Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = adrenaline model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6644 KiB  
Article
A Complexity Theory-Based Novel AI Algorithm for Exploring Emotions and Affections by Utilizing Artificial Neurotransmitters
by Gerardo Iovane and Raffaella Di Pasquale
Electronics 2025, 14(6), 1093; https://doi.org/10.3390/electronics14061093 - 10 Mar 2025
Viewed by 998
Abstract
The aim of this work is to introduce a computer science solution to manage emotions and affections and connect them to the causes as in humans. The scientific foundation of this work lies in the ability to model the affective and emotional states [...] Read more.
The aim of this work is to introduce a computer science solution to manage emotions and affections and connect them to the causes as in humans. The scientific foundation of this work lies in the ability to model the affective and emotional states of an individual or artificial intelligence (AI). Then, in this study, we go a step further by exploring how to extend this capability by linking it to the underlying causes—specifically, by establishing a connection between emotions, affective states, and neurotransmitter activities. The methods used in this study pertain to decision support systems based on complexity theory. Specifically, for the training of the platform to study the link between emotions/affections and neurotransmitters, an electroencephalogram (EEG) acquisition module is integrated into the platform. As a result, this solution provides the bedrock for next-generation AI, i.e., artificial rational–emotive decision-makers. In addition, this research studies the connection of EEG data with neurotransmitters’ activity, opening pathways to applications such as emotional monitoring, mental health, and brain–computer interfaces, adding to cognitively and emotionally enriched AI. The main result of this study is a platform able to manage artificial neurotransmitters such as adrenaline, GABA, dopamine, serotonin, oxytocin, endorphins, and the hormone cortisol for emulating and motivating emotive and affective states. In conclusion, this study highlights the following: (i) the possibility of conducting indirect measurements of emotional states based on EEG data, (ii) the development of a framework capable of generating a wide spectrum of emotional states by modulating neurotransmitter levels within a defined discrete range, and (iii) the ability to establish a connection between neurotransmitters (causes) and emotional states (effects). Full article
(This article belongs to the Special Issue New Challenges of Decision Support Systems)
Show Figures

Figure 1

15 pages, 2443 KiB  
Perspective
Cardiac Arrest: Can Technology Be the Solution?
by Frédéric Lapostolle, Jean-Marc Agostinucci, Tomislav Petrovic and Anne-Laure Feral-Pierssens
J. Clin. Med. 2025, 14(3), 972; https://doi.org/10.3390/jcm14030972 - 3 Feb 2025
Viewed by 1170
Abstract
Out-of-hospital cardiac arrest (OHCA) mortality remains alarmingly high in most countries. The majority of pharmacological attempts to improve outcomes have failed. Randomized trials have shown limited survival benefits with vasopressin, fibrinolysis, amiodarone, or lidocaine. Even the benefits of adrenaline remain a matter of [...] Read more.
Out-of-hospital cardiac arrest (OHCA) mortality remains alarmingly high in most countries. The majority of pharmacological attempts to improve outcomes have failed. Randomized trials have shown limited survival benefits with vasopressin, fibrinolysis, amiodarone, or lidocaine. Even the benefits of adrenaline remain a matter of debate. In this context, relying on technology may seem appealing. However, technological strategies have also yielded disappointing results. This is exemplified by automated external chest compression devices. When first introduced, theoretical models, animal studies, and early clinical trials suggested they could improve survival. Yet, randomized trials failed to confirm this benefit. Similarly, to date, extracorporeal membrane oxygenation (ECMO), therapeutic hypothermia, and primary angioplasty have demonstrated inconsistent survival advantage. Other technological innovations continue to be explored, such as artificial intelligence to improve the diagnosis of cardiac arrest during emergency calls, mobile applications to dispatch citizen responders to patients in cardiac arrest, geolocation of defibrillators, and even the delivery of defibrillators via drones. Nevertheless, it is clear that the focus and investment should prioritize the initial links in the chain of survival: early alerting, chest compressions, and defibrillation. Significant improvements in these critical steps can be achieved through the education of children. Modern technological tools must be leveraged to enhance this training by incorporating gamification and democratizing access to education. These strategies hold the potential to fundamentally improve the management of cardiac arrest. Full article
(This article belongs to the Section Emergency Medicine)
Show Figures

Figure 1

11 pages, 1104 KiB  
Article
Assessing Key Factors Influencing Successful Resuscitation Outcomes in Out-of-Hospital Cardiac Arrest (OHCA)
by Cristian Ichim, Vlad Pavel, Patricia Mester, Stephan Schmid, Samuel Bogdan Todor, Oana Stoia, Paula Anderco, Arne Kandulski, Martina Müller, Philipp Heumann and Adrian Boicean
J. Clin. Med. 2024, 13(23), 7399; https://doi.org/10.3390/jcm13237399 - 4 Dec 2024
Cited by 9 | Viewed by 1582
Abstract
Background: Out-of-hospital cardiac arrest (OHCA) is a critical health issue with survival influenced by multiple factors. This study analyzed resuscitation outcomes at the County Clinical Emergency Hospital of Sibiu, Romania, during pre-COVID-19 and pandemic periods. Methods: A retrospective analysis of 508 OHCA patients [...] Read more.
Background: Out-of-hospital cardiac arrest (OHCA) is a critical health issue with survival influenced by multiple factors. This study analyzed resuscitation outcomes at the County Clinical Emergency Hospital of Sibiu, Romania, during pre-COVID-19 and pandemic periods. Methods: A retrospective analysis of 508 OHCA patients (2017–2020) assessed the return of spontaneous circulation (ROSC) as the primary endpoint. Statistical methods included decision tree analysis, logistic regression and ROC curve analysis to evaluate the predictive value of adrenaline dose and patient factors. Results: The mortality rate was 68.7%, with non-shockable rhythms predominant among fatalities. Rural patients, though younger, had lower ROSC rates than urban counterparts. Logistic regression showed that lower adrenaline doses (≤4 mg, OR 11.835 [95% CI: 6.726–20.27]; 4–6 mg, OR 2.990 [95% CI: 1.773–5.042]) were associated with better ROSC outcomes. Conclusions: A multivariable model (AUC = 0.773) incorporating demographics and pandemic status outperformed adrenaline dose alone (AUC = 0.711). Full article
(This article belongs to the Special Issue Current and Emerging Treatment Options in Atrial Fibrillation)
Show Figures

Figure 1

13 pages, 3669 KiB  
Article
Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations
by Mengting Zeng, Liyue Huang, Xiaohui Zheng, Lebin Weng and Ching-Feng Weng
Life 2024, 14(8), 1047; https://doi.org/10.3390/life14081047 - 22 Aug 2024
Viewed by 1999
Abstract
Aim: Cardiac arrhythmias are among the most important pathologies that cause sudden death. The exploration of new therapeutic options against arrhythmias with low undesirable effects is of paramount importance. Methods: However, the convenient and typical animal model for screening the potential lead compound [...] Read more.
Aim: Cardiac arrhythmias are among the most important pathologies that cause sudden death. The exploration of new therapeutic options against arrhythmias with low undesirable effects is of paramount importance. Methods: However, the convenient and typical animal model for screening the potential lead compound becomes a very critical modality, particularly in anti-arrhythmia. In this study, mice were intraperitoneally (i.p.) injected with BaCl2, CaCl2, and adrenaline to induce arrhythmia, and simultaneously compared with BaCl2-induced rats. Results: Electrocardiogram (ECG) showed that the majority of mice repeatedly developed ventricular bigeminy, ventricular tachycardia (VT), and ventricular fibrillation (VF) after BaCl2-injection as seen in rats. The ECG of mice developed ventricular bigeminy and VT after CaCl2 and AT after adrenaline i.p. injection. Additionally, acute cardiac arrhythmia after BaCl2 i.p. injection could be reverted by drugs (lidocaine and amiodarone) administration. Additionally, the different routes of administration for various chemical-induced arrhythmia in both mice and rats were also retrieved from PubMed and summarized. Comparing this approach with previous studies after the literature review reveals that arrhythmia of BaCl2-induced i.p. mice is compatible with the induction of other routes. Conclusions: This study brings an alternative experimental model to investigate antiarrhythmic theories and provides a promising approach to discovering new interventions for acute arrhythmias. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

2 pages, 132 KiB  
Abstract
Studying the Inhibitory Activity of Novel Series Compounds for Parkinson’s Disease Using a Molecular Docking Method
by Rania Kherachi, Daoud Ismail, Merzaka Mettai, Ferdaous Hasni and Melkemi Nadjib
Proceedings 2024, 103(1), 56; https://doi.org/10.3390/proceedings2024103056 - 12 Apr 2024
Viewed by 609
Abstract
After Alzheimer’s disease, Parkinson’s disease (PD) is the second most prevalent neurological illness. Clinically, it is defined by parkinsonism, which includes stiffness, bradykinesia, resting tremor, and postural instability. Pathologically, it is characterized by the loss of substantia nigra neurons. Monoamine oxidases (MAO-A and [...] Read more.
After Alzheimer’s disease, Parkinson’s disease (PD) is the second most prevalent neurological illness. Clinically, it is defined by parkinsonism, which includes stiffness, bradykinesia, resting tremor, and postural instability. Pathologically, it is characterized by the loss of substantia nigra neurons. Monoamine oxidases (MAO-A and MAO-B) are enzymes responsible for metabolizing neurotransmitters such as dopamine (DA) and adrenaline. Selective MAO-A or MAO-B inhibitors have been the focus of recent attempts to create MAO inhibitors. In addition, Parkinson’s disease can be effectively treated with MAO-B inhibitors. The objective is to elucidate the several types of interactions between enzymes and ligands and assess the stability of the resulting complexes. Various molecular modeling methods are used to study the inhibition of the enzyme MAO-B (PDB:4a79) involved in PD, including molecular docking, molecular dynamics, MOE software, and ADME prediction. Based on the findings, compound L30 and compound L38, the top contenders identified by molecular docking/dynamic simulations and with low energy scores, had low IC50 values (0.110 and 0.305 µM, respectively). The combination of the two outcomes from the earlier techniques demonstrates that the compounds L30 and L38 were chosen as the most effective MAO-B inhibitors and that they also satisfy the Lipinski, Veber, and Egan rules. They are also able to traverse the BBB. Furthermore, they may be utilized to create novel pharmaceutical medicines to treat individuals with PD. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
18 pages, 5185 KiB  
Article
Effect of Low Concentration of Nitroxides on SH-SY5Y Cells Transfected with the Tau Protein
by Grzegorz Bartosz, Natalia Pieńkowska, Kacper Kut, Bogumił Cieniek, Ireneusz Stefaniuk and Izabela Sadowska-Bartosz
Int. J. Mol. Sci. 2023, 24(23), 16675; https://doi.org/10.3390/ijms242316675 - 23 Nov 2023
Cited by 1 | Viewed by 1583
Abstract
Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be [...] Read more.
Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be attained in vivo. This paper aimed to examine the effects of low (≤10 μM) concentrations of three nitroxides, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL) and 4-amino-TEMPO (TEMPAMINE), in pure chemical systems and on SH-SY5Y cells transfected with the human tau protein (TAU cells), a model of chronic cellular oxidative stress, and transfected with the empty plasmid (EP cells). All nitroxides were active in antioxidant-activity tests except for the 2,2′-azinobis-(3-ethylbenzthiazolin-6-sulfonate) radical (ABTS) decolorization assay and reduced Fe3+, inhibited autoxidation of adrenalin and pyrogallol and oxidation of dihydrorhodamine123 by 3-morpholino-sydnonimine SIN-1. TEMPO protected against fluorescein bleaching from hypochlorite, but TEMPAMINE enhanced the bleaching. Nitroxides showed no cytotoxicity and were reduced by the cells to non-paramagnetic derivatives. They decreased the level of reactive oxygen species, depleted glutathione, and increased mitochondrial-membrane potential in both types of cells, and increased lipid peroxidation in TAU cells. These results demonstrate that even at low micromolar concentrations nitroxides can affect the cellular redox equilibrium and other biochemical parameters. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 1217 KiB  
Article
Development of a Predictive Statistical Pharmacological Model for Local Anesthetic Agent Effects with Bayesian Hierarchical Model Parameter Estimation
by Toshiaki Ara and Hiroyuki Kitamura
Medicines 2023, 10(11), 61; https://doi.org/10.3390/medicines10110061 - 15 Nov 2023
Cited by 2 | Viewed by 2303
Abstract
As an alternative to animal use, computer simulations are useful for predicting pharmacokinetics and cardiovascular activities. For this purpose, we constructed a statistical model to simulate the effects of local anesthetic agents. To train the model, animal experiments were performed on 6-week-old male [...] Read more.
As an alternative to animal use, computer simulations are useful for predicting pharmacokinetics and cardiovascular activities. For this purpose, we constructed a statistical model to simulate the effects of local anesthetic agents. To train the model, animal experiments were performed on 6-week-old male Hartley guinea pigs. Firstly, the guinea pigs’ backs were shaved, then local anesthetic agents were subcutaneously injected, with subsequent stimulation of the anesthetized site with a needle six times at regular intervals. The number of reactions (score value) was counted. In this statistical model, the probability of reacting to needle stimulation was calculated using the elapsed time, type of local anesthetic agent, and presence or absence of adrenaline. Score values were assumed to follow a binomial distribution at the calculated probability. Parameters were estimated using the Bayesian hierarchical model and Hamiltonian Monte Carlo method. The predicted curves using the estimated parameters fitted well the observed animal values. When score values were predicted using randomly generated parameters, the median of duration was similar between animal experiments and simulations (Procaine: 55 min vs. 50 min, Lidocaine: both 60 min, and Mepivacaine: both 85 min). This approach effectively modeled the effects of local anesthetic agents. It is possible to create the simulator using the parameter values estimated in this study. Full article
Show Figures

Figure 1

17 pages, 4031 KiB  
Article
Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research
by Vladimir Volkov, Anton Lobanov, Mikhail Voronkov, Timur Baygildiev, Vyacheslav Misin and Olga Tsivileva
Antioxidants 2023, 12(8), 1530; https://doi.org/10.3390/antiox12081530 - 30 Jul 2023
Cited by 8 | Viewed by 2661
Abstract
Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of [...] Read more.
Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of developing reliable methods for analyzing the superoxide inhibition activity of various objects is very urgent. In this work, a kinetic model of epinephrine autoxidation in an alkaline medium in the presence of antioxidants of plant origin is proposed. The participation of chain reactions with long oxidation chains in this process is revealed. The limiting stage of the process is a one-electron reduction of oxygen by the anionic forms of the phenolic hydroxyls of epinephrine. The appearance of the absorption maximum at a wavelength of 347 nm during epinephrine autoxidation is associated with adrenolutin formation, which is confirmed by HPLC/UV/MS. No adduct formation between phenolic antioxidants and epinephrine oxidation products was found. The complex U-shaped character of epinephrine autoxidation rate dependence on the content of antioxidants in the reaction system was shown. The study of the kinetics of epinephrine autoxidation in the presence of an individual phenolic plant superoxide inhibitor, chlorogenic acid, was carried out for the first time. The inhibitory effect of yarrow, chamomile, and bur beggar-ticks plant extracts in the adrenaline system was examined. Full article
Show Figures

Figure 1

11 pages, 3507 KiB  
Article
β-N-Methylamino-L-Alanine (BMAA) Modulates the Sympathetic Regulation and Homeostasis of Polyamines
by Milena Shkodrova, Milena Mishonova, Mariela Chichova, Iliyana Sazdova, Bilyana Ilieva, Dilyana Doncheva-Stoimenova, Neli Raikova, Milena Keremidarska-Markova and Hristo Gagov
Toxins 2023, 15(2), 141; https://doi.org/10.3390/toxins15020141 - 9 Feb 2023
Cited by 2 | Viewed by 2773
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim [...] Read more.
The neurotoxin β-N-methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid produced by cyanobacteria. Non-neuronal toxicity of BMAA is poorly studied with a reported increase in reactive oxygen species and a decrease in the antioxidant capacity of liver, kidney, and colorectal adenocarcinoma cells. The aim of this research is to study the toxicity of BMAA (0.1–1 mM) on mitochondria and submitochondrial particles with ATPase activity, on the semicarbazide-sensitive amino oxidases (SSAOs) activity of rat liver, and on an in vitro model containing functionally active excitable tissues—regularly contracting heart muscle preparation with a preserved autonomic innervation. For the first time the BMAA-dependent inhibition of SSAO activity, the elimination of the positive inotropic effect of adrenergic innervation, and the direct and reversible inhibition of adrenaline signaling in ventricular myocytes with 1 mM BMAA were observed. Additionally, it is confirmed that 1 mM BMAA can activate mitochondrial ATPase indirectly. It is concluded that a higher dose of BMAA may influence multiple physiological and pathological processes as it slows down the degradation of biogenic amines, downregulates the sympathetic neuromediation, and embarrasses the cell signaling of adrenergic receptors. Full article
(This article belongs to the Special Issue Cyanobacterial Toxins: Toxins Production and Risk Assessment)
Show Figures

Graphical abstract

24 pages, 1417 KiB  
Review
Phenotypes and Genotypes of Inherited Disorders of Biogenic Amine Neurotransmitter Metabolism
by Mario Mastrangelo, Manuela Tolve, Cristiana Artiola, Rossella Bove, Claudia Carducci, Carla Carducci, Antonio Angeloni, Francesco Pisani and Vincenzo Leuzzi
Genes 2023, 14(2), 263; https://doi.org/10.3390/genes14020263 - 19 Jan 2023
Cited by 5 | Viewed by 3630
Abstract
Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group [...] Read more.
Inherited disorders of biogenic amine metabolism are genetically determined conditions resulting in dysfunctions or lack of enzymes involved in the synthesis, degradation, or transport of dopamine, serotonin, adrenaline/noradrenaline, and their metabolites or defects of their cofactor or chaperone biosynthesis. They represent a group of treatable diseases presenting with complex patterns of movement disorders (dystonia, oculogyric crises, severe/hypokinetic syndrome, myoclonic jerks, and tremors) associated with a delay in the emergence of postural reactions, global development delay, and autonomic dysregulation. The earlier the disease manifests, the more severe and widespread the impaired motor functions. Diagnosis mainly depends on measuring neurotransmitter metabolites in cerebrospinal fluid that may address the genetic confirmation. Correlations between the severity of phenotypes and genotypes may vary remarkably among the different diseases. Traditional pharmacological strategies are not disease-modifying in most cases. Gene therapy has provided promising results in patients with DYT-DDC and in vitro models of DYT/PARK-SLC6A3. The rarity of these diseases, combined with limited knowledge of their clinical, biochemical, and molecular genetic features, frequently leads to misdiagnosis or significant diagnostic delays. This review provides updates on these aspects with a final outlook on future perspectives. Full article
(This article belongs to the Special Issue Genetic Research in Metabolic Diseases)
Show Figures

Figure 1

17 pages, 1150 KiB  
Article
Novel Arylpiperazine Derivatives of Salicylamide with α1-Adrenolytic Properties Showed Antiarrhythmic and Hypotensive Properties in Rats
by Elżbieta Żmudzka, Klaudia Lustyk, Agata Siwek, Małgorzata Wolak, Adam Gałuszka, Jolanta Jaśkowska, Marcin Kołaczkowski, Jacek Sapa and Karolina Pytka
Int. J. Mol. Sci. 2023, 24(1), 293; https://doi.org/10.3390/ijms24010293 - 24 Dec 2022
Cited by 4 | Viewed by 2425
Abstract
Cardiovascular diseases remain one of the leading causes of death worldwide. Unfortunately, the available pharmacotherapeutic options have limited effectiveness. Therefore, developing new drug candidates remains very important. We selected six novel arylpiperazine alkyl derivatives of salicylamide to investigate their cardiovascular effects. Having in [...] Read more.
Cardiovascular diseases remain one of the leading causes of death worldwide. Unfortunately, the available pharmacotherapeutic options have limited effectiveness. Therefore, developing new drug candidates remains very important. We selected six novel arylpiperazine alkyl derivatives of salicylamide to investigate their cardiovascular effects. Having in mind the beneficial role of α1-adrenergic receptors in restoring sinus rhythm and regulating blood pressure, first, using radioligand binding assays, we evaluated the affinity of the tested compounds for α-adrenergic receptors. Our experiments revealed their high to moderate affinity for α1- but not α2-adrenoceptors. Next, we aimed to determine the antiarrhythmic potential of novel derivatives in rat models of arrhythmia induced by adrenaline, calcium chloride, or aconitine. All compounds showed potent prophylactic antiarrhythmic activity in the adrenaline-induced arrhythmia model and no effects in calcium chloride- or aconitine-induced arrhythmias. Moreover, the tested compounds demonstrated therapeutic antiarrhythmic activity, restoring a normal sinus rhythm immediately after the administration of the arrhythmogen adrenaline. Notably, none of the tested derivatives affected the normal electrocardiogram (ECG) parameters in rodents, which excludes their proarrhythmic potential. Finally, all tested compounds decreased blood pressure in normotensive rats and reversed the pressor response to methoxamine, suggesting that their hypotensive mechanism of action is connected with the blockade of α1-adrenoceptors. Our results confirm the antiarrhythmic and hypotensive activities of novel arylpiperazine derivatives and encourage their further investigation as model structures for potential drugs. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

11 pages, 1077 KiB  
Brief Report
HBK-10, A Compound with α1-Adrenolytic Properties, Showed Antiarrhythmic and Hypotensive Effects in Rats
by Klaudia Lustyk, Kinga Sałaciak, Agata Siwek, Barbara Filipek, Jacek Sapa, Henryk Marona, Dorota Żelaszczyk and Karolina Pytka
Pharmaceuticals 2022, 15(10), 1256; https://doi.org/10.3390/ph15101256 - 12 Oct 2022
Cited by 1 | Viewed by 1859
Abstract
Arrhythmia, an irregular heartbeat, might be a life-threatening condition but also a risk factor for stroke or worsen the prognosis after myocardial infarction. The limited efficacy and proarrhythmic potential of the available drugs require searching for new, more effective, and safer pharmacotherapies. Studies [...] Read more.
Arrhythmia, an irregular heartbeat, might be a life-threatening condition but also a risk factor for stroke or worsen the prognosis after myocardial infarction. The limited efficacy and proarrhythmic potential of the available drugs require searching for new, more effective, and safer pharmacotherapies. Studies indicate that the blockade of α1-adrenoceptors could be effective in treating heart rhythm abnormalities. In this study, we aimed to assess the antiarrhythmic and hypotensive potential of HBK-10, a novel 2-methoxyphenylpiperazine derivative, as well as its binding to the selected adrenergic receptors. Radioligand binding studies demonstrated that HBK-10 showed a high affinity for α1 but not for α2 or β1 receptors. Next, we evaluated the ability of HBK-10 to protect against an adrenaline-induced arrhythmia in rats. The compound showed potent prophylactic antiarrhythmic properties in this arrhythmia model. Notably, the compound did not show proarrhythmic potential in normotensive rats since it did not influence the ECG parameters at antiarrhythmic doses. Finally, the compound showed hypotensive properties in rats, which were not observed after coadministration with adrenaline, noradrenaline, or methoxamine, which suggests α1-adrenolytic properties of HBK-10. Our results confirm that compounds with a 2-methoxyphenylpiperazine group show a high affinity for α1-adrenoceptors and a significant antiarrhythmic effect. Given the promising results of our study, further evaluation of HBK-10 is necessary to unravel the mechanisms behind its pharmacological effects and evaluate the safety profile. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 1998 KiB  
Article
The Antiarrhythmic and Hypotensive Effects of S-61 and S-73, the Pyrrolidin-2-one Derivatives with α1-Adrenolytic Properties
by Klaudia Lustyk, Kinga Sałaciak, Agata Siwek, Jacek Sapa, Paula Zaręba, Adam Gałuszka and Karolina Pytka
Int. J. Mol. Sci. 2022, 23(18), 10381; https://doi.org/10.3390/ijms231810381 - 8 Sep 2022
Cited by 3 | Viewed by 1931
Abstract
Heart rhythm abnormalities are a cause of many deaths worldwide. Unfortunately, the available antiarrhythmic drugs show limited efficacy and proarrhythmic potential. Thus, efforts should be made to search for new, more effective, and safer pharmacotherapies. Several studies suggested that blocking the α1 [...] Read more.
Heart rhythm abnormalities are a cause of many deaths worldwide. Unfortunately, the available antiarrhythmic drugs show limited efficacy and proarrhythmic potential. Thus, efforts should be made to search for new, more effective, and safer pharmacotherapies. Several studies suggested that blocking the α1-adrenoceptors could restore normal heart rhythm in arrhythmia. In this study, we aimed to assess the antiarrhythmic potential of S-61 and S-73, two novel pyrrolidin-2-one derivatives with high affinity for α1-adrenergic receptors. First, using radioligand binding studies, we demonstrated that S-61 and S-73 did not bind with β1-adrenoceptors. Next, we assessed whether S-61 and S-73 could protect rats against arrhythmia in adrenaline-, calcium chloride- and aconitine-induced arrhythmia models. Both compounds showed potent prophylactic antiarrhythmic properties in the adrenaline-induced arrhythmia model, but the effect of S-61 was more pronounced. None of the compounds displayed antiarrhythmic effects in calcium chloride- or aconitine-induced arrhythmia models. Interestingly, both derivatives revealed therapeutic antiarrhythmic activity in the adrenaline-induced arrhythmia, diminishing heart rhythm irregularities. Neither S-61 nor S-73 showed proarrhythmic potential in rats. Finally, the compounds decreased blood pressure in rodents. The hypotensive effects were not observed after coadministration with methoxamine, which suggests the α1-adrenolytic properties of both compounds. Our results confirm that pyrrolidin-2-one derivatives possess potent antiarrhythmic properties. Given the promising results of our experiments, further studies on pyrrolidin-2-one derivatives might result in the development of a new class of antiarrhythmic drugs. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

30 pages, 44638 KiB  
Article
L-DOPA and Droxidopa: From Force Field Development to Molecular Docking into Human β2-Adrenergic Receptor
by Andrea Catte, Akash Deep Biswas, Giordano Mancini and Vincenzo Barone
Life 2022, 12(9), 1393; https://doi.org/10.3390/life12091393 - 6 Sep 2022
Cited by 1 | Viewed by 4066
Abstract
The increasing interest in the molecular mechanism of the binding of different agonists and antagonists to β2-adrenergic receptor (β2AR) inactive and active states has led us to investigate protein–ligand interactions using molecular docking calculations. To perform this study, [...] Read more.
The increasing interest in the molecular mechanism of the binding of different agonists and antagonists to β2-adrenergic receptor (β2AR) inactive and active states has led us to investigate protein–ligand interactions using molecular docking calculations. To perform this study, the 3.2 Å X-ray crystal structure of the active conformation of human β2AR in the complex with the endogenous agonist adrenaline has been used as a template for investigating the binding of two exogenous catecholamines to this adrenergic receptor. Here, we show the derivation of L-DOPA and Droxidopa OPLS all atom (AA) force field (FF) parameters via quantum mechanical (QM) calculations, molecular dynamics (MD) simulations in aqueous solutions of the two catecholamines and the molecular docking of both ligands into rigid and flexible β2AR models. We observe that both ligands share with adrenaline similar experimentally observed binding anchor sites, which are constituted by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Moreover, both L-DOPA and Droxidopa molecules exhibit binding affinities comparable to that predicted for adrenaline, which is in good agreement with previous experimental and computational results. L-DOPA and Droxidopa OPLS AA FFs have also been tested by performing MD simulations of these ligands docked into β2AR proteins embedded in lipid membranes. Both hydrogen bonds and hydrophobic interaction networks observed over the 1 μs MD simulation are comparable with those derived from molecular docking calculations and MD simulations performed with the CHARMM FF. Full article
Show Figures

Figure 1

19 pages, 5686 KiB  
Article
Anti-Hypertensive Activity of Some Selected Unani Formulations: An Evidence-Based Approach for Verification of Traditional Unani Claims Using LC-MS/MS for the Evaluation of Clinically Relevant Blood Parameters in Laboratory Rats
by Md. Adil Shaharyar, Rudranil Bhowmik, Obaid Afzal, Abdulmalik S. A. Altamimi, Sami I. Alzarea, Waleed Hassan Almalki, Sk Zeeshan Ali, Pallab Mandal, Avishek Mandal, Mohd Ayoob, Imran Kazmi and Sanmoy Karmakar
J. Clin. Med. 2022, 11(15), 4628; https://doi.org/10.3390/jcm11154628 - 8 Aug 2022
Cited by 1 | Viewed by 4397
Abstract
Background: Systemic arterial hypertension, which is associated with an increased risk of cardiovascular disease(CVD), is the most significant modifiable risk factor for mortality and morbidity worldwide. WHO has recognized Unanipathy as an alternate system of medicine. The aim of the present study is [...] Read more.
Background: Systemic arterial hypertension, which is associated with an increased risk of cardiovascular disease(CVD), is the most significant modifiable risk factor for mortality and morbidity worldwide. WHO has recognized Unanipathy as an alternate system of medicine. The aim of the present study is to investigate the anti-hypertensive activity of some selected unani formulations using L-NAME model. Method: Group I or hypertensive control group: L-NAME administered for 7 days and left for the next 7 days; Group II or KASgroup: L-NAME administered (i.p) for 7 days and L-NAME + KAS (1000 mg/kg b.w) for the next 7 days; Group III or DMM group: L-NAME administered (i.p) for 7 days and L-NAME + DMM (2000 mg/kg b.w) for the next 7 days; Group IV or MSR group: L-NAME administered (i.p) for 7 days and L-NAME + MSR (300 mg/kg b.w) for the next 7 days; Group V or HJ group: L-NAME administered (i.p) for 7 days and L-NAME + HJ (113 mg/kg b.w) for the next 7 days; Group VI or KGS group: L-NAME administered (i.p) for 7 days and L-NAME +KGS (2000 mg/kg b.w) for the next 7 days. Non-invasive systolic blood pressure and RR-interval (ECG) was measured. Plasma was investigated forsodium, potassium, nitrite, ANP, adrenaline, noradrenaline and aldosterone on day 0, 7 and 14 using LC-MS/MS. Result: Treatment showed a non-significant lowreduction in SBP (systolic blood pressure) of KAS, MSR and HJ while that of DMM was quite significant (p < 0.05), but in the case of KGS, SBP increased. DMM on day 14 significantly (p < 0.05) reduced plasma nitrite while no significant plasma Na+ was noted. In the case of both DMM and KGS, potassium increased significantly (p < 0.05) on day 14. No significant changes in plasma ANP and aldosterone was observed against DMM and KGS while blood levels of adrenaline and noradrenaline significantly (p < 0.05) changed. No significant change in body weight was found. Conclusions: L-NAME KAS, MSR and HJ showed no change in SBP while DMM showed a significant reduction in SBP with decreased plasma nitrite. Probably, DMM may have anti-hypertensive activity mediated through NO inhibition while KGS may involve central sympathomimetic action. Full article
Show Figures

Graphical abstract

Back to TopTop