Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,754)

Search Parameters:
Keywords = adaptive decomposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6698 KB  
Article
A Novel Decomposition-Prediction Framework for Predicting InSAR-Derived Ground Displacement: A Case Study of the XMLC Landslide in China
by Mimi Peng, Jing Xue, Zhuge Xia, Jiantao Du and Yinghui Quan
Remote Sens. 2026, 18(3), 425; https://doi.org/10.3390/rs18030425 - 28 Jan 2026
Abstract
Interferometric Synthetic Aperture Radar (InSAR) is an advanced imaging geodesy technique for detecting and characterizing surface deformation with high spatial resolution and broad spatial coverage. However, as an inherently post-event observation method, InSAR suffers from limited capability for near-real-time and short-term updates of [...] Read more.
Interferometric Synthetic Aperture Radar (InSAR) is an advanced imaging geodesy technique for detecting and characterizing surface deformation with high spatial resolution and broad spatial coverage. However, as an inherently post-event observation method, InSAR suffers from limited capability for near-real-time and short-term updates of deformation time series. In this paper, we proposed a data-driven adaptive framework for deformation prediction based on a hybrid deep learning method to accurately predict the InSAR-derived deformation time series and take the Xi’erguazi−Mawo landslide complex (XMLC) as a case study. The InSAR-derived time series was initially decomposed into trend and periodic components with a two-step decomposition process, which were thereafter modeled separately to enhance the characterization of motion kinematics and prediction accuracy. After retrieving the observations from the multi-temporal InSAR method, two-step signal decomposition was then performed using the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Variational Mode Decomposition (VMD). The decomposed trend and periodic components were further evaluated using statistical hypothesis testing to verify their significance and reliability. Compared with the single-decomposition model, the further decomposition leads to an overall improvement in prediction accuracy, i.e., the Mean Absolute Errors (MAEs) and the Root Mean Square Errors (RMSEs) are reduced by 40–49% and 36–42%, respectively. Subsequently, the Radial Basis Function (RBF) neural network and the proposed CNN-BiLSTM-SelfAttention (CBS) models were constructed to predict the trend and periodic variations, respectively. The CNN and self-attention help to extract local features in time series and strengthen the ability to capture global dependencies and key fluctuation patterns. Compared with the single network model in prediction, the MAEs and RMSEs are reduced by 22–57% and 4–33%, respectively. Finally, the two predicted components were integrated to generate the fused deformation prediction results. Ablation experiments and comparative experiments show that the proposed method has superior ability. Through rapid and accurate prediction of InSAR-derived deformation time series, this research could contribute to the early-warning systems of slope instabilities. Full article
Show Figures

Figure 1

18 pages, 2714 KB  
Article
Adaptive State-Separated UFIR Filter for Attitude Estimation Using MARG Sensors
by Zepeng Li, Yuhang Zhu, Zheng Zhou and Shunyi Zhao
Micromachines 2026, 17(2), 174; https://doi.org/10.3390/mi17020174 - 28 Jan 2026
Abstract
Unbiased Finite Impulse Response (UFIR) filters are widely used in engineering applications, such as vehicle attitude estimation, due to their advantages, including independence from initial conditions and insensitivity to noise. However, the performance of the UFIR filter heavily relies on the estimation horizon [...] Read more.
Unbiased Finite Impulse Response (UFIR) filters are widely used in engineering applications, such as vehicle attitude estimation, due to their advantages, including independence from initial conditions and insensitivity to noise. However, the performance of the UFIR filter heavily relies on the estimation horizon N, and different states within the system may exhibit an inverse correlation with respect to N, affecting the estimation results. To address this issue, this paper proposes an adaptive state-separated UFIR (ASSUFIR) filtering algorithm based on the properties of quaternions. By leveraging the relationship between quaternions and attitude angles, the algorithm reduces the computational burden of the batch UFIR filter estimation system, allowing different horizon lengths to be applied to different states. To mitigate the computational efficiency loss caused by disrupting the original UFIR filter structure, QR decomposition is introduced. The algorithm is first validated using simulated data and then compared with classical methods using real vehicle data. Experimental results demonstrate the practical applicability of the proposed method in engineering applications. Full article
20 pages, 6218 KB  
Article
Vibrational Fingerprinting of Gas Mixtures Using COCO-QEPAS
by Simon Angstenberger, Emilio Corcione, Tobias Steinle, Cristina Tarin and Harald Giessen
Sensors 2026, 26(3), 846; https://doi.org/10.3390/s26030846 - 28 Jan 2026
Abstract
Detection and simultaneous monitoring of multiple trace gases is vital in scientific and industrial processes. Here, we use coherent control in quartz-enhanced photoacoustic spectroscopy (COCO-QEPAS) with an in situ learning method for rapid fingerprinting of trace gases to identify and monitor arbitrary gases [...] Read more.
Detection and simultaneous monitoring of multiple trace gases is vital in scientific and industrial processes. Here, we use coherent control in quartz-enhanced photoacoustic spectroscopy (COCO-QEPAS) with an in situ learning method for rapid fingerprinting of trace gases to identify and monitor arbitrary gases at very low concentrations, without prior knowledge of gas composition. We validate this on various mixtures, including CH4/C2H2/C2H4/C2H6/NO2/NH3. To this end, we demonstrate real-time analysis of mixtures containing up to four trace gases at ppm-level, monitoring changes in seconds using linear regression. The scalability of simultaneously distinguishable gases is straightforward. Furthermore, we expand fingerprinting to 10 ppm with a detection limit of 180 ppb CH4, and apply empirical mode decomposition as an adaptive, data-driven filtering method to recover characteristic spectral features at the noise floor. For quantitative analysis in the ppb regime, we employ principal component regression as a calibration model that exploits correlations across the full spectrum. Consequently, our method offers significant potential for sensing applications where speed, accuracy, and simplicity are critical. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 47010 KB  
Article
Real-Time Multi-Step Prediction Method of TBM Cutterhead Torque Based on Fusion Signal Decomposition Mechanism and Physical Constraints
by Junnan Feng, Yuzhe Hou, Youqian Liu, Shijia Chen and Ying You
Appl. Sci. 2026, 16(3), 1285; https://doi.org/10.3390/app16031285 - 27 Jan 2026
Viewed by 48
Abstract
The cutterhead torque of a full-face tunnel boring machine (TBM) is a pivotal parameter that characterises the rock-machine interaction. Its dynamic prediction is of considerable significance to achieve intelligent regulation of the boring parameters and enhance the construction efficiency and safety. In order [...] Read more.
The cutterhead torque of a full-face tunnel boring machine (TBM) is a pivotal parameter that characterises the rock-machine interaction. Its dynamic prediction is of considerable significance to achieve intelligent regulation of the boring parameters and enhance the construction efficiency and safety. In order to achieve high-precision time series prediction of cutterhead torque under complex geological conditions, this study proposes an intelligent prediction method (VBGAP) that integrates signal decomposition mechanism and physical constraints. At the data preprocessing level, a multi-step data cleaning process is designed. This process comprises the following steps: the processing of invalid values, the detection of outliers, and normalisation. The non-smooth torque time-series signal is decomposed by variational mode decomposition (VMD) into narrow-band sub-signals that serve as a data-driven, frequency-specific input for subsequent modelling, and a hybrid deep learning model based on Bi-GRU and self-attention mechanism is built for each sub-signal. Finally, the prediction results of each component are linearly superimposed to achieve signal reconstruction. Concurrently, a novel modal energy conservation loss function is proposed, with the objective of effectively constraining the information entropy decay in the decomposition-reconstruction process. The validity of the proposed method is supported by empirical evidence from a real tunnel project dataset in Northeast China, which demonstrates an average accuracy of over 90% in a multi-step prediction task with a time step of 30 s. This suggests that the proposed method exhibits superior adaptability and prediction accuracy in comparison to existing mainstream deep learning models. The findings of the research provide novel concepts and methodologies for the intelligent regulation of TBM boring parameters. Full article
Show Figures

Figure 1

36 pages, 3718 KB  
Article
Research on Short-Term Wind Power Forecasting Based on VMD-IDBO-SVM
by Gengda Li, Chaoying Li, Jian Qian, Zilong Ma, Hao Sun, Ridong Jiao, Wei Jia, Yibo Yao and Tiefeng Zhang
Electronics 2026, 15(3), 533; https://doi.org/10.3390/electronics15030533 - 26 Jan 2026
Viewed by 66
Abstract
To enhance the accuracy of wind power forecasting, this paper proposes a hybrid model that integrates Variational Mode Decomposition (VMD), Improved Dung Beetle Optimization (IDBO) and Support Vector Machine (SVM). First, to reduce the volatility and non-stationarity of wind power data, VMD is [...] Read more.
To enhance the accuracy of wind power forecasting, this paper proposes a hybrid model that integrates Variational Mode Decomposition (VMD), Improved Dung Beetle Optimization (IDBO) and Support Vector Machine (SVM). First, to reduce the volatility and non-stationarity of wind power data, VMD is applied to decompose the original signal into several intrinsic mode functions (IMFs). Subsequently, the Dung Beetle Optimization (DBO) algorithm is improved using chaotic mapping, a Lévy flight search strategy and adaptive t-distribution. Finally, the penalty coefficient of the SVM is optimized using IDBO, and the VMD-IDBO-SVM model is constructed. This study proposes an improved IDBO algorithm and, for the first time, integrates VMD and IDBO-SVM within the context of wind power forecasting. Experimental results show that the proposed VMD-IDBO-SVM model achieves a MAE of 3.315, an RMSE of 4.130, and an R2 of 0.985 on test data from a wind farm, demonstrating a significant improvement compared with the traditional SVM model. It has demonstrated excellent stability and significance in both multi-time-slice validation and statistical testing. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Electric Power Systems)
27 pages, 5100 KB  
Article
Hybrid Forecast-Enabled Adaptive Crowbar Coordination for LVRT Enhancement in DFIG Wind Turbines
by Xianlong Su, Hankil Kim, Changsu Kim, Mingxue Zhang and Hoekyung Jung
Entropy 2026, 28(2), 138; https://doi.org/10.3390/e28020138 - 25 Jan 2026
Viewed by 116
Abstract
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built [...] Read more.
This study proposes a hybrid forecast-enabled adaptive crowbar coordination strategy to enhance low-voltage ride-through (LVRT) performance of doubly fed induction generator (DFIG) wind turbines. A unified electro-mechanical model in the αβ/dq frames with dual closed-loop control for rotor- and grid-side converters is built in MATLAB/Simulink (R2018b), and LVRT constraints on current safety and DC-link energy are explicitly formulated, yielding an engineering crowbar-resistance range of 0.4–0.8 p.u. On the forecasting side, a CEEMDAN-based decomposition–modeling–reconstruction pipeline is adopted: high- and mid-frequency components are predicted by a dual-stream Informer–LSTM, while low-frequency components are modeled by XGBoost. Using six months of wind-farm data, the hybrid forecaster achieves best or tied-best MSE, RMSE, MAE, and R2 compared with five representative baselines. Forecasted power, ramp rate, and residual-based uncertainty are mapped to overcurrent and DC-link overvoltage risk indices, which adapt crowbar triggering, holding, and release in coordination with converter control. In a 9 MW three-phase deep-sag scenario, the strategy confines DC-link voltage within ±3% of nominal, shortens re-synchronization from ≈0.35 s to ≈0.15 s, reduces rotor-current peaks by ≈5.1%, and raises the reactive-support peak to 1.7 Mvar, thereby improving LVRT safety margins and grid-friendliness without hardware modification. Full article
(This article belongs to the Section Multidisciplinary Applications)
30 pages, 7439 KB  
Article
Traffic Forecasting for Industrial Internet Gateway Based on Multi-Scale Dependency Integration
by Tingyu Ma, Jiaqi Liu, Panfeng Xu and Yan Song
Sensors 2026, 26(3), 795; https://doi.org/10.3390/s26030795 - 25 Jan 2026
Viewed by 155
Abstract
Industrial gateways serve as critical data aggregation points within the Industrial Internet of Things (IIoT), enabling seamless data interoperability that empowers enterprises to extract value from equipment data more efficiently. However, their role exposes a fundamental trade-off between computational efficiency and prediction accuracy—a [...] Read more.
Industrial gateways serve as critical data aggregation points within the Industrial Internet of Things (IIoT), enabling seamless data interoperability that empowers enterprises to extract value from equipment data more efficiently. However, their role exposes a fundamental trade-off between computational efficiency and prediction accuracy—a contradiction yet to be fully resolved by existing approaches. The rapid proliferation of IoT devices has led to a corresponding surge in network traffic, posing significant challenges for traffic forecasting methods, while deep learning models like Transformers and GNNs demonstrate high accuracy in traffic prediction, their substantial computational and memory demands hinder effective deployment on resource-constrained industrial gateways, while simple linear models offer relative simplicity, they struggle to effectively capture the complex characteristics of IIoT traffic—which often exhibits high nonlinearity, significant burstiness, and a wide distribution of time scales. The inherent time-varying nature of traffic data further complicates achieving high prediction accuracy. To address these interrelated challenges, we propose the lightweight and theoretically grounded DOA-MSDI-CrossLinear framework, redefining traffic forecasting as a hierarchical decomposition–interaction problem. Unlike existing approaches that simply combine components, we recognize that industrial traffic inherently exhibits scale-dependent temporal correlations requiring explicit decomposition prior to interaction modeling. The Multi-Scale Decomposable Mixing (MDM) module implements this concept through adaptive sequence decomposition, while the Dual Dependency Interaction (DDI) module simultaneously captures dependencies across time and channels. Ultimately, decomposed patterns are fed into an enhanced CrossLinear model to predict flow values for specific future time periods. The Dream Optimization Algorithm (DOA) provides bio-inspired hyperparameter tuning that balances exploration and exploitation—particularly suited for the non-convex optimization scenarios typical in industrial forecasting tasks. Extensive experiments on real industrial IoT datasets thoroughly validate the effectiveness of this approach. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

16 pages, 1404 KB  
Article
An Enhanced Low-Power Ultrasonic Bolt Axial Stress Detection Method Using the EMD-ATWD Algorithm
by Yating Liu, Chao Xu, Chunming Chen, Lianpeng Li, Yuhong Shi and Lu Yan
J. Mar. Sci. Eng. 2026, 14(3), 245; https://doi.org/10.3390/jmse14030245 - 23 Jan 2026
Viewed by 173
Abstract
Traditional ultrasonic bolt stress measurement is hindered by high power consumption. Lowering excitation voltage reduces power but degrades signal-to-noise ratio (SNR), compromising accuracy. This paper proposes a synergistic algorithm combining Empirical Mode Decomposition (EMD) with Adaptive Threshold Wavelet Denoising (ATWD). The method preserves [...] Read more.
Traditional ultrasonic bolt stress measurement is hindered by high power consumption. Lowering excitation voltage reduces power but degrades signal-to-noise ratio (SNR), compromising accuracy. This paper proposes a synergistic algorithm combining Empirical Mode Decomposition (EMD) with Adaptive Threshold Wavelet Denoising (ATWD). The method preserves transient features by reconstructing high-frequency components via EMD, then suppresses noise by precisely processing low-frequency components using ATWD. Finally, cross-correlation estimates ultrasonic delay. Evaluated at excitation voltages from 12 V to 0.5 V, the EMD-ATWD method maintains measurement errors below 10% even at 0.5 V, improving accuracy by over 48% compared to conventional Finite Impulse Response (FIR) and Threshold Wavelet Denoising (WTD) methods, while enhancing key echo waveform fidelity by over 35%. This method provides a reliable low-power bolt stress monitoring idea for engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
23 pages, 6538 KB  
Article
Multi-Scale Graph-Decoupling Spatial–Temporal Network for Traffic Flow Forecasting in Complex Urban Environments
by Hongtao Li, Wenzheng Liu and Huaixian Chen
Electronics 2026, 15(3), 495; https://doi.org/10.3390/electronics15030495 - 23 Jan 2026
Viewed by 163
Abstract
Accurate traffic flow forecasting is a fundamental component of Intelligent Transportation Systems and proactive urban mobility management. However, the inherent complexity of urban traffic flow, characterized by non-stationary dynamics and multi-scale temporal dependencies, poses significant modeling challenges. Existing spatio-temporal models often struggle to [...] Read more.
Accurate traffic flow forecasting is a fundamental component of Intelligent Transportation Systems and proactive urban mobility management. However, the inherent complexity of urban traffic flow, characterized by non-stationary dynamics and multi-scale temporal dependencies, poses significant modeling challenges. Existing spatio-temporal models often struggle to reconcile the discrepancy between static physical road constraints and highly dynamic, state-dependent spatial correlations, while their reliance on fixed temporal receptive fields limits the capacity to disentangle overlapping periodicities and stochastic fluctuations. To bridge these gaps, this study proposes a novel Multi-scale Graph-Decoupling Spatial–temporal Network (MS-GSTN). MS-GSTN leverages a Hierarchical Moving Average decomposition module to recursively partition raw traffic flow signals into constituent patterns across diverse temporal resolutions, ranging from systemic daily trends to high-frequency transients. Subsequently, a Tri-graph Spatio-temporal Fusion module synergistically models scale-specific dependencies by integrating an adaptive temporal graph, a static spatial graph, and a data-driven dynamic spatial graph within a unified architecture. Extensive experiments on four large-scale real-world benchmark datasets demonstrate that MS-GSTN consistently achieves superior forecasting accuracy compared to representative state-of-the-art models. Quantitatively, the proposed framework yields an overall reduction in Mean Absolute Error of up to 6.2% and maintains enhanced stability across multiple forecasting horizons. Visualization analysis further confirms that MS-GSTN effectively identifies scale-dependent spatial couplings, revealing that long-term traffic flow trends propagate through global network connectivity while short-term variations are governed by localized interactions. Full article
Show Figures

Figure 1

27 pages, 6074 KB  
Article
Automatic Generation of T-Splines with Extraordinary Points Based on Domain Decomposition of Quadrilateral Patches
by João Carlos L. Peixoto, Rafael L. Rangel and Luiz Fernando Martha
Mathematics 2026, 14(3), 392; https://doi.org/10.3390/math14030392 - 23 Jan 2026
Viewed by 110
Abstract
Isogeometric analysis (IGA) is a numerical methodology for solving differential equations by employing basis functions that preserve the exact geometry of the domain. This approach is based on a class of mathematical functions known as NURBS (Non-Uniform Rational B-Splines). Representing a domain with [...] Read more.
Isogeometric analysis (IGA) is a numerical methodology for solving differential equations by employing basis functions that preserve the exact geometry of the domain. This approach is based on a class of mathematical functions known as NURBS (Non-Uniform Rational B-Splines). Representing a domain with NURBS entities often requires multiple patches, especially for complex geometries. Bivariate NURBS, defined as tensor products, enforce global refinements within a patch and, in multi-patch models, these refinements are propagated to other model patches. The use of T-Splines with extraordinary points offers a solution to this issue by enabling local refinements through unstructured meshes. The analysis of T-Spline models is performed using a Bézier extraction technique that relies on extraction operators that map Bézier functions to T-Spline functions. When generating a T-Spline model, careful attention is required to ensure that all T-Spline functions are linearly independent—a necessary condition for IGA—in order to form T-Splines that are suitable for analysis. In this sense, this work proposes a methodology to automate the generation of bidimensional unstructured meshes for IGA through T-Splines with extraordinary points. An algorithm for generating unstructured finite element meshes, based on domain decomposition of quadrilateral patches, is adapted to construct T-Spline models. Validation models demonstrate the methodology’s flexibility in generating locally refined isogeometric models. Full article
(This article belongs to the Special Issue Numerical Modeling and Applications in Mechanical Engineering)
Show Figures

Figure 1

28 pages, 4101 KB  
Article
Adaptive Power Allocation Method for Hybrid Energy Storage in Distribution Networks with Renewable Energy Integration
by Shitao Wang, Songmei Wu, Hui Guo, Yanjie Zhang, Jingwei Li, Lijuan Guo and Wanqing Han
Energies 2026, 19(3), 579; https://doi.org/10.3390/en19030579 - 23 Jan 2026
Viewed by 65
Abstract
The high penetration of renewable energy brings significant power fluctuations and operational uncertainties to distribution networks. Traditional power allocation methods for hybrid energy storage systems (HESSs) exhibit strong parameter dependency, limited frequency-domain recognition accuracy, and poor dynamic coordination capability. To overcome these limitations, [...] Read more.
The high penetration of renewable energy brings significant power fluctuations and operational uncertainties to distribution networks. Traditional power allocation methods for hybrid energy storage systems (HESSs) exhibit strong parameter dependency, limited frequency-domain recognition accuracy, and poor dynamic coordination capability. To overcome these limitations, this study proposes an adaptive power allocation strategy for HESSs under renewable energy integration scenarios. The proposed method employs the Grey Wolf Optimizer (GWO) to jointly optimize the mode number and penalty factor of the Variational Mode Decomposition (VMD), thereby enhancing the accuracy and stability of power signal decomposition. In conjunction with the Hilbert transform, the instantaneous frequency of each mode is extracted to achieve a natural allocation of low-frequency components to the battery and high-frequency components to the supercapacitor. Furthermore, a multi-objective power flow optimization model is formulated, using the power commands of the two storage units as optimization variables and aiming to minimize voltage deviation and network loss cost. The model is solved through the Particle Swarm Optimization (PSO) algorithm to realize coordinated optimization between storage control and system operation. Case studies on the IEEE 33-bus distribution system under both steady-state and dynamic conditions verify that the proposed strategy significantly improves power decomposition accuracy, enhances coordination between storage units, reduces voltage deviation and network loss cost, and provides excellent adaptability and robustness. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

38 pages, 6988 KB  
Article
Research on a Dynamic Correction Model for Electricity Carbon Emission Factors Based on Lifecycle Analysis and Power Exchange Networks
by Zhiming Gao, Cheng Chen, Miao Wang, Xuan Zhou, Wanchun Sun and Junwei Yan
Sustainability 2026, 18(3), 1150; https://doi.org/10.3390/su18031150 - 23 Jan 2026
Viewed by 75
Abstract
Accurate electricity carbon emission factors are crucial for assessing overall social carbon emissions and achieving China’s “dual carbon” goals. This paper proposes a dynamic correction model that integrates lifecycle extension, power exchange networks, and multi-time-scale decomposition to address the limitations of static carbon [...] Read more.
Accurate electricity carbon emission factors are crucial for assessing overall social carbon emissions and achieving China’s “dual carbon” goals. This paper proposes a dynamic correction model that integrates lifecycle extension, power exchange networks, and multi-time-scale decomposition to address the limitations of static carbon emission factors. The model considers factors such as power generation structure, cross-regional transmission, clean energy proportion, line losses, and non-CO2 greenhouse gas emissions, and achieves dynamic correction at quarterly and monthly scales, enhancing timeliness and regional adaptability. Results show that transmission losses, energy structure, and inter-provincial electricity exchange significantly impact carbon emission factors. For instance, in 2022, line losses in Xinjiang and Gansu raised the electricity carbon emission factor by over 0.06 kgCO2/kWh. Monthly factors exhibit significant seasonal fluctuations, with some regions showing variations of up to 105% of the annual average. Areas rich in hydropower, such as Yunnan, Sichuan, and Qinghai, experience pronounced fluctuations, highly sensitive to changes in water volume, offering more accurate reflections of carbon emission changes during electricity consumption. This study presents a refined dynamic correction method for electricity carbon emission accounting, providing theoretical support for carbon emission policy development and performance evaluation. Full article
Show Figures

Figure 1

34 pages, 17028 KB  
Article
Vibration Signal Denoising Method Based on ICFO-SVMD and Improved Wavelet Thresholding
by Yanping Cui, Xiaoxu He, Zhe Wu, Qiang Zhang and Yachao Cao
Sensors 2026, 26(2), 750; https://doi.org/10.3390/s26020750 - 22 Jan 2026
Viewed by 88
Abstract
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition [...] Read more.
Non-stationary, multi-component vibration signals in rotating machinery are easily contaminated by strong background noise, which masks weak fault features and degrades diagnostic reliability. This paper proposes a joint denoising method that combines an improved cordyceps fungus optimization algorithm (ICFO), successive variational mode decomposition (SVMD), and an improved wavelet thresholding scheme. ICFO, enhanced by Chebyshev chaotic initialization, a longitudinal–transverse crossover fusion mutation operator, and a thinking innovation strategy, is used to adaptively optimize the SVMD penalty factor and number of modes. The optimized SVMD decomposes the noisy signal into intrinsic mode functions, which are classified into effective and noise-dominated components via the Pearson correlation coefficient. An improved wavelet threshold function, whose threshold is modulated by the sub-band signal-to-noise ratio, is then applied to the effective components, and the denoised signal is reconstructed. Simulation experiments on nonlinear, non-stationary signals with different noise levels (SNR = 1–20 dB) show that the proposed method consistently achieves the highest SNR and lowest RMSE compared to VMD, SVMD, VMD–WTD, CFO–SVMD, and WTD. Tests on CWRU bearing data and gearbox vibration signals with added −2 dB Gaussian white noise further confirm that the method yields the lowest residual variance ratio and highest signal energy ratio while preserving key fault characteristic frequencies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

45 pages, 1326 KB  
Article
Cross-Domain Deep Reinforcement Learning for Real-Time Resource Allocation in Transportation Hubs: From Airport Gates to Seaport Berths
by Zihao Zhang, Qingwei Zhong, Weijun Pan, Yi Ai and Qian Wang
Aerospace 2026, 13(1), 108; https://doi.org/10.3390/aerospace13010108 - 22 Jan 2026
Viewed by 67
Abstract
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally [...] Read more.
Efficient resource allocation is critical for transportation hub operations, yet current scheduling systems require substantial domain-specific customization when deployed across different facilities. This paper presents a domain-adaptive deep reinforcement learning (DADRL) framework that learns transferable optimization policies for dynamic resource allocation across structurally similar transportation scheduling problems. The framework integrates dual-level heterogeneous graph attention networks for separating constraint topology from domain-specific features, hypergraph-based constraint modeling for capturing high-order dependencies, and hierarchical policy decomposition that reduces computational complexity from O(mnT) to O(m+n+T). Evaluated on realistic simulators modeling airport gate assignment (Singapore Changi: 50 gates, 300–400 daily flights) and seaport berth allocation (Singapore Port: 40 berths, 80–120 daily vessels), DADRL achieves 87.3% resource utilization in airport operations and 86.3% in port operations, outperforming commercial solvers under strict real-time constraints (Gurobi-MIP with 300 s time limit: 85.1%) while operating 270 times faster (1.1 s versus 298 s per instance). Given unlimited time, Gurobi achieves provably optimal solutions, but DADRL reaches 98.7% of this optimum in 1.1 s, making it suitable for time-critical operational scenarios where exact solvers are computationally infeasible. Critically, policies trained exclusively on airport scenarios retain 92.4% performance when applied to ports without retraining, requiring only 800 adaptation steps compared to 13,200 for domain-specific training. The framework maintains 86.2% performance under operational disruptions and scales to problems three times larger than training instances with only 7% degradation. These results demonstrate that learned optimization principles can generalize across transportation scheduling problems sharing common constraint structures, enabling rapid deployment of AI-based scheduling systems across multi-modal transportation networks with minimal customization and reduced implementation costs. Full article
(This article belongs to the Special Issue Emerging Trends in Air Traffic Flow and Airport Operations Control)
Show Figures

Figure 1

26 pages, 2875 KB  
Article
Noise Reduction for Water Supply Pipeline Leakage Signals Based on the Black-Winged Kite Algorithm
by Zhu Jiang, Jiale Li, Haiyan Ning, Xiang Zhang and Yao Yang
Sensors 2026, 26(2), 736; https://doi.org/10.3390/s26020736 - 22 Jan 2026
Viewed by 63
Abstract
In order to solve the problem of false alarms and missed alarms in pipeline monitoring caused by a large amount of noise in the negative pressure wave signal collected by pressure sensors, a new pressure signal denoising method based on the black-winged kite [...] Read more.
In order to solve the problem of false alarms and missed alarms in pipeline monitoring caused by a large amount of noise in the negative pressure wave signal collected by pressure sensors, a new pressure signal denoising method based on the black-winged kite algorithm (BWK) is proposed. First, the variational mode decomposition (VMD) parameters are optimized through BWK. Next, the effective modal components are screened by sample entropy, and the secondary noise reduction of the signal is carried out by using the wavelet thresholding (WT). Finally, the signal is reconstructed to achieve noise reduction. Simulation experiments show that, compared with WT and empirical mode decomposition (EMD), the method proposed in this paper can achieve the best noise reduction effect under both high and low signal-to-noise ratio (SNR) conditions. The method proposed in the paper can achieve the highest SNR of 14.2280 dB, compared to WT’s SNR of 12.6458 dB and EMD’s SNR of 5.5292 dB. To further validate the performance of the algorithm, an experimental platform for simulating pipeline leaks is built. Compared with WT and EMD, the method proposed in this paper also shows the best noise reduction effect. This method provides a high-precision and adaptive solution for leak detection in urban water supply pipelines and has strong engineering application value. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop