Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst †
Abstract
:1. Introduction
2. Experimental
2.1. General
2.2. Synthesis of N-(1′,3′-Phenylenediamino) −3-Butane Sulfonate
2.3. Synthesis of Poly [Anthranilic Acid]0.5-[N-(1′,3′-Phenylenediamino) −3-Butane Sulfonate]0.5
2.4. Synthesis of Fe3O4@Polyaniline-SO3H Nanocomposite
2.5. General Procedure for the Preparation of Acridinediones Derivatives
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadi, H.; Shaterian, H.R. Sulfonated magnetic nanocatalyst and application for synthesis of novel Spiro [ac-ridine-9, 5′-thiazole]-1,4′-dione derivatives. Res. Chem. Intermed. 2020, 46, 1109–1125. [Google Scholar] [CrossRef]
- Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology Of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.M.; Mubarak, A.T.; Assiri, M.A.; Ahmed, S.M.; Fouda, A.M. A facile and efficient synthesis of 1,8-dioxodecahydroacridines derivatives catalyzed by cobalt–alanine metal complex under aqueous ethanol media. BMC Chem. 2019, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Magyar, Á.; Hell, Z. An Efficient One-Pot Four-Component Synthesis of 9-Aryl-Hexahydroacridine-1,8-Dione Derivatives in the Presence of a Molecular Sieves Supported Iron Catalyst. Catal. Lett. 2019, 149, 2528–2534. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Li, P.; He, M.; Wu, Q.; Ye, L.; Mu, Y. Facile Synthesis of Acridine Derivatives by ZnCl2-Promoted Intramolecular Cyclization of o-Arylaminophenyl Schiff Bases. Org. Lett. 2014, 16, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K. Recent developments in the synthesis and biological ac-tivity of acridine/acridone analogues. RSC Adv. 2017, 7, 15776–15804. [Google Scholar] [CrossRef] [Green Version]
- Ramos, L.P.; Cordeiro, C.S.; Cesar-Oliveira, M.A.F.; Wypych, F.; Nakagaki, S. Applications of heterogeneous cat-alysts in the production of biodiesel by esterification and transesterification. In Bioenergy Research: Advances and Applications; Newnes: Newton, MA, USA, 2014; pp. 255–276. [Google Scholar]
- Gilanizadeh, M.; Zeynizadeh, B. Synthesis of Acridinediones and Biscoumarins Using Fe3O4@SiO2@Ni–Zn–Fe LDH as an Efficient Magnetically Recoverable Mesoporous Catalyst. Polycycl. Aromat. Compd. 2021, 41, 15–32. [Google Scholar] [CrossRef]
- Eyvazzadeh-Keihan, R.; Bahrami, N.; Taheri-Ledari, R.; Maleki, A. Highly facilitated synthesis of phenyl(tetramethyl)acridinedione pharmaceuticals by a magnetized nanoscale catalytic system, constructed of GO, Fe3O4 and creatine. Diam. Relat. Mater. 2020, 102, 107661. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Nodeh, H.R.; Foroumadi, A. Magnetically Recoverable Graphene-Based Nanoparticles for the One-Pot Synthesis of Acridine Derivatives under Solvent-Free Conditions. Polycycl. Aromat. Compd. 2021, 41, 746–760. [Google Scholar] [CrossRef]
- Alirezvani, Z.; Dekamin, M.G.; Valiey, E. New Hydrogen-Bond-Enriched 1,3,5-Tris(2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives. ACS Omega 2019, 4, 20618–20633. [Google Scholar] [CrossRef] [PubMed]
- Işık, A.; Aday, B.; Ulus, R.; Kaya, M. One-Pot, Facile, Highly Efficient, and Green Synthesis of Acridinedione Derivatives Using Vitamin B1. Synth. Commun. 2015, 45, 2823–2831. [Google Scholar] [CrossRef]
- Safaei, H.R.; Safaei, M.; Shekouhy, M. Sulfuric acid-modified poly(vinylpyrrolidone) ((PVP–SO3H)HSO4): A new highly efficient, bio-degradable and reusable polymeric catalyst for the synthesis of acridinedione derivatives. RSC Adv. 2015, 5, 6797–6806. [Google Scholar] [CrossRef]
- Ghafuri, H.; Pourakbari, B.; Hanifehnejad, P.; Tajik, Z. Investigation of Acridinedione Derivative Synthesis with Versatile Morphologies of Bi2O3 Nanoparticles. Chem. Proc. 2020, 3, 118. [Google Scholar] [CrossRef]
- Tambe, A.; Gadhave, A.; Pathare, A.; Shirole, G. Novel Pumice@SO3H catalyzed efficient synthesis of 2,4,5-triarylimidazoles and acridine-1,8-diones under microwave assisted solvent-free path. Sustain. Chem. Pharm. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Gawande, M.B.; Monga, Y.; Zboril, R.; Sharma, R.K. Silica-decorated magnetic nanocomposites for catalytic appli-cations. Coord. Chem. Rev. 2015, 288, 118–143. [Google Scholar] [CrossRef]
- Shahamat, Z.; Nemati, F.; Elhampour, A. Facile template-free route to fabricate core–shell Fe3O4@PANI-SO3H ur-chin-like nanoparticles as reusable catalyst for Hantzsch reaction: Change morphology upon sulfonation. Res. Chem. Intermed. 2018, 44, 6649–6666. [Google Scholar] [CrossRef]
- Gill, C.S.; Price, B.A.; Jones, C.W. Sulfonic acid-functionalized silica-coated magnetic nanoparticle catalysts. J. Catal. 2007, 251, 145–152. [Google Scholar] [CrossRef]
- Padmanaban, S.; Kim, M.; Yoon, S. Size-tunable Synthesis of Silver Nanobelts Using a Polyaniline Derived Polymer as a Template. Sci. Rep. 2017, 7, 44796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarei, Z.; Akhlaghinia, B. Zn II doped and immobilized on functionalized magnetic hydrotalcite (Fe3O4/HT-SMTU-Zn II): A novel, green and magnetically recyclable bifunctional nanocatalyst for the one-pot multi-component synthesis of acri-dinediones under solvent-free conditions. New J. Chem. 2017, 41, 15485–15500. [Google Scholar] [CrossRef]
Entry | Aldehyed (R) | Product | Time (min) | Isolated Yield * (%) | Mp. (°C) Ref. |
---|---|---|---|---|---|
1 | H | 4a | 10 | 98 | 189–191 [9] |
2 | 3-OHC6H4 | 4b | 15 | 93 | 310–312 [9] |
3 | 4-ClC6H4 | 4c | 12 | 92 | 244–246 [3] |
4 | 3-NO3C6H4 | 4d | 15 | 90 | 293–295 [3] |
5 | 4-CH3OC6H4 | 4e | 15 | 91 | 278–280 [11] |
6 | 4-CH3C6H4 | 4f | 12 | 94 | >300 [11] |
7 | 4-BrC6H4 | 4g | 15 | 96 | 253–255 [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafuri, H.; Moradi, S.; Ghanbari, N.; Dogari, H.; Ghafori, M. Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst. Chem. Proc. 2022, 8, 23. https://doi.org/10.3390/ecsoc-25-11719
Ghafuri H, Moradi S, Ghanbari N, Dogari H, Ghafori M. Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst. Chemistry Proceedings. 2022; 8(1):23. https://doi.org/10.3390/ecsoc-25-11719
Chicago/Turabian StyleGhafuri, Hossein, Shahram Moradi, Nastaran Ghanbari, Haniyeh Dogari, and Mostafa Ghafori. 2022. "Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst" Chemistry Proceedings 8, no. 1: 23. https://doi.org/10.3390/ecsoc-25-11719
APA StyleGhafuri, H., Moradi, S., Ghanbari, N., Dogari, H., & Ghafori, M. (2022). Efficient and Green Synthesis of Acridinedione Derivatives Using Highly Fe3O4@Polyaniline-SO3H as Efficient Heterogeneous Catalyst. Chemistry Proceedings, 8(1), 23. https://doi.org/10.3390/ecsoc-25-11719