with LC-MS/MS (Ultimate 3000 LC system, Thermo Fisher Scientific, Rockford,
IL, USA), as described previously [61,62]. The protein concentrations in the residue of lipid
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extraction were measured by a BCA Protein Assay Kit (Thermo Fisher Scientific, Rockford,
IL, USA) and used for normalization.

4.8. Measurement of SMS and GCS Activity

The activity of SMS and GCS was assessed using previously described methods [59,63].
Cells were homogenized in buffer containing 20 mM Tris-HCl (pH 7.5), 2 mM EDTA,
10 mM EGTA, and inhibitor cocktail (Roche, Basel, Switzerland). Homogenates (100 µg
protein) were incubated in reaction solution (10 mM Tris-HCl (pH 7.5), 1 mM EDTA,
20 µM C6-NBD-ceramide (Matreya, Pleasant Gap, PA, USA), 0.1 mM UDP-glucose, 120 µM
phosphatidylcholine) and incubated for 60 min at 37 ◦C. Lipids were extracted using the
Bligh–Dyer method [64] applied onto thin layer chromatography plates, and developed
with a solvent consisting of chloroform–methanol–12 mM MgCl2 (65:25:4, v/v/v). The
fluorescent lipids were detected using LAS-4000 and quantified using Multi Gauge 3.1
(Fujifilm, Tokyo, Japan).

4.9. Quantitative Real-Time PCR (qPCR)

Total RNA and miRNA were extracted using an RNeasy mini kit (Qiagen, Hilden,
Germany) and a miRNeasy mini kit (Qiagen, Hilden, Germany), respectively. Total RNA
was converted to cDNA using ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan). qPCR for
SGMS1 (SMS1; Hs00983630_m1) and SGMS2 (SMS2; Hs00380453_m1) was performed using
the QuantStudio 12K Flex Real-Time PCR system (Thermo Fisher Scientific, Rockford, IL,
USA) with TaqMan Probes (Thermo Fisher Scientific, Rockford, IL, USA), as described previ-
ously [65]. SGMS1 and SGMS2 expression was normalized against ACTB (Hs01060665_g1)
expression. A TaqMan Advanced miRNA cDNA Synthesis Kit (Thermo Fisher Scientific,
Rockford, IL, USA) and TaqMan Advanced miRNA Assay (Thermo Fisher Scientific, Rock-
ford, IL, USA) were used to assess miR-484 expression (has-miR-484, 478308_mir). In
exosomes, 10 ng exosomal miRNA was used for assays and normalized against miRNA
concentration. In cells, miR-484 expression was normalized against ACTB expression.

4.10. Flow Cytometry

Measurement of apoptotic cells was performed by detection of phosphatidylserine
exposure using fluorescein isothiocyanate (FITC)-conjugated Annexin V (BD Biosciences,
San Jose, CA, USA) and flow cytometry analysis (Gallios, Beckman Coulter, Miami, FL,
USA), as described previously [66]. The percentage of FITC-Annexin V-positive cells was
calculated as apoptotic cells using Kaluza software (Beckman Coulter, Miami, FL, USA).
Intracellular fluorescence of Dox was detected by flow cytometry equipped with 488 nm
excitation and 695 nm emission [67]. Fluorescent intensity was quantified with Kaluza
software (Beckman Coulter, Miami, FL, USA) and represented as the mean fluorescent
intensity (MFI).

4.11. Microarray for miRNA

Total RNA was extracted from exosomes and cells using 3D-Gene RNA extraction
reagent (Toray Industries, Inc., Tokyo, Japan). The miRNA microarray analysis was per-
formed with a 3D-Gene miRNA Labeling Kit and a 3D-Gene Human miRNA Oligo Chip
version 21 (Toray Industries Inc., Tokyo, Japan) to detect 2565 human miRNAs. The chip
was scanned with a 3D-Gene Scanner (Toray Industries Inc., Tokyo, Japan) and analyzed
with a 3D-Gene Extraction Software (Toray Industries Inc., Tokyo, Japan). The digitalized
fluorescence signal provided by this software was used as raw data. All normalized data
were globally normalized per microarray such that the median signal intensity was adjusted
to 25. From these data, miRNAs that were expressed in HL-60/ADR exosomes at greater
than 5-fold higher levels than in HL-60 exosomes were listed.
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4.12. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 9 software (GraphPad
Software Inc., San Diego, CA, USA). Data are represented as the mean± standard deviation.
Statistical significance was determined using paired t tests (between groups) or one-way
ANOVA with a follow-up Tukey’s test (between multiple groups). A p value of less than
0.05 was considered statistically significant.

5. Conclusions

Chemoresistance against anti-cancer drugs is largely a clinical problem in various
cancer types. However, the molecular mechanisms involved in drug resistance are diverse,
and their elucidation is extremely difficult. In this study, we observed increased exosome
numbers in chemoresistant HL-60/ADR cells compared with those in HL-60 cells, lead-
ing to acquisition of drug resistance and enhanced proliferation through the exosomal
transport of miRNAs including miR-484. Promotion of exosome production and release is
associated with intracellular ceramide metabolism by SMS2. Exosomes are well-known to
be related in the cancer malignancy through transport of their cargo such miRNAs [7,8]. In
addition, ceramide generation is also important to exosome production and release [12,13].
Furthermore, it is well known that ceramides are the anti-cancer sphingolipids to induce
apoptosis or growth arrest and are kept at low levels in malignant cancer cells [4]. However,
their relevance had been unknown. In this study, our results suggest that the balance
between SM hydrolysis-mediated ceramide production and steady-state intracellular SM
and ceramide levels is associated with ceramide-mediated exosome production and release
through intracellular trafficking, results in cancer malignancy including cancer cell pro-
liferation and chemoresistance. Therefore, suppression of exosome release by targeting
ceramide metabolism such as inhibition of SMS2 may be a therapeutic strategy for cancers
such as leukemia.
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