Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = acridinedione

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 10252 KiB  
Proceeding Paper
Graphitic Carbon Nitride-Supported L-Arginine: Synthesis, Charachterization, and Catalytic Activity in Multi-Component Reactions
by Fatemeh Bijari, Maryam Talebi, Hossein Ghafuri, Zeinab Tajik and Peyman Hanifehnejad
Chem. Proc. 2022, 12(1), 50; https://doi.org/10.3390/ecsoc-26-13708 - 18 Nov 2022
Cited by 2 | Viewed by 2251
Abstract
Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared as a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and acridinedione derivatives. High efficiency, short reaction time, and easy separation are significant features that are reasons for using g-C [...] Read more.
Graphitic carbon nitride-supported L-arginine (g-C3N4@L-arginine) has been prepared as a heterogeneous catalyst for synthesizing heterocyclic compounds such as pyranopyrazole and acridinedione derivatives. High efficiency, short reaction time, and easy separation are significant features that are reasons for using g-C3N4@L-arginine as a catalyst in one-pot multicomponent reactions. Synthesized nanocatalyst was detected by numerous analyses, such as FE-SEM (Field Emission Scanning Electron Microscopy), EDX (Energy Dispersive X-ray spectroscopy), XRD (X-Ray Diffraction analysis), TGA (Thermo Gravimetric Analysis), and FT-IR (Fourier Transform Infrared Spectroscopy). G-C3N4@L-arginine nanocatalyst was reused 5 times in the reaction with no apparent decrease in reaction yield, which shows acceptable recyclability. Full article
Show Figures

Figure 1

17 pages, 1538 KiB  
Article
In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut.
by Saliha Dassamiour, Mohamed Sabri Bensaad, Leila Hambaba, Mohamed Akram Melakhessou, Rokayya Sami, Amina A. M. Al-Mushhin, Amani H. Aljahani and Luluah M. Al Masoudi
Crystals 2022, 12(3), 355; https://doi.org/10.3390/cryst12030355 - 7 Mar 2022
Cited by 5 | Viewed by 3169
Abstract
Bioinformatics as a newly emerging discipline is considered nowadays a reference to characterize the physicochemical and pharmacological properties of the actual biocompounds contained in plants, which has helped the pharmaceutical industry a lot in the drug development process. In this study, a bioinformatics [...] Read more.
Bioinformatics as a newly emerging discipline is considered nowadays a reference to characterize the physicochemical and pharmacological properties of the actual biocompounds contained in plants, which has helped the pharmaceutical industry a lot in the drug development process. In this study, a bioinformatics approach known as in silico was performed to predict, for the first time, the physicochemical properties, ADMET profile, pharmacological capacities, cytotoxicity, and nervous system macromolecular targets, as well as the gene expression profiles, of four compounds recently identified from Centaurea tougourensis via the gas chromatography–mass spectrometry (GC–MS) approach. Thus, four compounds were tested from the n-butanol (n-BuOH) extract of this plant, named, respectively, Acridin-9-amine, 1,2,3,4-tetrahydro-5,7-dimethyl- (compound 1), 3-[2,3-Dihydro-2,2-dimethylbenzofuran-7-yl]-5-methoxy-1,3,4-oxadiazol-2(3H)-one (compound 2), 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione (compound 3), and 3-[3-Bromophenyl]-7-chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-acridinedione (compound 4). The insilico investigation revealed that the four tested compounds could be a good candidate to regulate the expression of key genes and may also exert significant cytotoxic effects against several tumor celllines. In addition, these compounds could also be effective in the treatment of some diseases related to diabetes, skin pathologies, cardiovascular, and central nervous system disorders. The bioactive compounds of plant remain the best alternative in the context of the drug discovery and development process. Full article
(This article belongs to the Special Issue New Trends in Crystals at Saudi Arabia)
Show Figures

Figure 1

6 pages, 1424 KiB  
Proceeding Paper
Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst
by Hossein Ghafuri, Shahram Moradi, Nastaran Ghanbari, Haniyeh Dogari and Mostafa Ghafori
Chem. Proc. 2022, 8(1), 23; https://doi.org/10.3390/ecsoc-25-11719 - 14 Nov 2021
Cited by 1 | Viewed by 2140
Abstract
In the present investigation, an efficient heterogeneous catalyst system made of a polyaniline-derived polymer (Poly [anthranilic acid]-[N-(1′,3′-phenylenediamino) −3-butane sulfonate]) and iron oxide nanoparticles (Fe3O4 NPs) is presented. Firstly, this novel catalytic system (Fe3O4@Polyaniline-SO3H) has [...] Read more.
In the present investigation, an efficient heterogeneous catalyst system made of a polyaniline-derived polymer (Poly [anthranilic acid]-[N-(1′,3′-phenylenediamino) −3-butane sulfonate]) and iron oxide nanoparticles (Fe3O4 NPs) is presented. Firstly, this novel catalytic system (Fe3O4@Polyaniline-SO3H) has been fabricated via a convenience method and magnetized via an in situ process. The as-prepared solid acid catalyst was also carefully analyzed by Fourier transfer infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). It has been suitably applied for the one-pot multicomponent synthesis of acridinediones as an important class of heterocyclic compounds. The first and foremost advantage of this catalytic system is that the (Fe3O4@Polyaniline-SO3H) is magnetically separated from the reaction mixture through their high paramagnetic behavior. The main attractive characteristics of the presented green protocol are very short reaction times, excellent yields, and the avoidance of hazardous or toxic reagents and solvents. Easy separation, high reusability, cost-effective and mild catalyst are important advantages of the new catalyst in comparison to other catalysts for the synthesis of acridinedione derivatives via one-pot four-component reaction. Full article
Show Figures

Figure 1

15 pages, 2452 KiB  
Article
Synthesis and Laccase-Mediated Oxidation of New Condensed 1,4-Dihydropyridine Derivatives
by Jelena Milovanovic, Miyase Gözde Gündüz, Anastasia Zerva, Milos Petkovic, Vladimir Beskoski, Nikolaos S. Thomaidis, Evangelos Topakas and Jasmina Nikodinovic-Runic
Catalysts 2021, 11(6), 727; https://doi.org/10.3390/catal11060727 - 12 Jun 2021
Cited by 6 | Viewed by 3606
Abstract
We describe herein the synthesis and laccase mediated oxidation of six novel 1,4-dihydropyridine (DHP)-based hexahydroquinolines (DHP1-DHP3) and decahydroacridines (DHP4-DHP6). We employed different laccase enzymes with varying redox potential to convert DHP1-DHP3 and DHP4-DHP6 to the corresponding pyridine-containing tetrahydroquinoline and octahydroacridine derivatives, respectively. Intensively [...] Read more.
We describe herein the synthesis and laccase mediated oxidation of six novel 1,4-dihydropyridine (DHP)-based hexahydroquinolines (DHP1-DHP3) and decahydroacridines (DHP4-DHP6). We employed different laccase enzymes with varying redox potential to convert DHP1-DHP3 and DHP4-DHP6 to the corresponding pyridine-containing tetrahydroquinoline and octahydroacridine derivatives, respectively. Intensively coloured products were detected in all biocatalytic reactions using laccase from Trametes versicolor (TvLacc), possibly due to the presence of conjugated chromophores formed in products after oxidation. The NMR assessment confirmed that the oxidation product of DHP1 was its corresponding pyridine-bearing tetrahydroquinoline derivative. Laccase from Bacillus subtillis (BacillusLacc) was the most efficient enzyme for this group of substrates using HPLC assessment. Overall, it could be concluded that DHP2 and DHP5, bearing catecholic structures, were easily oxidized by all tested laccases, while DHP3 and DHP6 containing electron-withdrawing nitro-groups are not readily oxidized by laccases. DHP4 with decahydroacridine moiety consisting of three condensed six-membered rings that contribute not only to the volume but also to the higher redox potential of the substrate rendered this compound not to be biotransformed with any of the mentioned enzymes. Overall, we showed that multiple analytical approaches are needed in order to assess biocatalytical reactions. Full article
Show Figures

Figure 1

5 pages, 477 KiB  
Proceeding Paper
Investigation of Acridinedione Derivative Synthesis with Versatile Morphologies of Bi2O3 Nanoparticles
by Hossein Ghafuri, Bahareh Pourakbari, Peyman Hanifehnejad and Zeinab Tajik
Chem. Proc. 2021, 3(1), 118; https://doi.org/10.3390/ecsoc-24-08327 - 14 Nov 2020
Cited by 2 | Viewed by 2049
Abstract
In this study, Bi2O3 nanoparticles were successfully synthesized through a facile hydrothermal procedure. The structure of the Bi2O3 nanoparticles was analyzed by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The synthesized Bi2O [...] Read more.
In this study, Bi2O3 nanoparticles were successfully synthesized through a facile hydrothermal procedure. The structure of the Bi2O3 nanoparticles was analyzed by Fourier transfer infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The synthesized Bi2O3 nanoparticles have unique properties, such as high activity, high purity, and high surface area. Hence, we have reported the Bi2O3 nanoparticles as an efficient, cost-effective, and mild catalyst for the synthesis of acridinedione derivatives via a one-pot four-component reaction. In addition, the effect of the morphology of the Bi2O3 nanostructure was investigated on catalytic performance. Therefore, Bi2O3 nanoparticles were prepared and applied as a heterogeneous catalyst in the synthesis of acridinedione derivatives. The present approach offers several advantages, such as excellent yields within short times, green catalyst, and ease of recovery. Full article
Show Figures

Figure 1

7 pages, 177 KiB  
Communication
Synthesis of N-substituted Acridinediones and Polyhydroquinoline Derivatives in Refluxing Water
by Jing-Jing Xia and Ke-Hua Zhang
Molecules 2012, 17(5), 5339-5345; https://doi.org/10.3390/molecules17055339 - 7 May 2012
Cited by 69 | Viewed by 6804
Abstract
Acridinediones were synthesized by the one-pot Hantzsch condensation of an aromatic aldehyde, 5,5-dimethyl-1,3-cyclohexanedione, and aniline/4-methylaniline in refluxing water. This method has then been extended to the four-component reaction of an aromatic aldehyde, 5,5-dimethyl-1,3-cyclohexanedione, ethyl acetoacetate and ammonium acetate for the synthesis of polyhydroquinoline [...] Read more.
Acridinediones were synthesized by the one-pot Hantzsch condensation of an aromatic aldehyde, 5,5-dimethyl-1,3-cyclohexanedione, and aniline/4-methylaniline in refluxing water. This method has then been extended to the four-component reaction of an aromatic aldehyde, 5,5-dimethyl-1,3-cyclohexanedione, ethyl acetoacetate and ammonium acetate for the synthesis of polyhydroquinoline derivatives. This is an environmentally friendly and efficient procedure providing good to excellent yields. Full article
7 pages, 248 KiB  
Article
Synthesis of Some New Fluorinated Hexahydroquinoline and Acridinedione Derivatives in Trifluoroethanol
by Cosmas O. Okoro, Mumiye A. Ogunwale and Tasneem Siddiquee
Appl. Sci. 2012, 2(2), 368-374; https://doi.org/10.3390/app2020368 - 18 Apr 2012
Cited by 11 | Viewed by 7319
Abstract
This article describes one-pot synthesis of new fluorinated hexahydroquinoline derivatives via unsymmetric Hantzsch reaction involving 5-trifluoromethyl-1,3-cyclohexanedione, aldehydes, acetoacetate ester, and ammonium acetate in trifluoroethanol (TFE). The reaction is simple and rapid with high yield. Full article
(This article belongs to the Special Issue Organo-Fluorine Chemical Science)
Show Figures

Figure 1

Back to TopTop