Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = acylhydrazone bonds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6451 KiB  
Article
pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing
by Yingchao Yang, Jingyi Chen, Shengming Wang, Yaxin Zhu, Yao Wang, Yan Chen, Mingjiang Xia, Ming Yang, Hongliang Yi and Kaiming Su
Pharmaceutics 2025, 17(6), 690; https://doi.org/10.3390/pharmaceutics17060690 - 24 May 2025
Viewed by 727
Abstract
Objectives: Nasal mucosa wound healing faces challenges such as acidic microenvironments and bacterial proliferation. Persistent mucosal defects predispose to complications such as nasal septal perforation. Conventional drug delivery systems suffer from nonspecific release and short-term efficacy. This study aimed to develop a [...] Read more.
Objectives: Nasal mucosa wound healing faces challenges such as acidic microenvironments and bacterial proliferation. Persistent mucosal defects predispose to complications such as nasal septal perforation. Conventional drug delivery systems suffer from nonspecific release and short-term efficacy. This study aimed to develop a pH-responsive liposome-hydrogel composite (HYD-Lip/DXMS@HG) to integrate pH-triggered dexamethasone (DXMS) delivery, antifouling properties, and mechanical support for refractory injuries. Methods: The composite combined acylhydrazone-modified liposomes with a hydrogel synthesized from hydroxyethylacrylamide (HEAA) and diethylacrylamide (DEAA). In vitro assays evaluated DXMS release kinetics, RPMI 2650 cell migration/proliferation, and antibacterial properties. In vivo rabbit nasal mucosal injury models assessed healing efficacy via histology analyses. RNA sequencing was performed to identify key signaling pathways. Results: HYD-Lip/DXMS@HG exhibited sustained DXMS release in acidic conditions, accelerating cell migration/proliferation in vitro. In rabbits, the composite reduced TNF-α expression and CD45+ leukocyte infiltration, while enhancing collagen alignment and epithelial thickness. RNA sequencing identified upregulated ECM receptor interaction, Hippo, TGF-β, and PI3K-Akt pathways, linked to collagen remodeling, anti-apoptosis, and angiogenesis. Conclusions: This multifunctional platform synergizes pH-triggered drug delivery, mechanical support, and antibacterial activity, offering a promising therapeutic strategy for refractory nasal mucosal injuries and postoperative recovery. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

17 pages, 3662 KiB  
Article
Self-Healable, Antimicrobial and Conductive Hydrogels Based on Dynamic Covalent Bonding with Silver Nanoparticles for Flexible Sensor
by Te Qi, Xuefeng Liu, Nan Zheng, Jie Huang, Wenlong Xiang, Yujin Nie, Zanru Guo and Baixue Cai
Polymers 2025, 17(1), 54; https://doi.org/10.3390/polym17010054 - 29 Dec 2024
Viewed by 1013
Abstract
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of [...] Read more.
Dynamic hydrogels have attracted considerable attention in the application of flexible electronics, as they possess injectable and self-healing abilities. However, it is still a challenge to combine high conductivity and antibacterial properties into dynamic hydrogels. In this work, we fabricated a type of dynamic hydrogel based on acylhydrazone bonds between thermo-responsive copolymer and silver nanoparticles (AgNPs) functionalized with hydrazide groups. The hybrid hydrogels exhibited sol–gel transition, self-healable, injectable and thermo-responsive abilities. The self-healing efficiency was over 92%. Moreover, the hydrogel displayed antimicrobial properties and high conductivity (6.85 S/m). Notably, the fabricated hydrogel-based sensors exhibited strain and temperature sensing (22.05%/°C) and could detect human motion and speech, and electrocardiographic (ECG) and electromyography (EMG) signals. Overall, this work provides a simple strategy to synthesize AgNPs-based dynamic hydrogels with multi-functions, and the hydrogels may find potential applications in antibacterial wearable electronics, health monitoring and speech recognition. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 2nd Edition)
Show Figures

Figure 1

11 pages, 4222 KiB  
Article
Design of pH/Redox Co-Triggered Degradable Diselenide-Containing Polyprodrug via a Facile One-Pot Two-Step Approach for Tumor-Specific Chemotherapy
by Yanru Hu and Peng Liu
Molecules 2024, 29(16), 3837; https://doi.org/10.3390/molecules29163837 - 13 Aug 2024
Viewed by 1244
Abstract
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these [...] Read more.
The diselenide bond has attracted intense interest for drug delivery systems (DDSs) for tumor chemotherapy, owing to it possessing higher redox sensitivity than the disulfide one. Various redox-responsive diselenide-containing carriers have been developed for chemotherapeutics delivery. However, the premature drug leakage from these DDSs was significant enough to cause toxic side effects on normal cells. Here, a pH/redox co-triggered degradable polyprodrug was designed as a drug self-delivery system (DSDS) by incorporating drug molecules as structural units in the polymer main chains, using a facile one-pot two-step approach. The proposed PDOX could only degrade and release drugs by breaking both the neighboring acid-labile acylhydrazone and the redox-cleavable diselenide conjugations in the drug’s structural units, triggered by the higher acidity and glutathione (GSH) or reactive oxygen species (ROS) levels in the tumor cells. Therefore, a slow solubility-controlled drug release was achieved for tumor-specific chemotherapy, indicating promising potential as a safe and efficient long-acting DSDS for future tumor treatment. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

17 pages, 3499 KiB  
Article
New Insights into Acylhydrazones E/Z Isomerization: An Experimental and Theoretical Approach
by Sara Fernández-Palacios, Esther Matamoros, Isabel Morato Rojas, Juan T. López Navarrete, M. Carmen Ruiz Delgado, Yolanda Vida and Ezequiel Perez-Inestrosa
Int. J. Mol. Sci. 2023, 24(19), 14739; https://doi.org/10.3390/ijms241914739 - 29 Sep 2023
Cited by 6 | Viewed by 2941
Abstract
A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. [...] Read more.
A family of acylhydrazones have been prepared and characterized with the aim of investigating their potential as information storage systems. Their well-established synthetic methodologies allowed for the preparation of seven chemically stable acylhydrazones in excellent yields that have been photophysically and photochemically characterized. In addition, DFT and TD-DFT calculations have been performed to gain more insights into the structural, energetic and photophysical properties of the E/Z isomers. Our results reveal that E/Z configurational isomerization upon irradiation is highly dependent on the stabilization of the E or Z isomers due to the formation of intramolecular H bonds and the electronic/steric effects intrinsically related to their structures. In addition, Raman spectroscopy is also used to confirm the molecular structural changes after the formation of hydrogen bonds in the isomers. Full article
(This article belongs to the Special Issue Noncovalent Interactions: New Developments in Experiment and Theory)
Show Figures

Figure 1

23 pages, 6859 KiB  
Review
Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering
by Yingrui Bai, Yuan Liu, Keqing Yang and Youming Lang
Gels 2023, 9(5), 413; https://doi.org/10.3390/gels9050413 - 16 May 2023
Cited by 17 | Viewed by 3232
Abstract
Polymer gel materials are formed by physically crosslinking and chemically crosslinking to form a gel network system with high mechanical properties and reversible performance. Due to their excellent mechanical properties and intelligence, polymer gel materials are widely used in biomedical, tissue engineering, artificial [...] Read more.
Polymer gel materials are formed by physically crosslinking and chemically crosslinking to form a gel network system with high mechanical properties and reversible performance. Due to their excellent mechanical properties and intelligence, polymer gel materials are widely used in biomedical, tissue engineering, artificial intelligence, firefighting and other fields. Given the current research status of polymer gels at home and abroad and the current application status of oilfield drilling, this paper reviews the mechanism of polymer gels formed by physically crosslinking and chemically crosslinking, summarizes the performance characteristics and the mechanism of action of polymer gels formed by non-covalent bonding, such as hydrophobic bonding, hydrogen bonding, electrostatic and Van der Waals interactions interactions, and covalent bonding such as imine bonding, acylhydrazone bonding and Diels-Alder reaction. The current status and outlook of the application of polymer gels in drilling fluids, fracturing fluids and enhanced oil recovery are also introduced. We expand the application fields of polymer gel materials and promote the development of polymer gel materials in a more intelligent direction. Full article
(This article belongs to the Special Issue Gels for Oil Drilling and Enhanced Recovery (2nd Edition))
Show Figures

Figure 1

18 pages, 5955 KiB  
Article
Salvianolic-Acid-B-Loaded HA Self-Healing Hydrogel Promotes Diabetic Wound Healing through Promotion of Anti-Inflammation and Angiogenesis
by Guoying Zhou, Jiayan Zhu, Liang Jin, Jing Chen, Ruojiao Xu, Yali Zhao, Tingzi Yan and Haitong Wan
Int. J. Mol. Sci. 2023, 24(7), 6844; https://doi.org/10.3390/ijms24076844 - 6 Apr 2023
Cited by 23 | Viewed by 4862
Abstract
Inflammatory dysfunction and angiogenesis inhibition are two main factors leading to the delayed healing of diabetic wounds. Hydrogels with anti-inflammatory and angiogenesis-promoting effects have been considered as promising wound care materials. Herein, a salvianolic acid B (SAB)-loaded hyaluronic acid (HA) self-healing hydrogel (HA/SAB) [...] Read more.
Inflammatory dysfunction and angiogenesis inhibition are two main factors leading to the delayed healing of diabetic wounds. Hydrogels with anti-inflammatory and angiogenesis-promoting effects have been considered as promising wound care materials. Herein, a salvianolic acid B (SAB)-loaded hyaluronic acid (HA) self-healing hydrogel (HA/SAB) with anti-inflammatory and pro-angiogenesis capacities for diabetic wound healing is reported. The HA hydrogel was prepared via the covalent cross-linking of aldehyde groups in oxidized HA (OHA) and hydrazide groups in adipic dihydrazide (ADH)-modified HA (HA-ADH) with the formation of reversible acylhydrazone bonds. The obtained HA hydrogel exhibited multiple favorable properties such as porous structures, excellent self-healing properties, a sustainable release capacity of SAB, as well as excellent cytocompatibility. In addition, the effects of the SAB-loaded HA self-healing hydrogel were investigated via a full-thickness skin defect model using diabetic rats. The HA/SAB hydrogel showed enhanced skin regeneration effects with accelerated wound closure, shorter remaining dermal space length, thicker granulation tissue formation, and more collagen deposition. Furthermore, reduced inflammatory response and enhanced vascularization were found with HA/SAB2.5 hydrogel-treated wounds, indicating that the hydrogel promotes diabetic wound healing through the promotion of anti-inflammation and angiogenesis. Our results suggest that the fabricated SAB-loaded HA self-healing hydrogel is promising as a wound dressing for the treatment of diabetic wounds. Full article
(This article belongs to the Special Issue Advanced Therapies and Functional Materials for Wound Healing)
Show Figures

Figure 1

7 pages, 883 KiB  
Communication
Self-Assembly of a Purely Organic Bowl in Water via Acylhydrazone Formation
by Guangcheng Wu, Tianyu Jiao and Hao Li
Molecules 2023, 28(3), 976; https://doi.org/10.3390/molecules28030976 - 18 Jan 2023
Cited by 4 | Viewed by 3054
Abstract
A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six [...] Read more.
A bowl-shaped molecule can be self-assembled by condensing a triscationic hexaaldehyde compound and three equiv. of a dihydrazide linkers in pure water. The molecular bowl is thus composed of a triscationic π-electron deficient platform, as well as a hexagonal rim that contains six acylhydrazone functions. When the counteranions are chloride, the solid-state structure reveals that this molecular bowl undergoes dimerization via N–H···Cl hydrogen bonds, forming a cage-like dimer with a huge inner cavity. This molecular bowl can employ its cavity to accommodate a hydrophobic guest, namely 1-adamantanecarboxylic acid in aqueous media. Full article
Show Figures

Figure 1

13 pages, 2398 KiB  
Article
A pH-Responsive Drug Delivery System Based on Conjugated Polymer for Effective Synergistic Chemo-/Photodynamic Therapy
by Chen Zhang, Qiong Yuan, Ziqi Zhang and Yanli Tang
Molecules 2023, 28(1), 399; https://doi.org/10.3390/molecules28010399 - 3 Jan 2023
Cited by 16 | Viewed by 2652
Abstract
Stimuli-responsive drug release and photodynamic therapy (PDT) have aroused extensive attention for their enormous potential in antitumor treatment. pH-responsive drug delivery systems (PFE-DOX-1 and PFE-DOX-2) based on water-soluble conjugated polymers were constructed in this work for high-performance synergistic chemo-/PDT therapy, in which the [...] Read more.
Stimuli-responsive drug release and photodynamic therapy (PDT) have aroused extensive attention for their enormous potential in antitumor treatment. pH-responsive drug delivery systems (PFE-DOX-1 and PFE-DOX-2) based on water-soluble conjugated polymers were constructed in this work for high-performance synergistic chemo-/PDT therapy, in which the anticancer drug doxorubicin (DOX) is covalently attached to the side chains of the conjugated polymers via acid-labile imine and acylhydrazone bonds. Concurrently, the intense fluorescence of poly(fluorene-co-ethynylene) (PFE) is effectively quenched due to the energy/electron transfer (ET) between the PFE-conjugated backbone and DOX. Effective pH-responsive drug release from PFE-DOX-2 is achieved by the cleavage of acylhydrazone linkages in the acidic tumor intracellular microenvironment. Additionally, the drug release process can be monitored by the recovered fluorescence of conjugated polymers. Furthermore, the conjugated polymers can produce reactive oxygen species (ROS) under light irradiation after drug release in an acidic environment, which prevents possible phototoxicity to normal tissues. It is noted that PFE-DOX-2 demonstrates remarkable antitumor cell performance, which is attributed to its efficient cell uptake and powerful synergistic chemo-/PDT therapeutic effectiveness. This report thus provides a promising strategy for in vivo anticancer treatment with the construction of a stimuli-responsive multifunctional drug delivery system. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Bioapplications)
Show Figures

Figure 1

23 pages, 5863 KiB  
Review
Polymeric Emissive Materials Based on Dynamic Covalent Bonds
by Shuyuan Zheng and Guofeng Liu
Molecules 2022, 27(19), 6635; https://doi.org/10.3390/molecules27196635 - 6 Oct 2022
Cited by 17 | Viewed by 4249
Abstract
Dynamic covalent polymers, composed of dynamic covalent bonds (DCBs), have received increasing attention in the last decade due to their adaptive and reversible nature compared with common covalent linked polymers. Incorporating the DCBs into the polymeric material endows it with advanced performance including [...] Read more.
Dynamic covalent polymers, composed of dynamic covalent bonds (DCBs), have received increasing attention in the last decade due to their adaptive and reversible nature compared with common covalent linked polymers. Incorporating the DCBs into the polymeric material endows it with advanced performance including self-healing, shape memory property, and so forth. However, the emissive ability of such dynamic covalent polymeric materials has been rarely reviewed. Herein, this review has summarized DCBs-based emissive polymeric materials which are classified according to the different types of DCBs, including imine bond, acylhydrazone bond, boronic ester bond, dynamic C-C bond, as well as the reversible bonds based on Diels–Alder reaction and transesterification. The mechanism of chemical reactions and various stimuli-responsive behaviors of DCBs are introduced, followed by typical emissive polymers resulting from these DCBs. By taking advantage of the reversible nature of DCBs under chemical/physical stimuli, the constructed emissive polymeric materials show controllable and switchable emission. Finally, challenges and future trends in this field are briefly discussed in this review. Full article
(This article belongs to the Special Issue The Future of Photochemistry of Organic Compounds)
Show Figures

Figure 1

13 pages, 2312 KiB  
Article
Self-Healable and Super-Tough Double-Network Hydrogel Fibers from Dynamic Acylhydrazone Bonding and Supramolecular Interactions
by Jiachuan Hua, Chang Liu, Bin Fei and Zunfeng Liu
Gels 2022, 8(2), 101; https://doi.org/10.3390/gels8020101 - 8 Feb 2022
Cited by 18 | Viewed by 4370
Abstract
Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported. Herein, copolymers containing ketone groups were synthesized and prepared into a dynamic covalent hydrogel via acylhydrazone chemistry. Double-network hydrogels were constructed [...] Read more.
Macroscopic hydrogel fibers are highly desirable for smart textiles, but the fabrication of self-healable and super-tough covalent/physical double-network hydrogels is rarely reported. Herein, copolymers containing ketone groups were synthesized and prepared into a dynamic covalent hydrogel via acylhydrazone chemistry. Double-network hydrogels were constructed via the dynamic covalent crosslinking of copolymers and the supramolecular interactions of iota-carrageenan. Tensile tests on double-network and parental hydrogels revealed the successful construction of strong and tough hydrogels. The double-network hydrogel precursor was wet spun to obtain macroscopic fibers with controlled drawing ratios. The resultant fibers reached a high strength of 1.35 MPa or a large toughness of 1.22 MJ/m3. Highly efficient self-healing performances were observed in hydrogel fibers and their bulk specimens. Through the simultaneous healing of covalent and supramolecular networks under acidic and heated conditions, fibers achieved rapid and near-complete healing with 96% efficiency. Such self-healable and super-tough hydrogel fibers were applied as shape memory fibers for repetitive actuating in response to water, indicating their potential in intelligent fabrics. Full article
(This article belongs to the Special Issue Gels Horizons: From Science to Smart Materials)
Show Figures

Figure 1

10 pages, 1288 KiB  
Article
Inter- and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection
by Inhwan Cha, Seohyun Baek, Sun Gu Song, Junggong Kim, Ho Keun Lee, Jongman Lee, Kyung-su Kim and Changsik Song
Macromol 2021, 1(3), 234-242; https://doi.org/10.3390/macromol1030016 - 15 Sep 2021
Cited by 2 | Viewed by 3670
Abstract
Acylhydrazone-based fluorescent conjugated microporous polymers (CMPs) with inter-and intra-hydrogen bonding-controlled emissive properties were prepared. The synthesized CMPs (BH-CMP and ABH-CMP) were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, solid-state 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy, and photoluminescence [...] Read more.
Acylhydrazone-based fluorescent conjugated microporous polymers (CMPs) with inter-and intra-hydrogen bonding-controlled emissive properties were prepared. The synthesized CMPs (BH-CMP and ABH-CMP) were characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, solid-state 13C cross polarization/magic angle spinning nuclear magnetic resonance spectroscopy, and photoluminescence spectroscopy. Interestingly, BH-CMP exhibited emission enhancement via adsorption of water molecules, whereas the emission of ABH-CMP, which possesses free amine groups, decreased upon the addition of water molecules. The differences in the emission trends of BH-CMP and ABH-CMP in the presence of water molecules originate from the formation of different hydrogen-bonding networks in each CMP. The acylhydrazone-based CMPs were applied to the detection of nitroaromatic compounds. As a result, ABH-CMP in DMF exhibited high selectivity for 1,3,5-trinitrotoluene (TNT) over other nitroaromatic compounds nitrobenzene, 1-chloro-4-nitrobenzene, 2,3-dichloronitrobenzene, and 2,4-dinitrotoluene. Full article
(This article belongs to the Special Issue Polymer-Based Nanomaterials)
Show Figures

Figure 1

18 pages, 2217 KiB  
Article
Synthesis of Novel N-Acylhydrazones and Their C-N/N-N Bond Conformational Characterization by NMR Spectroscopy
by Rubina Munir, Noman Javid, Muhammad Zia-ur-Rehman, Muhammad Zaheer, Rahila Huma, Ayesha Roohi and Muhammad Makshoof Athar
Molecules 2021, 26(16), 4908; https://doi.org/10.3390/molecules26164908 - 13 Aug 2021
Cited by 43 | Viewed by 5343
Abstract
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H [...] Read more.
In this article, a synthesis of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides and their structural interpretation by NMR experiments is described in an attempt to explain the duplication of some peaks in their 1H- and 13C-NMR spectra. Twenty new 6-methyl-1H-pyrazolo[3,4-b]quinoline substituted N-acylhydrazones 6(at) were synthesized from 2-chloro-6-methylquinoline-3-carbaldehyde (1) in four steps. 2-Chloro-6-methylquinoline-3-carbaldehyde (1) afforded 6-methyl-1H-pyrazolo[3,4-b]quinoline (2), which upon N-alkylation yielded 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetate (3). The hydrazinolysis of 3 followed by the condensation of resulting 2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazide (4) with aromatic aldehydes gave N-acylhydrazones 6(at). Structures of the synthesized compounds were established by readily available techniques such as FT-IR, NMR and mass spectral studies. The stereochemical behavior of 6(at) was studied in dimethyl sulfoxide-d6 solvent by means of 1H NMR and 13C NMR techniques at room temperature. NMR spectra revealed the presence of N’-(benzylidene)-2-(6-methyl-1H-pyrazolo[3,4-b]quinolin-1-yl)acetohydrazides as a mixture of two conformers, i.e., E(C=N)(N-N) synperiplanar and E(C=N)(N-N)antiperiplanar at room temperature in DMSO-d6. The ratio of both conformers was also calculated and E(C=N) (N-N) syn-periplanar conformer was established to be in higher percentage in equilibrium with the E(C=N) (N-N)anti-periplanar form. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 6836 KiB  
Article
Photo- and Acid-Degradable Polyacylhydrazone–Doxorubicin Conjugates
by Maria Psarrou, Martha Georgia Kothri and Maria Vamvakaki
Polymers 2021, 13(15), 2461; https://doi.org/10.3390/polym13152461 - 27 Jul 2021
Cited by 16 | Viewed by 4122
Abstract
Light-mediated polymer degradation has attracted considerable attention in various applications, including photo-patterning, tissue engineering and photo-triggered drug delivery. In this study, we report the synthesis and characterization of a new, linear, main-chain photo- and acid-degradable copolymer based on acylhydrazone linkages. The polymer was [...] Read more.
Light-mediated polymer degradation has attracted considerable attention in various applications, including photo-patterning, tissue engineering and photo-triggered drug delivery. In this study, we report the synthesis and characterization of a new, linear, main-chain photo- and acid-degradable copolymer based on acylhydrazone linkages. The polymer was synthesized via a step-growth copolymerization of adipic acid dihydrazide with a bifunctional poly(ethylene glycol) bearing benzaldehyde end-groups, under mild acidic conditions, to afford a hydrophilic PEG-alt-adipic acid (PEG-alt-AA) alternating copolymer. The synthesized polymer was characterized by size exclusion chromatography, proton nuclear magnetic resonance and attenuated total reflection-Fourier transform infrared spectroscopies. The main-chain photo- and acid-induced degradation of the copolymer in dimethylsulfoxide and water, respectively, was verified by UV-vis spectroscopy at light intensities as low as 0.1 mW cm−2 at λ = 254 nm. Next, a model anticancer drug, doxorubicin (DOX), was chemically linked to the polymer chain end(s) via acylhydrazone bond(s), resulting in amphiphilic PEG-alt-adipic acid-DOX (PEG-alt-AA-DOX) polymer–drug conjugates. The conjugates were self-assembled in water to form spherical nanoparticles, as evidenced by scanning and transmission electron microscopies. The irradiation of the self-assembled PEG-alt-AA-DOX conjugates with UV light and the decrease of the solution pH resulted in the disruption of the assemblies due to the photolysis and acidolysis of the acylhydrazone bonds, and the release of the therapeutic cargo. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Greece)
Show Figures

Graphical abstract

15 pages, 3914 KiB  
Article
Doubly Dynamic Hydrogel Formed by Combining Boronate Ester and Acylhydrazone Bonds
by Yusheng Liu, Yigang Liu, Qiuxia Wang, Yugui Han, Hao Chen and Yebang Tan
Polymers 2020, 12(2), 487; https://doi.org/10.3390/polym12020487 - 21 Feb 2020
Cited by 33 | Viewed by 6884
Abstract
The incorporation of double dynamic bonds into hydrogels provides an effective strategy to engineer their performance on demand. Herein, novel hydrogels were PREPARED by combining two kinetically distinct dynamic covalent bonds, boronate ester and acylhydrazone bonds, and the synergistic properties of the hydrogels [...] Read more.
The incorporation of double dynamic bonds into hydrogels provides an effective strategy to engineer their performance on demand. Herein, novel hydrogels were PREPARED by combining two kinetically distinct dynamic covalent bonds, boronate ester and acylhydrazone bonds, and the synergistic properties of the hydrogels were studied comprehensively. The functional diblock copolymers P(N-isopropyl acrylamide-co-N-acryloyl-3-aminophenylboronic acid)-b-(N-isopropyl acrylamide-co-diacetone acrylamide) (PAD) were prepared via reversible addition−fragmentation chain transfer (RAFT) polymerization. The hydrogel was constructed by exploiting dynamic reaction of phenyboronic acid moieties with polyvinyl alcohol (PVA) and ketone moieties with adipic dihydrazide (ADH) without any catalyst. The active boronate ester linkage endows the hydrogel with fast gelation kinetics and self-healing ability, and the stable acylhydrazone linkage can enhance the mechanical property of the hydrogel. The difference in kinetics endows that the contribution of each linkage to mechanical strength of the hydrogel can be accurately estimated. Moreover, the mechanical property of the hydrogel can be readily engineered by changing the composition and solid content, as well as by controlling the formation or dissociation of the dynamic linkages. Thus, we provide a promising strategy to design and prepare multi-responsive hydrogels with tunable properties. Full article
Show Figures

Graphical abstract

19 pages, 9639 KiB  
Article
Design, Synthesis, and Biological Evaluation of Novel N-Acylhydrazone Bond Linked Heterobivalent β-Carbolines as Potential Anticancer Agents
by Xiaofei Chen, Liang Guo, Qin Ma, Wei Chen, Wenxi Fan and Jie Zhang
Molecules 2019, 24(16), 2950; https://doi.org/10.3390/molecules24162950 - 14 Aug 2019
Cited by 16 | Viewed by 4195
Abstract
Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine [...] Read more.
Utilizing a pharmacophore hybridization approach, we have designed and synthesized a novel series of 28 new heterobivalent β-carbolines. The in vitro cytotoxic potential of each compound was evaluated against the five cancer cell lines (LLC, BGC-823, CT-26, Bel-7402, and MCF-7) of different origin—murine and human, with the aim of determining the potency and selectivity of the compounds. Compound 8z showed antitumor activities with half-maximal inhibitory concentration (IC50) values of 9.9 ± 0.9, 8.6 ± 1.4, 6.2 ± 2.5, 9.9 ± 0.5, and 5.7 ± 1.2 µM against the tested five cancer cell lines. Moreover, the effect of compound 8z on the angiogenesis process was investigated using a chicken chorioallantoic membrane (CAM) in vivo model. At a concentration of 5 μM, compound 8z showed a positive effect on angiogenesis. The results of this study contribute to the further elucidation of the biological regulatory role of heterobivalent β-carbolines and provide helpful information on the development of vascular targeting antitumor drugs. Full article
(This article belongs to the Special Issue Modern Strategies for Heterocycle Synthesis)
Show Figures

Graphical abstract

Back to TopTop