Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (249)

Search Parameters:
Keywords = adenosine A2B receptors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 14108 KB  
Article
Levistolide A Alleviates Myocardial Ischemia–Reperfusion Injury Partly by Improving Calcium Homeostasis via the ADORA2B/cAMP/PKA/PLB/SERCA2α Signaling Axis
by Yaofeng Li, Yuxin Lu, Xiangyun Chen and Mengyue Guo
Curr. Issues Mol. Biol. 2026, 48(2), 125; https://doi.org/10.3390/cimb48020125 - 23 Jan 2026
Viewed by 69
Abstract
This study aims to investigate the protective effect of the natural phthalide compound Levistolide A (LA) against myocardial ischemia–reperfusion injury (MIRI) and to elucidate its underlying mechanisms. Utilizing network pharmacology, potential targets of LA in the treatment of MIRI were predicted. Subsequently, a [...] Read more.
This study aims to investigate the protective effect of the natural phthalide compound Levistolide A (LA) against myocardial ischemia–reperfusion injury (MIRI) and to elucidate its underlying mechanisms. Utilizing network pharmacology, potential targets of LA in the treatment of MIRI were predicted. Subsequently, a hypoxia/reoxygenation (H/R) model was established using rat H9C2 cardiomyocytes to simulate MIRI, and the mechanisms of action were validated through cellular experiments. Network pharmacology analysis indicated that the potential targets of LA in treating MIRI were significantly enriched in calcium signaling pathways, with the adenosine A2B receptor (ADORA2B), a G protein-coupled receptor (GPCR), identified as a key protein. Cellular experiments demonstrated that 24 μM LA significantly alleviated H/R-induced damage in H9C2 cells, enhanced cell viability, and reduced the release of lactate dehydrogenase (LDH), creatine kinase isoenzyme MB (CK-MB), and cardiac troponin I (cTnI). Pre-treatment with LA significantly activated the ADORA2B/Cyclic adenosine monophosphate (cAMP)/Protein kinase A (PKA) signaling axis, promoting the phosphorylation of phospholamban (PLB), enhancing the activity and protein expression of sarco/endoplasmic reticulum Ca2+-ATPase 2 alpha (SERCA2α), and effectively mitigating intracellular calcium overload induced by H/R. However, the ADORA2B antagonist MRS 1754 partially reverses the aforementioned protective effects of LA. The findings of this study reveal a novel mechanism by which LA exerts cardioprotective effects through the ADORA2B/cAMP/PKA/PLB/SERCA2α signaling axis, preventing calcium overload and improving calcium homeostasis, and identify potential candidate compounds and precise targets for the treatment of MIRI. Full article
Show Figures

Figure 1

18 pages, 1992 KB  
Article
Paeonia lactiflora Callus-Derived Polynucleotides Enhance Collagen Accumulation in Human Dermal Fibroblasts
by Soyoung Hwang, Seunghye Park, Jin Woo Lee, Mira Park, Le Anh Nguyet, Yongsung Hwang, Keunsun Ahn, Hyun-young Shin and Kuk Hui Son
J. Funct. Biomater. 2026, 17(1), 56; https://doi.org/10.3390/jfb17010056 - 22 Jan 2026
Viewed by 131
Abstract
Plant-derived polynucleotides (PNs) have emerged as promising regenerative biomolecules; however, their mechanisms remain less defined than those of salmon-derived polydeoxyribonucleotides (S-PDRNs). Here, we extracted polynucleotides from Paeonia lactiflora callus (PL-PN) and evaluated their biological effects on human dermal fibroblasts. PL-PN treatment increased cell [...] Read more.
Plant-derived polynucleotides (PNs) have emerged as promising regenerative biomolecules; however, their mechanisms remain less defined than those of salmon-derived polydeoxyribonucleotides (S-PDRNs). Here, we extracted polynucleotides from Paeonia lactiflora callus (PL-PN) and evaluated their biological effects on human dermal fibroblasts. PL-PN treatment increased cell viability and pro-collagen I α1 secretion. PL-PN enhanced adenosine A2A receptor expression and activated the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway, accompanied by increased Cyclin D1 levels, retinoblastoma protein (Rb) phosphorylation, and nuclear proliferating cell nuclear antigen (PCNA) levels, indicating an accelerated G1/S transition. PL-PN also significantly reduced nuclear NF-κB localization and downregulated MMP1, MMP3, MMP9, and MMP13, suggesting attenuation of inflammatory and catabolic signaling. Furthermore, PL-PN increased TGF-β maturation, Smad2/3 phosphorylation, and the transcription of COL1A1, COL3A1, and elastin, resulting in enhanced collagen and elastin deposition. These effects are comparable to those of S-PDRN. Although the pathway specificity and in vivo relevance require further studies, our findings provide evidence that PL-PN promotes extracellular matrix regeneration via coordinated proliferative, anabolic, and anti-inflammatory actions. Thus, PL-PN represents a potential sustainable plant-based alternative to S-PDRN for dermatological regeneration. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

16 pages, 2693 KB  
Article
Vitamin E Modulates Hepatic Extracellular Adenosine Signaling to Attenuate Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by Mengting Shan, Magdeline E. Carrasco Apolinario, Tomoko Tokumaru, Kenshiro Shikano, Phurpa Phurpa, Ami Kato, Hitoshi Teranishi, Shinichiro Kume, Nobuyuki Shimizu, Tatsuki Kurokawa, Takatoshi Hikida, Toshikatsu Hanada, Yulong Li and Reiko Hanada
Int. J. Mol. Sci. 2026, 27(2), 614; https://doi.org/10.3390/ijms27020614 - 7 Jan 2026
Viewed by 217
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves early disturbances such as excessive lipid accumulation, sterile inflammation, and hepatocellular stress. The results of recent studies have highlighted extracellular ATP and its metabolite adenosine (Ado) as damage-associated molecular patterns (DAMPs) that drive inflammation, endoplasmic reticulum [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) involves early disturbances such as excessive lipid accumulation, sterile inflammation, and hepatocellular stress. The results of recent studies have highlighted extracellular ATP and its metabolite adenosine (Ado) as damage-associated molecular patterns (DAMPs) that drive inflammation, endoplasmic reticulum (ER) stress, and steatosis, contributing to MASLD progression. Although vitamin E is clinically used for its antioxidant and anti-inflammatory properties, it remains unclear whether its therapeutic effects involve modulation of DAMP-associated signaling. To address this gap, we used transgenic zebrafish expressing a liver-specific G-protein-coupled receptor activation-based adenosine sensor (GRABAdo). We found that a high-cholesterol diet markedly increased hepatic extracellular Ado levels, combined with inflammatory and ER stress-associated gene expression. Vitamin E significantly reduced extracellular Ado levels and hepatic lipid accumulation. Based on RNA sequencing results, vitamin E restored the expression of genes encoding calcium-handling proteins, including atp2a1 and atp1b1b. These genes encode components of the sarco/ER Ca2+-ATPase (SERCA) machinery, which is essential for maintaining ER Ca2+ homeostasis and preventing stress-induced hepatic injury. CDN1163-mediated SERCA activation phenocopied the protective effect of vitamin E, supporting a Ca2+-dependent mechanism. Together, these findings highlight extracellular Ado signaling and impaired SERCA-mediated Ca2+ regulation as early drivers of MASLD and demonstrate that vitamin E ameliorates steatosis by targeting both pathways. Full article
Show Figures

Figure 1

14 pages, 1545 KB  
Article
CAR Intrinsic Design Pre-Shapes Transcriptional and Metabolic Networks in CAR T Cells
by Didem Agac Cobanoglu, Samantha Franklin, Yue Hu, Devon J. Boland and Xiaotong Song
Metabolites 2026, 16(1), 52; https://doi.org/10.3390/metabo16010052 - 7 Jan 2026
Viewed by 250
Abstract
Background/Objectives: Chimeric antigen receptor (CAR) T cells are a powerful cancer therapy, but their function depends heavily on internal signaling domains and metabolic adaptability. Most studies evaluate CAR behavior upon antigen exposure, yet intrinsic signaling properties may pre-program CAR T cell states even [...] Read more.
Background/Objectives: Chimeric antigen receptor (CAR) T cells are a powerful cancer therapy, but their function depends heavily on internal signaling domains and metabolic adaptability. Most studies evaluate CAR behavior upon antigen exposure, yet intrinsic signaling properties may pre-program CAR T cell states even in the absence of stimulation. This study investigates how CAR design and metabolic support shape baseline transcriptional programs, focusing on tonic signaling and NF-κB-related pathways. Methods: We engineered CAR T cells targeting HER2 or GPC3 antigens, incorporating either 4-1BB or CD28 co-stimulatory domains, respectively. A subset of cells was further modified with adenosine deaminase 1 (ADA1) and CD26 to degrade extracellular adenosine and supply inosine, a metabolic strategy termed metabolic refueling (MR). Bulk RNA-seq was performed on resting T cells without antigen stimulation. We analyzed differential gene expression, gene set enrichment (GO, KEGG, Hallmarks), and transcription factor activity (DoRothEA) to assess the impact of CAR design and MR on T cell programming. Results: All CAR T cells exhibited activation of NF-κB–centered inflammatory programs at baseline, indicating tonic signaling. GPC3 CAR T cells showed stronger baseline activation than HER2 CAR T cells. Metabolic refueling amplified these programs without altering their directionality, enhancing inflammatory, survival, and effector modules. Transcription factor activity scores mirrored these trends, highlighting RELA, FOS, and STATs as key regulatory nodes. Conclusions: CAR-intrinsic features, notably co-stimulatory domain choice, define the tonic NF-κB activation tone in resting CAR T cells. Metabolic refueling boosts these baseline states without overstimulation, suggesting it may be especially valuable for weaker CAR constructs. These findings provide a framework for tuning CAR T cell function through combinatorial design strategies targeting signaling and metabolism. Full article
Show Figures

Figure 1

29 pages, 3722 KB  
Review
Glial Cells in the Early Stages of Neurodegeneration: Pathogenesis and Therapeutic Targets
by Eugenia Ahremenko, Alexander Andreev, Danila Apushkin and Eduard Korkotian
Int. J. Mol. Sci. 2025, 26(24), 11995; https://doi.org/10.3390/ijms262411995 - 12 Dec 2025
Viewed by 1189
Abstract
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns [...] Read more.
Astrocytes and microglia constitute nearly half of all central nervous system cells and are indispensable for its proper function. Both exhibit striking morphological and functional heterogeneity, adopting either neuroprotective (A2, M2) or proinflammatory (A1, M1) phenotypes in response to cytokines, pathogen-associated molecular patterns (PAMPs)/damage-associated molecular patterns (DAMPs), toll-like receptor 4 (TLR4) activation, and NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling. Crucially, many of these phenotypic transitions arise during the earliest stages of neurodegeneration, when glial dysfunction precedes overt neuronal loss and may act as a primary driver of disease onset. This review critically examines glial-centered hypotheses of neurodegeneration, with emphasis on their roles in early disease phases: (i) microglial polarization from an M2 neuroprotective state to an M1 proinflammatory state; (ii) NLRP3 inflammasome assembly via P2X purinergic receptor 7 (P2X7R)-mediated K+ efflux; (iii) a self-amplifying astrocyte–microglia–neuron inflammatory feedback loop; (iv) impaired microglial phagocytosis and extracellular-vesicle–mediated propagation of β-amyloid (Aβ) and tau; (v) astrocytic scar formation driven by aquaporin-4 (AQP4), matrix metalloproteinase-9 (MMP-9), glial fibrillary acidic protein (GFAP)/vimentin, connexins, and janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling; (vi) cellular reprogramming of astrocytes and NG2 glia into functional neurons; and (vii) mitochondrial dysfunction in glia, including Dynamin-related protein 1/Mitochondrial fission protein 1 (Drp1/Fis1) fission imbalance and dysregulation of the sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Sirt1/PGC-1α) axis. Promising therapeutic strategies target pattern-recognition receptors (TLR4, NLRP3/caspase-1), cytokine modulators (interleukin-4 (IL-4), interleukin-10 (IL-10)), signaling cascades (JAK2–STAT, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3-kinase–protein kinase B (PI3K–AKT), adenosine monophosphate-activated protein kinase (AMPK)), microglial receptors (triggering receptor expressed on myeloid cells 2 (TREM2)/spleen tyrosine kinase (SYK)/ DNAX-activating protein 10 (DAP10), siglec-3 (CD33), chemokine C-X3-C motif ligand 1/ CX3C motif chemokine receptor 1 (CX3CL1/CX3CR1), Cluster of Differentiation 200/ Cluster of Differentiation 200 receptor 1 (CD200/CD200R), P2X7R), and mitochondrial biogenesis pathways, with a focus on normalizing glial phenotypes rather than simply suppressing pathology. Interventions that restore neuroglial homeostasis at the earliest stages of disease may hold the greatest potential to delay or prevent progression. Given the complexity of glial phenotypes and molecular isoform diversity, a comprehensive, multitargeted approach is essential for mitigating Alzheimer’s disease and related neurodegenerative disorders. This review not only synthesizes pathogenesis but also highlights therapeutic opportunities, offering what we believe to be the first concise overview of the principal hypotheses implicating glial cells in neurodegeneration. Rather than focusing on isolated mechanisms, our goal is a holistic perspective—integrating diverse glial processes to enable comparison across interconnected pathological conditions. Full article
(This article belongs to the Special Issue Early Molecular Markers of Neurodegeneration)
Show Figures

Graphical abstract

25 pages, 9141 KB  
Article
A2BAR-Mediated Antiproliferative and Anticancer Effects of Okhotoside A1-1 in Monolayer and 3D Culture of Human Breast Cancer MDA-MB-231 Cells
by Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Ekaterina A. Yurchenko, Elena A. Zelepuga, Evgeny A. Pislyagin, Liliana E. Nesterenko, Sergey A. Avilov, Vladimir I. Kalinin, Dmitry L. Aminin and Alexandra S. Silchenko
Mar. Drugs 2025, 23(12), 456; https://doi.org/10.3390/md23120456 - 27 Nov 2025
Viewed by 2399
Abstract
The aim of this study is to investigate the A2BAR-dependence of okhotoside A1-1 cytotoxic and antiproliferative action on triple-negative MDA-MB-231 breast cancer cells using monolayer and 3D culture approaches. Earlier triterpene glycoside okhotoside A1-1 (Okh) was isolated [...] Read more.
The aim of this study is to investigate the A2BAR-dependence of okhotoside A1-1 cytotoxic and antiproliferative action on triple-negative MDA-MB-231 breast cancer cells using monolayer and 3D culture approaches. Earlier triterpene glycoside okhotoside A1-1 (Okh) was isolated from the sea cucumbers Cucumaria djakonovi and C. conicospermium and its selective cytotoxicity against MDA-MB-231 vs. non-tumorigenic MCF-10A cells was reported. Now it has been found that the A2B adenosine receptor (A2BAR) is one of the molecular targets for Okh and its antiproliferative effect is A2BAR-dependent. Molecular docking studies suggested a unique behavior for Okh demonstrating two highly probable binding modes with comparable affinity, when the aglycone is immersed in the binding pocket, or alternatively, the carbohydrate moiety occupies the site. The glycoside modulated cAMP and intracellular Ca2+ levels in an A2BAR-dependent manner, which accompanied by the suppression of p38 MAPK and ERK1/2 phosphorylation, and blocked cell cycle progression. Okh induced mitochondrial dysfunction, characterized by increased ROS production and loss of the mitochondrial membrane potential (ΔΨm), which led to the upregulation of APAF-1 and cytochrome C, activation of caspases-9 and -3, and initiation of apoptosis. The antitumor potential of Okh was confirmed in a 3D culture of MDA-MB-231 cells and was more significant than those of another A2BAR-targeted triterpene glycoside cucumarioside A0-1 and cisplatin. Full article
(This article belongs to the Special Issue Novel Biomaterials and Active Compounds from Sea Cucumbers)
Show Figures

Graphical abstract

24 pages, 2429 KB  
Article
Protective Role of Ginsenoside F1-Enriched Extract (SGB121) in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD)
by Bo Yoon Chang, In Kim, Hyungmin Park, Sunchang Kim and Sung Yeon Kim
Nutrients 2025, 17(23), 3693; https://doi.org/10.3390/nu17233693 - 25 Nov 2025
Viewed by 751
Abstract
Introduction/Objectives: Ginsenoside F1, a pharmacologically active saponin derived from Panax ginseng, exhibits diverse bioactivities, but its use is limited because it is difficult to purify and has high production costs. To overcome these challenges, a ginsenoside F1-enriched extract named SGB121 was developed. [...] Read more.
Introduction/Objectives: Ginsenoside F1, a pharmacologically active saponin derived from Panax ginseng, exhibits diverse bioactivities, but its use is limited because it is difficult to purify and has high production costs. To overcome these challenges, a ginsenoside F1-enriched extract named SGB121 was developed. This study aimed to evaluate the therapeutic efficacy of SGB121 in a high-fat, high-carbohydrate (HFHC) diet-induced metabolic dysfunction-associated fatty liver disease (MAFLD) mouse model and to elucidate its mechanism of action using F1-based cellular assays. Methods: Male C57BL/6 mice (6 weeks old) were fed an HFHC diet to induce MAFLD and were treated with SGB121. Hepatic lipid accumulation, oxidative stress markers, and metabolic parameters were analyzed. In parallel, human hepatocellular carcinoma (HepG2) cells exposed to free fatty acids (FFAs) were used to assess oxidative stress and lipid accumulation. Mechanistic studies were conducted using purified F1 to examine adenosine monophosphate-activated protein kinase (AMPK) activation and related pathways. Results: SGB121 reduced hepatic lipid accumulation, malondialdehyde (MDA) levels, and fasting insulin while restoring glutathione (GSH) content and improving the homeostasis model assessment of insulin resistance (HOMA-IR) in MAFLD mice. In FFA-treated HepG2 cells, both SGB121 and F1 decreased reactive oxygen species (ROS), suppressed sterol regulatory element-binding protein 1 (SREBP1), enhanced peroxisome proliferator-activated receptor-α (PPARα) and β-oxidation, and restored insulin receptor substrate (IRS)/protein kinase B (Akt)/glucose transporter 2 (GLUT2) signaling. Conclusions: SGB121 ameliorates MAFLD and related metabolic dysfunction through antioxidant, lipid-regulating, and insulin-sensitizing actions, highlighting its potential as a safe multifunctional nutraceutical for MAFLD management. Full article
Show Figures

Graphical abstract

18 pages, 3169 KB  
Article
Dehydroandrographolide Alleviates Oxidative Stress, Inflammatory Response, and Pyroptosis in DSS-Induced Colitis Mice by Modulating Nrf2 Signaling Pathway
by Meifen Wang, Zhenyu Li, Xinghua Lei, Ziyue Yang, Shuixing Yu and Guangxin Chen
Biomolecules 2025, 15(11), 1580; https://doi.org/10.3390/biom15111580 - 10 Nov 2025
Viewed by 730
Abstract
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated [...] Read more.
Dehydroandrographolide (DA), a bioactive diterpenoid from Andrographis paniculata with diverse biological activity, was investigated for its antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and dextran sulfate sodium (DSS)-induced murine colitis. In vitro, DA inhibited the inflammatory response by modulating extracellular Signal-Regulated Kinase (Erk), c-Jun N-terminal Kinase (Jnk), p38 Mitogen-Activated Protein Kinase (P38), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 activation, and downregulated interleukin-6 (il-6) and interleukin-1β (il-1β) mRNA. It also had antioxidant effects by upregulating Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (Nqo-1) and heme oxygenase-1 (Ho-1), promoting protein kinase B (Akt) and 5′-adenosine monophosphate-activated protein kinase-α1 (Ampk-α1) phosphorylation. DA decreased cyclooxygenase-2 (Cox-2) and inducible nitric oxide synthase (iNos) levels and alleviated intracellular reactive oxygen species (ROS) accumulation. In vivo, DA alleviated DSS-induced colitis in wild type (WT) mice by improving weight loss, disease activity index, colonic inflammation, and oxidative stress. The beneficial effects were linked to inhibiting Erk, Jnk, and P38 activation and enhancing Nrf2 signaling pathway. DA inhibited NOD-like receptor family pyrin domain-containing 3 (Nlrp3) inflammasome-mediated pryoptosis. However, DA’s protective effects were abolished in DSS-induced nrf2−/− mice, suggesting its efficacy depends on Nrf2 signaling. Overall, DA alleviates oxidative stress, inflammatory responses, and pyroptosis in experimental colitis mice mainly by activating Nrf2 signaling pathway, highlighting its potential as a promising therapeutic option for inflammatory bowel disease. Full article
(This article belongs to the Special Issue The Value of Natural Compounds as Therapeutic Agents: 3rd Edition)
Show Figures

Figure 1

23 pages, 4098 KB  
Article
Anticancer Activity of Triterpene Glycosides Cucumarioside A0-1 and Djakonovioside A Against MDA-MB-231 as A2B Adenosine Receptor Antagonists
by Elena A. Zelepuga, Ekaterina A. Chingizova, Ekaterina S. Menchinskaya, Evgeny A. Pislyagin, Sergey A. Avilov, Vladimir I. Kalinin, Dmitry L. Aminin and Alexandra S. Silchenko
Int. J. Mol. Sci. 2025, 26(21), 10327; https://doi.org/10.3390/ijms262110327 - 23 Oct 2025
Cited by 1 | Viewed by 681
Abstract
Breast cancer is the most prevalent cancer in women worldwide and presents a major therapeutic challenge, particularly triple-negative breast cancer (TNBC), a subtype characterized by an aggressive clinical course but heightened sensitivity to chemotherapy. Natural products, such as triterpene glycosides derived from sea [...] Read more.
Breast cancer is the most prevalent cancer in women worldwide and presents a major therapeutic challenge, particularly triple-negative breast cancer (TNBC), a subtype characterized by an aggressive clinical course but heightened sensitivity to chemotherapy. Natural products, such as triterpene glycosides derived from sea cucumbers, have emerged as promising candidates with high anticancer potential against TNBC. This study investigated the pathways of anticancer action of cucumarioside A0-1 (Cuc A0-1) and djakonovioside A (Dj A), isolated from the sea cucumber Cucumaria djakonovi, triggered and regulated in MDA-MB-231 cells (triple-negative breast cancer cell line). We employed functional assays (cAMP level, Ca2+ influx, control of cell proliferation and colony formation), Western blotting for mitogen-activated protein kinase MAPK) signaling, and in silico molecular docking. A2B adenosine receptor (A2BAR) was identified as a novel target for both glycosides. As antagonists, they reduced cAMP production and inhibited NECA (5-(N-ethylcarboxamido)adenosine)-induced Ca2+ influx. This A2BAR blockade suppressed the MAPK pathway, profoundly inhibiting phospho-ERK1/2, p38, and JNK1/2, which led to the activation of the intrinsic apoptotic pathway and strong inhibition of cell proliferation and colony formation. Surprisingly, co-treatment with the NECA agonist enhanced the antiproliferative effects of the glycosides. It was supposed that the interaction of glycosides with the NECA-preactivated receptor may bias signaling toward the Gi and Gq/PLC/ERK1/2 pathways, underscoring the central role of the MAPK pathway in controlling cell growth. Molecular docking confirmed binding to the A2BAR orthosteric site, revealing that Cuc A0-1 and Dj A employ distinct interaction modes. To our knowledge, this is the first report to define A2BAR as a target for sea cucumber glycosides. Their potent antitumor effects, mediated through the antagonism of A2BAR and subsequent MAPK pathway inhibition, position them as promising lead compounds for cancer types with high expression A2BAR. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 3021 KB  
Article
Neuroprotection by Flaxseed Oil in a Model of Hippocampal Injury Induced by Trimethyltin Involves Purinergic System Modulation
by Nataša Mitrović, Marina Zarić Kontić and Ivana Grković
Int. J. Mol. Sci. 2025, 26(21), 10283; https://doi.org/10.3390/ijms262110283 - 22 Oct 2025
Viewed by 993
Abstract
A large body of evidence suggests that flaxseed oil (FSO), one of the richest sources of essential omega-3 fatty acids, has neuroprotective properties. Purinergic signaling plays a crucial role in pathophysiological processes in the nervous system. There is a lack of evidence regarding [...] Read more.
A large body of evidence suggests that flaxseed oil (FSO), one of the richest sources of essential omega-3 fatty acids, has neuroprotective properties. Purinergic signaling plays a crucial role in pathophysiological processes in the nervous system. There is a lack of evidence regarding the effects of FSO on the purinergic system under both physiological and neurotoxic conditions. Here we report the effects of dietary FSO consumption in a rat model of trimethyltin (TMT) intoxication. Exposure to TMT selectively induces hippocampal neuronal damage and glial reactivation associated with oxidative stress and neuroinflammation, causing severe behavioral impairments. When administered orally (1 mL/kg) before and during TMT intoxication (single dose 8 mg/kg, i.p.) to female Wistar rats, FSO effectively prevented the behavioral disturbances induced by TMT. FSO selectively increased CAT-mRNA level in both healthy and TMT-intoxicated animals, while preventing TMT-induced upregulation of Nrf2, NF-κB, and GPx1 without affecting SOD2 or Gsr-mRNA levels. FSO prevented microgliosis, microglial NTPDase1-eN upregulation, and the increase in purinergic receptors involved in microglial reactivity. Pretreatment with FSO in TMT-intoxicated rats maintained the activity and expression of NTPDase1 at control level, while the activity and expression of eN and ADA were increased. FSO upregulated eN, A1R, A2BR, A3R, ADA, and NGF, while downregulating NTPDase1, A2AR, and ENT1 in TMT-intoxicated rats. This suggests complex modulation of purinergic signaling, particularly the adenosine system. These findings may contribute to a better understanding of the effects of FSO, highlighting the impact of the dietary intake of this oil on the brain. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

35 pages, 2416 KB  
Review
Adenosine Receptors in Neuroinflammation and Neurodegeneration
by Veronica Salmaso, Silvia Menin, Stefano Moro, Giampiero Spalluto and Stephanie Federico
Cells 2025, 14(20), 1585; https://doi.org/10.3390/cells14201585 - 11 Oct 2025
Viewed by 2513
Abstract
Adenosine plays a crucial role in various pathophysiological conditions, including neuroinflammation and neurodegeneration. Neuroinflammation can be either beneficial or detrimental to the central nervous system, depending on the intensity and duration of the inflammatory response. Across a wide range of brain disorders, neuroinflammation [...] Read more.
Adenosine plays a crucial role in various pathophysiological conditions, including neuroinflammation and neurodegeneration. Neuroinflammation can be either beneficial or detrimental to the central nervous system, depending on the intensity and duration of the inflammatory response. Across a wide range of brain disorders, neuroinflammation contributes to both the onset and progression of disease. Notably, neuroinflammation is not limited to conditions primarily classified as neuroinflammatory but is also a key factor in other neurological disorders, including life-threatening neurodegenerative diseases. All four adenosine receptor subtypes (A1, A2A, A2B, and A3) are implicated, to varying degrees, in these conditions. This review aims to summarize the roles of individual adenosine receptor subtypes in neuroinflammation and neurodegenerative diseases, emphasizing their therapeutic potential. While some therapeutic applications are well-established with clinically approved drugs, others warrant further investigation due to their promising potential. Full article
Show Figures

Figure 1

18 pages, 3700 KB  
Article
Polynucleotides Enhance Collagen Synthesis via Modulating Phosphoenolpyruvate Carboxykinase 1 in Senescent Macrophages: Experimental Evidence
by Kyung-A Byun, Hyun Jun Park, Seyeon Oh, Kuk Hui Son and Kyunghee Byun
Int. J. Mol. Sci. 2025, 26(17), 8720; https://doi.org/10.3390/ijms26178720 - 7 Sep 2025
Cited by 1 | Viewed by 2329
Abstract
Polynucleotide (PN), a high-molecular-weight DNA fragment derived from salmon and other fish sources, shows promising anti-aging and regenerative effects on the skin. This study investigated how PN enhances collagen synthesis, focusing on its effect on phosphoenolpyruvate carboxykinase 1 (PCK1) in senescent macrophages and [...] Read more.
Polynucleotide (PN), a high-molecular-weight DNA fragment derived from salmon and other fish sources, shows promising anti-aging and regenerative effects on the skin. This study investigated how PN enhances collagen synthesis, focusing on its effect on phosphoenolpyruvate carboxykinase 1 (PCK1) in senescent macrophages and its downstream effects on fibroblasts. Using in vitro senescent cell models and in vivo aged animal models, PN significantly upregulated the adenosine 2A receptor (A2AR), adenylate cyclase (AC), cyclic AMP (cAMP), protein kinase A (PKA), and cAMP response element-binding protein (CREB) in senescent macrophages. This led to increased PCK1 expression, which reduced oxidative stress and promoted M2 macrophage polarization, associated with elevated levels of interleukin-10 and tumor growth factor-β. Conditioned media from PN-treated macrophages enhanced SMAD family member 2 and signal transducer and activator of transcription 3 phosphorylation in senescent fibroblasts, increasing collagen I and III synthesis and reducing nuclear factor-κB activity. In vivo, PN administration elevated expression of the A2AR/AC/PKA/CREB/PCK1 pathway, reduced oxidative stress, increased M2 macrophage markers, and significantly improved collagen density and skin elasticity over time. Use of a PCK1 inhibitor attenuated these effects, highlighting the pivotal role of PCK1. Overall, PN modulates macrophage-fibroblast interactions via the CREB/PCK1 axis, enhancing collagen synthesis and counteracting age-related skin changes. PN has emerged as a promising therapeutic agent for skin rejuvenation by targeting cellular senescence and promoting extracellular matrix restoration. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 1008 KB  
Review
Follow the Molecule from Crystal Arthropathy to Comorbidities: The 2024 G-CAN Gold Medal Award Awardee Lecture
by Robert Terkeltaub
Gout Urate Cryst. Depos. Dis. 2025, 3(3), 17; https://doi.org/10.3390/gucdd3030017 - 2 Sep 2025
Viewed by 1338
Abstract
Gout and calcium pyrophosphate crystal deposition disease (CPPD) are frequently associated with comorbid disorders, including coronary artery disease and osteoarthritis, in which ectopic calcification with basic calcium phosphate crystals commonly affects arteries and articular cartilage, respectively. Accepting the 2024 G-CAN Gold Medal, I [...] Read more.
Gout and calcium pyrophosphate crystal deposition disease (CPPD) are frequently associated with comorbid disorders, including coronary artery disease and osteoarthritis, in which ectopic calcification with basic calcium phosphate crystals commonly affects arteries and articular cartilage, respectively. Accepting the 2024 G-CAN Gold Medal, I review my research philosophy for translational etiopathogenesis investigation in gout and CPPD, atherosclerosis, responses to arterial injury, and osteoarthritis. Since molecular homeostasis points to pathophysiology and vice versa, I have followed selected molecular players and pathways to phenotypes. Typically, behind each disease target is another target. Illuminating passageways between etiopathogenic pathways is especially productive when using approaches beyond conventional “omics” to reveal the impact of specific post-translational protein modifications, and changes in protein conformation, complex assembly, and interactomes. Highlighting these concepts, I review my past studies on specific molecular pathways, and current perspectives for the following: (i) PPi, NPP1, ANKH, and transglutaminase 2 (TG2); (ii) relationships between NPP1, ANKH, Vanin-1 Pantetheinase, and ectopic chondrogenesis; (iii) intersections between adenosine, AMPK, CXCL8 and its receptor CXCR2, the receptor for advanced glycation endproducts (RAGE) and chondrocyte hypertrophy; (iv) lubricin homeostasis and proteolysis; (v) receptor for advanced glycation endproducts (RAGE) and TG2-catalyzed post-translational calgranulin modification; (vi) complement activation and C5b-9 assembly, and the nucleotide-bound conformation of TG2. The inescapable conclusion is that these molecular pathways tightly knit crystal arthropathy with both arterial and osteoarthritis comorbidity. Full article
Show Figures

Figure 1

21 pages, 2033 KB  
Article
Aqueous Dispersion of Unmodified Fullerene C60: Stimulation of Hair Growth and Study of a New Molecular Target for Interaction
by Nadezda Shershakova, Elena Baraboshkina, Dmitry Khochenkov, Evgeny Turetskiy, Alexandra Nikonova, Oleg Kamyshnikov, Daria Bolyakina, Veronika Parshina, Daria Shabanova, Evelina Makarova, Sergey Andreev, Dmitry Kudlay and Musa Khaitov
Int. J. Mol. Sci. 2025, 26(17), 8517; https://doi.org/10.3390/ijms26178517 - 2 Sep 2025
Cited by 1 | Viewed by 1872
Abstract
Hair loss (alopecia) is a common disorder caused by an interruption in the body’s cycle of hair production. This pathology negatively affects the psychoemotional state of patients and significantly reduces their quality of life. The currently available medical treatments (including minoxidil therapy) are [...] Read more.
Hair loss (alopecia) is a common disorder caused by an interruption in the body’s cycle of hair production. This pathology negatively affects the psychoemotional state of patients and significantly reduces their quality of life. The currently available medical treatments (including minoxidil therapy) are effective in arresting the progression of the disease; however, they allow only partial regrowth of hair at best. A significant clinical result occurs only with regular drug use. There is still great interest in finding new drugs for the treatment of alopecia. In this study, we aimed to examine the effect of an aqueous dispersion of unmodified fullerene C60 (ADF) on hair growth. ADF, produced by a unique technology, is biocompatible and non-toxic. Nu/nu mice were subcutaneously injected (2 μg/animal) every two days for a period of 11 days with ADF and, for control purposes, with phosphate-buffered saline (PBS). It was shown that ADF stimulated hair growth. Histological analysis of the nu/nu mice skin areas showed that animals treated with ADF had significantly more (about twice as many) hair follicles in the anagen phase compared to mice treated with PBS. The effect on hair growth persisted even after discontinuation of ADF administration. Analysis of gene expression demonstrated that ADF affected the Wnt-signaling pathway, increased the expression of the Wnt10b (wingless-type Mouse Mammary Tumor Virus integration site family, member 10B) factor, angiogenetic factors, and downregulated tumor necrosis factor-alpha levels. We propose that the mechanism of ADF action is likely related to its ability to attract macrophages to the hair follicle microenvironment and promote their polarization to the M2 phenotype. In addition, using molecular modeling, we tried to substantiate our hypothesis about the interaction of ADF with the adenosine A2A receptor, which may cause a decrease in tumor necrosis factor-alpha production. Thus, ADF may become a promising drug for the development of new approaches to the treatment of alopecia associated with immune disorders. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

38 pages, 1248 KB  
Review
Targeting Inflammation with Natural Products: A Mechanistic Review of Iridoids from Bulgarian Medicinal Plants
by Rositsa Mihaylova, Viktoria Elincheva, Reneta Gevrenova, Dimitrina Zheleva-Dimitrova, Georgi Momekov and Rumyana Simeonova
Molecules 2025, 30(17), 3456; https://doi.org/10.3390/molecules30173456 - 22 Aug 2025
Cited by 3 | Viewed by 2654
Abstract
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for [...] Read more.
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for safer, multi-targeted therapeutic options. Iridoids, a class of monoterpenoid compounds abundant in several medicinal plants, have emerged as promising bioactive agents with diverse pharmacological properties. They exert anti-inflammatory and metabolic regulatory effects by modulating key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducer and activator of transcription (JAK/STAT), adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor (PPAR) pathways. This review provides a comprehensive summary of the major iridoid metabolites derived from ten Bulgarian medicinal plant species, along with mechanistic insights from in vitro and in vivo studies. Documented biological activities include anti-inflammatory, antioxidant, immunomodulatory, antifibrotic, organoprotective, antibacterial, antiviral, analgesic, and metabolic effects. By exploring their phytochemical profiles and pharmacodynamics, we underscore the therapeutic potential of iridoid-rich Bulgarian flora in managing inflammation-related and metabolic diseases. These findings support the relevance of iridoids as complementary or alternative agents to conventional therapies and highlight the need for further translational and clinical research. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
Show Figures

Figure 1

Back to TopTop