pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cell Cultures
2.3. Preparation and Characterization of DXMS Liposomes
2.4. Preparation of Hydrogels
2.5. Characteristics of the Hydrogels
2.6. Biocompatibility of the Hydrogels
2.7. Wound Healing Experiment
2.8. In Vitro Antibacterial Activity
2.9. In Vivo Nasal Mucosal Injury Surgical Procedure
2.10. Histology, Immunohistochemistry, and Immunofluorescence Evaluation
2.11. RNA Sequencing
2.12. Statistical Analysis
3. Results
3.1. Characterization of Liposomes
3.2. Characterization of Hydrogels
3.3. Hydrogels in Cellular Functions and Their Inhibition of Bacterial Production
3.4. Hydrogels Accelerated Nasal Wound Repair In Vivo
3.5. Sequencing Results of Mucosal Repair
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, M.; Xiao, H.; Yang, X.; Cheng, T.; Yuan, L.; Xia, N. Novel vaccine strategies to induce respiratory mucosal immunity: Advances and implications. MedComm 2025, 6, e70056. [Google Scholar] [CrossRef] [PubMed]
- Seefeld, M.L.; Templeton, E.L.; Lehtinen, J.M.; Sinclair, N.; Yadav, D.; Hartwell, B.L. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front. Immunol. 2024, 15, 1419527. [Google Scholar] [CrossRef] [PubMed]
- Selvarajah, J.; Saim, A.B.; Bt Hj Idrus, R.; Lokanathan, Y. Current and Alternative Therapies for Nasal Mucosa Injury: A Review. Int. J. Mol. Sci. 2020, 21, 480. [Google Scholar] [CrossRef]
- Fang, C.; Zhong, Y.; Chen, T.; Li, D.; Li, C.; Qi, X.; Zhu, J.; Wang, R.; Zhu, J.; Wang, S.; et al. Impairment mechanism of nasal mucosa after radiotherapy for nasopharyngeal carcinoma. Front. Oncol. 2022, 12, 1010131. [Google Scholar] [CrossRef]
- Guo, Z.; Hong, Z.; Dong, W.; Deng, C.; Zhao, R.; Xu, J.; Zhuang, G.; Zhang, R. PM(2.5)-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. Int. J. Environ. Res. Public Health 2017, 14, 134. [Google Scholar] [CrossRef]
- Teichgraeber, J.F.; Russo, R.C. Treatment of nasal surgery complications. Ann. Plast. Surg. 1993, 30, 80–88. [Google Scholar] [CrossRef]
- Vargas-Aguayo, A.M.; Copado-Ceballos, R.E.; Vivar-Acevedo, E.; Waizel-Haiat, S.; Contreras-Herrera, R.; Desentis-Vargas, E. Complications of endoscopic nasal and sinus surgery: Experience in 150 patients. Rev. Med. Inst. Mex. Seguro Soc. 2014, 52, 134–137. [Google Scholar]
- Kuhar, H.N.; Nesemeier, R.; Kim, L.R. Prevention and Management of Complications in Nasal Reconstruction. Facial Plast. Surg. Clin. N. Am. 2024, 32, 303–313. [Google Scholar] [CrossRef]
- Gurov, A.V.; Yushkina, M.A.; Muzhichkova, A.V. Possibilities of activation of mucociliary transport in patients with inflammatory diseases of the nose and paranasal sinuses. Meditsinskiy Sov. = Med. Counc. 2024. [Google Scholar] [CrossRef]
- Mardikasari, S.A.; Sipos, B.; Csóka, I.; Katona, G. Nasal route for antibiotics delivery: Advances, challenges and future opportunities applying the quality by design concepts. J. Drug Deliv. Sci. Technol. 2022, 77, 103887. [Google Scholar] [CrossRef]
- Loperfido, A.; Cavaliere, C.; Begvarfaj, E.; Ciofalo, A.; D’Erme, G.; De Vincentiis, M.; Greco, A.; Millarelli, S.; Bellocchi, G.; Masieri, S. The Impact of Antibiotics and Steroids on the Nasal Microbiome in Patients with Chronic Rhinosinusitis: A Systematic Review According to PICO Criteria. J. Pers. Med. 2023, 13, 1583. [Google Scholar] [CrossRef] [PubMed]
- Deva, A.K. Reply: The Role of Bacterial Biofilm in Adverse Soft-Tissue Filler Reactions: A Combined Laboratory and Clinical Study. Plast. Reconstr. Surg. 2017, 140, 633e–634e. [Google Scholar] [CrossRef]
- Oseni, A.O.; Butler, P.E.; Seifalian, A.M. Nasal reconstruction using tissue engineered constructs: An update. Ann. Plast. Surg. 2013, 71, 238–244. [Google Scholar] [CrossRef]
- Salahuddin, A.; Ashraf, A.; Ahmad, K.; Hou, H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int. J. Biol. Macromol. 2024, 280, 135803. [Google Scholar] [CrossRef]
- Charhate, K.; Sitaphale, D.; Tathe, D.; Laddha, P. An Investigation into In-Situ Nasal Gels for Enhanced Nasal Drug Delivery Systems. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 280, 479–488. [Google Scholar] [CrossRef]
- Chan, D.; Chien, J.C.; Axpe, E.; Blankemeier, L.; Baker, S.W.; Swaminathan, S.; Piunova, V.A.; Zubarev, D.Y.; Maikawa, C.L.; Grosskopf, A.K.; et al. Combinatorial Polyacrylamide Hydrogels for Preventing Biofouling on Implantable Biosensors. Adv. Mater. 2022, 34, e2109764. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, J.; Hong, X.; Zhou, J.; Xiong, Y.; Yang, H.; Li, S.; Chen, G.; Su, Q.; Li, W.; et al. Micro-environment triple-responsive hyaluronic acid hydrogel dressings to promote antibacterial activity, collagen deposition, and angiogenesis for diabetic wound healing. J. Mater. Chem. B 2024, 12, 4613–4628. [Google Scholar] [CrossRef]
- Chen, X.; Guo, R.; Wang, C.; Li, K.; Jiang, X.; He, H.; Hong, W. On-demand pH-sensitive surface charge-switchable polymeric micelles for targeting Pseudomonas aeruginosa biofilms development. J. Nanobiotechnol. 2021, 19, 99. [Google Scholar] [CrossRef]
- Gupta, D.; Agarwal, S.; Komire, K.; Kumar, V. Liposomes in Medicine: An In-depth Analysis of Preparation Methods and Applications. Int. J. Drug Deliv. Technol. 2024, 14, 1148–1161. [Google Scholar] [CrossRef]
- A Complete Review on: Liposomes. Int. J. Sci. Res. Sci. Technol. 2024, 11, 373–378. [CrossRef]
- Li, C.W.; Cheung, W.; Lin, Z.B.; Li, T.Y.; Lim, J.T.; Wang, D.Y. Oral steroids enhance epithelial repair in nasal polyposis via upregulation of the AP-1 gene network. Thorax 2009, 64, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Li, D.; Tao, H.; Deng, C. Effects of dexamethasone on the EGF mRNA levels and inflammatory factors in rabbits with oral ulcers. Pharm. Bioprocess. 2018, 6, 119–125. [Google Scholar]
- Filaretova, L.; Podvigina, T.; Bagaeva, T.; Makara, G. Gastroprotective action of glucocorticoids during the formation and the healing of indomethacin-induced gastric erosions in rats. J. Physiol.-Paris 2001, 95, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Cho, J.M.; Yoon, Y.J.; Seo, S.; Hong, Y.; Lim, J.Y. Retroductal dexamethasone administration promotes the recovery from obstructive and inflammatory salivary gland dysfunction. Front. Immunol. 2024, 15, 1418703. [Google Scholar] [CrossRef]
- Krause, R.; Bapolisi, A.; Nkanga, C.; Nnamdi, O. General Perception of Liposomes: Formation, Manufacturing and Applications. In Liposomes-Advances and Perspectives; Catala, A., Ed.; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Sanphui, P.; Chernyshev, V. Polymorphs and isostructural cocrystals of dexamethasone: Towards the improvement of aqueous solubility. CrystEngComm 2022, 24, 6045–6058. [Google Scholar]
- Dong, K.; Deng, S.J.; He, B.Y.; Guo, Z.Y.; Guan, Z.L.; Leng, X.; Ma, R.R.; Wang, D.Y.; Xing, J.F.; You, C.Y. Mucoadhesive Nanoparticles Enhance the Therapeutic Effect of Dexamethasone on Experimental Ulcerative Colitis by the Local Administration as an Enema. Drug Des. Devel Ther. 2023, 17, 191–207. [Google Scholar] [CrossRef]
- Budavári, B.; Karancsi, Á.; Pinke, B.; Pállinger, E.; Juriga-Tóth, K.; Király, M.; Szász, Z.; Voszka, I.; Molnar, K.; Kohidai, L.; et al. Long-term shelf-life liposomes for delivery of prednisolone and budesonide. J. Mol. Liq. 2023, 394, 123756. [Google Scholar] [CrossRef]
- Huynh, A.; Davis, M.; Gaston, B. Nasal pH Measurement in Allergic Rhinitis: A Pilot Study. J. Allergy Clin. Immunol. 2024, 153, AB135. [Google Scholar] [CrossRef]
- Kim, B.G.; Kim, J.H.; Kim, S.W.; Kim, S.W.; Jin, K.S.; Cho, J.H.; Kang, J.M.; Park, S.Y. Nasal pH in patients with chronic rhinosinusitis before and after endoscopic sinus surgery. Am. J. Otolaryngol. 2013, 34, 505–507. [Google Scholar] [CrossRef]
- Okada, S.; Hiroshige, R.; Tanaka, M.; Murai, M.; Kimura, T. Dexamethasone Sodium Phosphate Reference Standard (Control 891) of National Institute of Hygienic Sciences. Eisei Shikenjo Hokoku 1990, 144–146. [Google Scholar]
- Ribeiro, S.B.; de Araújo, A.A.; Oliveira, M.M.B.; Santos Silva, A.M.D.; da Silva-Júnior, A.A.; Guerra, G.C.B.; Brito, G.A.C.; Leitão, R.F.C.; Araújo Júnior, R.F.; Garcia, V.B.; et al. Effect of Dexamethasone-Loaded PLGA Nanoparticles on Oral Mucositis Induced by 5-Fluorouracil. Pharmaceutics 2021, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, Q.; Yang, W.; Liu, S. Synthesis and Properties of Hydrogels on Medical Titanium Alloy Surface by Modified Dopamine Adhesion. Gels 2022, 8, 458. [Google Scholar] [CrossRef]
- Wei, P.; Chen, T.; Chen, G.; Liu, H.; Mugaanire, I.T.; Hou, K.; Zhu, M. Conductive Self-Healing Nanocomposite Hydrogel Skin Sensors with Antifreezing and Thermoresponsive Properties. ACS Appl. Mater. Interfaces 2020, 12, 3068–3079. [Google Scholar] [CrossRef]
- Bozbay, R.; Teke, Ş.; Ersoy, K.K.; Orakdogen, N. Tuning physicomechanical properties of PEG-interpenetrated anionically modified semi-IPN cryogels functionalized with carboxylate groups. Colloids Surf. A Physicochem. Eng. Aspects 2024, 693, 134060. [Google Scholar] [CrossRef]
- Wong, S.; Brown, A.D.; Abrahams, A.B.; Nurzak, A.N.; Eltaher, H.M.; Sykes, D.A.; Veprintsev, D.B.; Fone, K.C.F.; Dixon, J.E.; King, M.V. A Modified Cell-Penetrating Peptide Enhances Insulin and Oxytocin Delivery across an RPMI 2650 Nasal Epithelial Cell Barrier In Vitro. Pharmaceutics 2024, 16, 1267. [Google Scholar] [CrossRef]
- Bendas, S.; Koch, E.V.; Nehlsen, K.; May, T.; Dietzel, A.; Reichl, S. The Path from Nasal Tissue to Nasal Mucosa on Chip: Part 1-Establishing a Nasal In Vitro Model for Drug Delivery Testing Based on a Novel Cell Line. Pharmaceutics 2023, 15, 2245. [Google Scholar] [CrossRef]
- Dal, T.; Bahar, S. The clinical outcomes of using a new cross-linked hyaluronan gel in endoscopic frontal sinus surgery. Eur. Arch. Otorhinolaryngol. 2017, 274, 3397–3402. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E.; Suto, M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 2018, 68–69, 28–43. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E. Thrombospondin-Dependent Activation of Latent TGF-β in Fibrosis and Disease. In Transforming Growth Factor-β in Cancer Therapy, Volume I: Basic and Clinical Biology; Jakowlew, S.B., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 549–567. [Google Scholar]
- Lee, Y.H.; Albig, A.R.; Regner, M.; Schiemann, B.J.; Schiemann, W.P. Fibulin-5 initiates epithelial-mesenchymal transition (EMT) and enhances EMT induced by TGF-beta in mammary epithelial cells via a MMP-dependent mechanism. Carcinogenesis 2008, 29, 2243–2251. [Google Scholar] [CrossRef]
- Remy, L.; Trespeuch, C.; Bachy, S.; Scoazec, J.Y.; Rousselle, P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res. 2006, 66, 11228–11237. [Google Scholar] [CrossRef]
- Wilson, C.L.; Schmidt, A.P.; Pirilä, E.; Valore, E.V.; Ferri, N.; Sorsa, T.; Ganz, T.; Parks, W.C. Differential Processing of {alpha}- and {beta}-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7). J. Biol. Chem. 2009, 284, 8301–8311. [Google Scholar] [CrossRef] [PubMed]
- Sambandam, S.A.T.; Kasetti, R.B.; Xue, L.; Dean, D.C.; Lu, Q.; Li, Q. 14-3-3σ regulates keratinocyte proliferation and differentiation by modulating Yap1 cellular localization. J. Investig. Dermatol. 2015, 135, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gong, A.; Shi, H.; Bie, Q.; Liang, Z.; Wu, P.; Mao, F.; Qian, H.; Xu, W. Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget 2017, 8, 71894–71910. [Google Scholar] [CrossRef]
- Martínez Báez, A.; Castro Romero, I.; Chihu Amparan, L.; Castañeda, J.R.; Ayala, G. The Insulin Receptor Substrate 2 Mediates the Action of Insulin on HeLa Cell Migration via the PI3K/Akt Signaling Pathway. Curr. Issues Mol. Biol. 2023, 45, 2296–2308. [Google Scholar] [CrossRef]
- Xu, R.; Wang, X.; Safi, S.; Braunegger, N.; Hipgrave Ederveen, A.; Rottmann, M.; Wittbrodt, J.; Wuhrer, M.; Wesslowski, J.; Davidson, G. N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling. Cells 2023, 12, 863. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.; Su, Y.; Yin, G.; Wang, S.; Yu, B.; Li, H.; Qi, J.; Chen, H.; Zeng, W.; et al. Activation of Wnt/β-catenin pathway mitigates blood-brain barrier dysfunction in Alzheimer’s disease. Brain 2022, 145, 4474–4488. [Google Scholar] [CrossRef]
- Han, J.; Zheng, Q.; Cheng, Y.; Liu, Y.; Bai, Y.; Yan, B.; Guo, S.; Yu, J.; Li, X.; Wang, C. Toll-like receptor 9 (TLR9) gene deletion-mediated fracture healing in type II diabetic osteoporosis associates with inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Bioengineered 2022, 13, 13689–13702. [Google Scholar] [CrossRef]
- Eng, Y.J.; Nguyen, T.M.; Luo, H.K.; Chan, J.M.W. Antifouling polymers for nanomedicine and surfaces: Recent advances. Nanoscale 2023, 15, 15472–15512. [Google Scholar] [CrossRef]
- Zhao, K.; Li, M.; Geng, H.; Gao, Z.; Zhang, X.; Sekhar, K.P.C.; Zhang, P.; Cui, J. Synthesis of Antifouling Poly(ethylene glycol) Brushes via “Grafting to” Approach for Improved Biodistribution. Biomacromolecules 2024, 25, 6727–6736. [Google Scholar] [CrossRef]
- Deng, F.; Wu, Z.; Zou, F.; Wang, S.; Wang, X. The Hippo-YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front. Cell Dev. Biol. 2022, 10, 894737. [Google Scholar] [CrossRef]
- Casteleyn, C.; Cornillie, P.; Hermens, A.; Van Loo, D.; Van Hoorebeke, L.; van den Broeck, W.; Simoens, P. Topography of the rabbit paranasal sinuses as a prerequisite to model human sinusitis. Rhinology 2010, 48, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.E.; Macri, N.P.; Creasy, D.M. Evaluation of the rabbit nasal cavity in inhalation studies and a comparison with other common laboratory species and man. Toxicol. Pathol. 2011, 39, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Bassiouni, A.; Drilling, A.; Psaltis, A.J.; Vreugde, S.; Wormald, P.J. The persistence of intracellular Staphylococcus aureus in the sinuses: A longitudinal study. Rhinology 2017, 55, 305–311. [Google Scholar] [CrossRef]
- Bonillo-Lopez, L.; Carmona-Vicente, N.; Tarrés-Freixas, F.; Kochanowski, K.; Martínez, J.; Perez, M.; Sibila, M.; Correa-Fiz, F.; Aragon, V. Porcine Nasal Organoids as a model to study the interactions between the swine nasal microbiota and the host. bioRxiv 2024. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, W.; Wang, C.; Zhang, C.; Hu, C.; Liu, L.; Xiang, L.; Yao, S.; Shi, R.; Fan, D.; et al. A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of H(2)S in promoted chronic diabetic wound repair. Regen. Biomater. 2025, 12, rbae134. [Google Scholar] [CrossRef]
DXMS Liposome | Encapsulation Rate (%) | Loading Efficiency (%) | Hydrodynamic Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|---|
1 | 90.27 | 7.16 | 159.31 | 0.223 | −18.42 |
2 | 90.49 | 7.08 | 163.78 | 0.216 | −17.70 |
3 | 89.75 | 7.36 | 149.52 | 0.215 | −19.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Chen, J.; Wang, S.; Zhu, Y.; Wang, Y.; Chen, Y.; Xia, M.; Yang, M.; Yi, H.; Su, K. pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing. Pharmaceutics 2025, 17, 690. https://doi.org/10.3390/pharmaceutics17060690
Yang Y, Chen J, Wang S, Zhu Y, Wang Y, Chen Y, Xia M, Yang M, Yi H, Su K. pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing. Pharmaceutics. 2025; 17(6):690. https://doi.org/10.3390/pharmaceutics17060690
Chicago/Turabian StyleYang, Yingchao, Jingyi Chen, Shengming Wang, Yaxin Zhu, Yao Wang, Yan Chen, Mingjiang Xia, Ming Yang, Hongliang Yi, and Kaiming Su. 2025. "pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing" Pharmaceutics 17, no. 6: 690. https://doi.org/10.3390/pharmaceutics17060690
APA StyleYang, Y., Chen, J., Wang, S., Zhu, Y., Wang, Y., Chen, Y., Xia, M., Yang, M., Yi, H., & Su, K. (2025). pH-Responsive Liposome–Hydrogel Composite Accelerates Nasal Mucosa Wound Healing. Pharmaceutics, 17(6), 690. https://doi.org/10.3390/pharmaceutics17060690