Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = acoustic radiation mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 4142 KiB  
Review
Advances in Wettability-Engineered Open Planar-Surface Droplet Manipulation
by Ge Chen, Jin Yan, Junjie Liang, Jiajia Zheng, Jinpeng Wang, Hongchen Pang, Xianzhang Wang, Zihao Weng and Wei Wang
Micromachines 2025, 16(8), 893; https://doi.org/10.3390/mi16080893 (registering DOI) - 31 Jul 2025
Viewed by 324
Abstract
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the [...] Read more.
Firstly, this paper reviews the fundamental theories of solid surface wettability and contact angle hysteresis. Subsequently, it further introduces four typical wettability-engineered surfaces with low hysteresis (superhydrophobic, superamphiphobic, super-slippery, and liquid-like smooth surfaces). Finally, it focuses on the latest research progress in the field of droplet manipulation on open planar surfaces with engineered wettability. To achieve droplet manipulation, the core driving forces primarily stem from natural forces guided by bioinspired gradient surfaces or the regulatory effects of external fields. In terms of bioinspired self-propelled droplet movement, this paper summarizes research inspired by natural organisms such as desert beetles, cacti, self-aligning floating seeds of emergent plants, or water-walking insects, which construct bioinspired special gradient surfaces to induce Laplace pressure differences or wettability gradients on both sides of droplets for droplet manipulation. Moreover, this paper further analyzes the mechanisms, advantages, and limitations of these self-propelled approaches, while summarizing the corresponding driving force sources and their theoretical formulas. For droplet manipulation under external fields, this paper elaborates on various external stimuli including electric fields, thermal fields, optical fields, acoustic fields, and magnetic fields. Among them, electric fields involve actuation mechanisms such as directly applied electrostatic forces and indirectly applied electrocapillary forces; thermal fields influence droplet motion through thermoresponsive wettability gradients and thermocapillary effects; optical fields cover multiple wavelengths including near-infrared, ultraviolet, and visible light; acoustic fields utilize horizontal and vertical acoustic radiation pressure or acoustic wave-induced acoustic streaming for droplet manipulation; the magnetic force acting on droplets may originate from their interior, surface, or external substrates. Based on these different transport principles, this paper comparatively analyzes the unique characteristics of droplet manipulation under the five external fields. Finally, this paper summarizes the current challenges and issues in the research of droplet manipulation on the open planar surfaces and provides an outlook on future development directions in this field. Full article
(This article belongs to the Special Issue Advanced Microfluidic Chips: Optical Sensing and Detection)
Show Figures

Figure 1

17 pages, 3444 KiB  
Article
Multiphysics-Coupled Simulation of Ultrasound-Assisted Tailing Slurry Sedimentation
by Liang Peng and Congcong Zhao
Materials 2025, 18(15), 3430; https://doi.org/10.3390/ma18153430 - 22 Jul 2025
Viewed by 185
Abstract
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound [...] Read more.
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound field. The simulation results show that under 28 kHz ultrasonic radiation, the amplitude of sound pressure in the sand silo (173 Pa) is much lower than that at 40 kHz (1220 Pa), which can avoid damaging the original settlement mode of the tail mortar. At the same time, the periodic fluctuation amplitude of its longitudinal sound pressure is significantly greater than 25 kHz, which can promote settlement by enhancing particle tensile and compressive stress, achieving the best comprehensive effect. The staggered placement scheme of the transducer eliminates upward disturbance in the flow field by changing the longitudinal opposing sound field to oblique propagation, reduces energy dissipation, and increases the highest sound pressure level in the compartment to 130 dB. The sound pressure distribution density is significantly improved, further enhancing the settling effect. This study clarifies the correlation mechanism between ultrasound parameters and tailings’ settling efficiency, providing a theoretical basis for parameter optimization of ultrasound-assisted tailing treatment technology. Its results have important application value in the optimization of tailings settling in metal mine tailing filling. Full article
Show Figures

Figure 1

27 pages, 4412 KiB  
Review
Coupling Agents in Acoustofluidics: Mechanisms, Materials, and Applications
by Shenhao Deng, Yiting Yang, Menghui Huang, Cheyu Wang, Enze Guo, Jingui Qian and Joshua E.-Y. Lee
Micromachines 2025, 16(7), 823; https://doi.org/10.3390/mi16070823 - 19 Jul 2025
Viewed by 427
Abstract
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of [...] Read more.
Acoustic coupling agents serve as critical interfacial materials connecting piezoelectric transducers with microfluidic chips in acoustofluidic systems. Their performance directly impacts acoustic wave transmission efficiency, device reusability, and reliability in biomedical applications. Considering the rapidly growing body of research in the field of acoustic microfluidics, this review aims to serve as an all-in-one reference on the role of acoustic coupling agents and relevant considerations pertinent to acoustofluidic devices for anyone working in or seeking to enter the field of disposable acoustofluidic devices. To this end, this review seeks to summarize and categorize key aspects of acoustic couplants in the implementation of acoustofluidic devices by examining their underlying physical mechanisms, material classifications, and core applications of coupling agents in acoustofluidics. Gel-based coupling agents are particularly favored for their long-term stability, high coupling efficiency, and ease of preparation, making them integral to acoustic flow control applications. In practice, coupling agents facilitate microparticle trapping, droplet manipulation, and biosample sorting through acoustic impedance matching and wave mode conversion (e.g., Rayleigh-to-Lamb waves). Their thickness and acoustic properties (sound velocity, attenuation coefficient) further modulate sound field distribution to optimize acoustic radiation forces and thermal effects. However, challenges remain regarding stability (evaporation, thermal degradation) and chip compatibility. Further aspects of research into gel-based agents requiring attention include multilayer coupled designs, dynamic thickness control, and enhancing biocompatibility to advance acoustofluidic technologies in point-of-care diagnostics and high-throughput analysis. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

24 pages, 2836 KiB  
Article
Response Prediction and Experimental Validation of Vibration Noise in the Conveyor Trough of a Combine Harvester
by Jianpeng Jing, Guangen Yan, Zhong Tang, Shuren Chen, Runzhi Liang, Yuxuan Chen and Xiaoying He
Agriculture 2025, 15(10), 1099; https://doi.org/10.3390/agriculture15101099 - 19 May 2025
Viewed by 538
Abstract
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 [...] Read more.
The noise generated by combine harvesters during operation has drawn growing attention, particularly that of the conveying trough shell, whose noise generation mechanism remains unclear. This study investigated the vibration radiation noise characteristics of conveying troughs by analyzing a chain system with 83 links using numerical simulation and experimental validation. A dynamic model of the conveyor chain system was developed, and the time domain reaction force at the bearing support was used as excitation for the trough shell’s finite element model. Modal and harmonic response analyses were performed to obtain the vibration response, which served as an acoustic boundary input for the LMS Virtual Lab. The indirect boundary element method was used to compute the radiated noise, achieving coupled modeling of chain system vibration and trough shell noise. Simulation results revealed that the maximum radiated noise occurred at approximately 112 Hz, closely matching experimental data. Comparative analysis of transmitted noise at 500 Hz and 700 Hz showed acoustic power levels of 98.4 dB and 109.52 dB, respectively. Results indicate that transmitted noise dominates over structural radiation in energy contribution, highlighting it as the primary noise path. This work offers a validated prediction model and supports noise control design for combine harvester conveying troughs. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

22 pages, 4360 KiB  
Article
Underwater Target Recognition Method Based on Singular Spectrum Analysis and Channel Attention Convolutional Neural Network
by Fang Ji, Shaoqing Lu, Junshuai Ni, Ziming Li and Weijia Feng
Sensors 2025, 25(8), 2573; https://doi.org/10.3390/s25082573 - 18 Apr 2025
Viewed by 524
Abstract
In order to improve the efficiency of the deep network model in processing the radiated noise signals of underwater acoustic targets, this paper introduces a Singular Spectrum Analysis and Channel Attention Convolutional Neural Network (SSA-CACNN) model. The front end of the model is [...] Read more.
In order to improve the efficiency of the deep network model in processing the radiated noise signals of underwater acoustic targets, this paper introduces a Singular Spectrum Analysis and Channel Attention Convolutional Neural Network (SSA-CACNN) model. The front end of the model is designed as an SSA filter, and its input is the time-domain signal that has undergone simple preprocessing. The SSA method is utilized to separate the noise efficiently and reliably from useful signals. The first three orders of useful signals are then fed into the CACNN model, which has a convolutional layer set up at the beginning of the model to further remove noise from the signal. Then, the attention of the model to the feature signal channels is enhanced through the combination of multiple groups of convolutional operations and the channel attention mechanism, which facilitates the model’s ability to discern the essential characteristics of the underwater acoustic signals and improve the target recognition rate. Experimental Results: The signal reconstructed by the first three-order waveforms at the front end of the SSA-CACNN model proposed in this paper can retain most of the features of the target. In the experimental verification using the ShipsEar dataset, the model achieved a recognition accuracy of 98.64%. The model’s parameter count of 0.26 M was notably lower than that of other comparable deep models, indicating a more efficient use of resources. Additionally, the SSA-CACNN model had a certain degree of robustness to noise, with a correct recognition rate of 84.61% maintained when the signal-to-noise ratio (SNR) was −10 dB. Finally, the pre-trained SSA-CACNN model on the ShipsEar dataset was transferred to the DeepShip dataset with a recognition accuracy of 94.98%. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

16 pages, 1104 KiB  
Article
Multi-Channel Underwater Acoustic Signal Analysis Using Improved Multivariate Multiscale Sample Entropy
by Jing Zhou, Yaan Li and Mingzhou Wang
J. Mar. Sci. Eng. 2025, 13(4), 675; https://doi.org/10.3390/jmse13040675 - 27 Mar 2025
Viewed by 386
Abstract
Underwater acoustic signals typically exhibit non-Gaussian, non-stationary, and nonlinear characteristics. When processing real-world underwater acoustic signals, traditional multivariate entropy algorithms often struggle to simultaneously ensure stability and extract cross-channel information. To address these issues, the improved multivariate multiscale sample entropy (IMMSE) algorithm is [...] Read more.
Underwater acoustic signals typically exhibit non-Gaussian, non-stationary, and nonlinear characteristics. When processing real-world underwater acoustic signals, traditional multivariate entropy algorithms often struggle to simultaneously ensure stability and extract cross-channel information. To address these issues, the improved multivariate multiscale sample entropy (IMMSE) algorithm is proposed, which extracts the complexity of multi-channel data, enabling a more comprehensive and stable representation of the dynamic characteristics of complex nonlinear systems. This paper explores the optimal parameter selection range for the IMMSE algorithm and compares its sensitivity to noise and computational efficiency with traditional multivariate entropy algorithms. The results demonstrate that IMMSE outperforms its counterparts in terms of both stability and computational efficiency. Analysis of various types of ship-radiated noise further demonstrates IMMSE’s superior stability in handling complex underwater acoustic signals. Moreover, IMMSE’s ability to extract features enables more accurate discrimination between different signal types. Finally, the paper presents data processing results in mechanical fault diagnosis, underscoring the broad applicability of IMMSE. Full article
(This article belongs to the Special Issue Navigation and Detection Fusion for Autonomous Underwater Vehicles)
Show Figures

Figure 1

20 pages, 9326 KiB  
Article
Vibroacoustic Response of a Disc-Type Underwater Glider During Its Entry into Water
by Zhaocheng Sun, Yanting Yu, Dong Li, Chuanlin He and Yue Zhang
J. Mar. Sci. Eng. 2025, 13(3), 544; https://doi.org/10.3390/jmse13030544 - 12 Mar 2025
Viewed by 577
Abstract
Underwater gliders are extensively employed in oceanographic observation and detection. The structural characteristics of thin-wall shells are more susceptible to vibrations from internal mechanical components; this noise emission becomes more complex with the presence of water surfaces. The finite element method (FEM) is [...] Read more.
Underwater gliders are extensively employed in oceanographic observation and detection. The structural characteristics of thin-wall shells are more susceptible to vibrations from internal mechanical components; this noise emission becomes more complex with the presence of water surfaces. The finite element method (FEM) is introduced to discuss the dynamic performance of cylindrical shells with different lengths. The acoustic-structure coupling, together with the effect of the water surface, is validated by comparisons with experimental or analytical solutions under three cases: half-filled, half-submerged, and partially submerged in fluid. Compared to the verification result, the relative error of the eigenfrequency derived from the numerical result is less than 3%, and then the mesh division and boundary conditions are adjusted to calculate the vibroacoustic response of a disc-type glider. During its water entry process, there are six distinct bright curves in frequency–depth spectra of sound pressure radiated from a partially immersed disc-type glider. The first curve is continuous, while the remaining five curves display discontinuities around a region where the geometric curvature changes gradually. As the submerged depth increases, this causes a shift in the resonance frequencies, evidenced by the curves transitioning from higher to lower frequencies. Full article
Show Figures

Figure 1

11 pages, 1923 KiB  
Article
Experimental Study on Noise-Reduced Propagation Characteristics of the Parametric Acoustic Array Field in a Neck Phantom
by Li Wang, Fengji Li, Jie Zhou and Haijun Niu
Sensors 2025, 25(3), 802; https://doi.org/10.3390/s25030802 - 29 Jan 2025
Viewed by 879
Abstract
The electrolarynx (EL) is a common device for voice reconstruction in laryngectomy patients, but its mechanical sound source generates significant radiation noise, affecting the naturalness and acceptability of the speech. The parametric acoustic array (PAA), which produces directionally propagated difference-frequency sound waves, presents [...] Read more.
The electrolarynx (EL) is a common device for voice reconstruction in laryngectomy patients, but its mechanical sound source generates significant radiation noise, affecting the naturalness and acceptability of the speech. The parametric acoustic array (PAA), which produces directionally propagated difference-frequency sound waves, presents a promising alternative for creating a more natural glottal-like voice source in the trachea while reducing radiation noise. In this study, we developed a tissue-mimicking phantom to simulate human neck tissue and used a single-transducer-based PAA platform to generate modulated ultrasound signals with glottal waveform characteristics. Ultrasonic microphones captured sound signals fromthe trachea and surrounding air, and signal processing was used to isolate the difference-frequency signals. The results demonstrated that difference-frequency signals were successfully detected in the phantom’s trachea, with time-domain waveforms and frequency spectra closely resembling the designed glottal waveform (Pearson correlation coefficient = 0.9438). Additionally, radiation noise produced by the PAA was significantly lower (23 dB, p < 0.0001) compared to the traditional EL. These findings demonstrate the potential of PAA for voice source reconstruction in laryngectomy patients and suggest its capacity to enhance speech rehabilitation outcomes. Further research is required to refine the frequency range and evaluate clinical applicability. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

28 pages, 14974 KiB  
Article
Multidimensional Particle Separation by Tilted-Angle Standing Surface Acoustic Waves—Physics, Control, and Design
by Sebastian Sachs, Jörg König and Christian Cierpka
Powders 2025, 4(1), 2; https://doi.org/10.3390/powders4010002 - 8 Jan 2025
Cited by 1 | Viewed by 1145
Abstract
Lab-on-a-Chip devices based on tilted-angle standing surface acoustic waves (tasSAWs) emerged as a promising technology for multidimensional particle separation, highly selective in particle size and acoustic contrast factor. For this active separation method, a tailored acoustic field is used to focus and separate [...] Read more.
Lab-on-a-Chip devices based on tilted-angle standing surface acoustic waves (tasSAWs) emerged as a promising technology for multidimensional particle separation, highly selective in particle size and acoustic contrast factor. For this active separation method, a tailored acoustic field is used to focus and separate particles on stationary pressure nodes by means of the acoustic radiation force. However, additional non-linear acoustofluidic phenomena, such as the acoustically induced fluid flow or dielectrophoretic effects, are superimposed on the separation process. To obtain a particle separation of high quality, control parameters that can be adjusted during the separation process as well as design parameters are available. The latter are specified prior to the separation and span a high-dimensional parameter space, ranging from the acoustic wavelength to the dimensions and materials used for the microchannel. In this paper, the physical mechanisms to control and design tasSAW-based separation devices are reviewed. By combining experimental, semi-analytical, and numerical findings, a critical channel height and width are derived to suppress the influence of the acoustically induced fluid flow. Dealing with the three-dimensional nature of the separation process, particles are focused at different height levels of equal force balance by implementing a channel cover of high acoustic impedance while achieving an approx. three-times higher acoustic pressure. Using this improved channel design, the particle shape is identified as an additional separation criterion, rendering the continuous acoustofluidic particle separation as a multidimensional technology capable of selectively separating microparticles below 10 μm with regard to size, acoustic contrast, and shape. Full article
Show Figures

Figure 1

22 pages, 6110 KiB  
Article
Air–Ice–Water Temperature and Radiation Transfer via Different Surface Coverings in Ice-Covered Qinghai Lake of the Tibetan Plateau
by Ruijia Niu, Lijuan Wen, Chan Wang, Hong Tang and Matti Leppäranta
Water 2025, 17(2), 142; https://doi.org/10.3390/w17020142 - 8 Jan 2025
Viewed by 965
Abstract
There are numerous lakes in the Tibetan Plateau (TP) that significantly impact regional climate and aquatic ecosystems, which often freeze seasonally owing to the high altitude. However, the special warming mechanisms of lake water under ice during the frozen period are poorly understood, [...] Read more.
There are numerous lakes in the Tibetan Plateau (TP) that significantly impact regional climate and aquatic ecosystems, which often freeze seasonally owing to the high altitude. However, the special warming mechanisms of lake water under ice during the frozen period are poorly understood, particularly in terms of solar radiation penetration through lake ice. The limited understanding of these processes has posed challenges to advancing lake models and improving the understanding of air–lake energy exchange during the ice-covered period. To address this, a field experiment was conducted at Qinghai Lake, the largest lake in China, in February 2022 to systematically examine thermal conditions and radiation transfer across air–ice–water interfaces. High-resolution remote sensing technologies (ultrasonic instrument and acoustic Doppler devices) were used to observe the lake surface changes, and MODIS imagery was also used to validate differences in lake surface conditions. Results showed that the water temperature under the ice warmed steadily before the ice melted. The observation period was divided into three stages based on surface condition: snow stage, sand stage, and bare ice stage. In the snow and sand stages, the lake water temperature was lower due to reduced solar radiation penetration caused by high surface reflectance (61% for 2 cm of snow) and strong absorption by 8 cm of sand (absorption-to-transmission ratio of 0.96). In contrast, during the bare ice stage, a low reflectance rate (17%) and medium absorption-to-transmission ratio (0.86) allowed 11% of solar radiation to penetrate the ice, reaching 11.70 W·m−2, which increased the water temperature across the under-ice layer, with an extinction coefficient for lake water of 0.39 (±0.03) m−1. Surface coverings also significantly influenced ice temperature. During the bare ice stage, the ice exhibited the lowest average temperature and the greatest diurnal variations. This was attributed to the highest daytime radiation absorption, as indicated by a light extinction coefficient of 5.36 (±0.17) m−1, combined with the absence of insulation properties at night. This study enhances understanding of the characteristics of water/ice temperature and air–ice–water solar radiation transfer through effects of different ice coverings (snow, sand, and ice) in Qinghai Lake and provides key optical radiation parameters and in situ observations for the refinement of TP lake models, especially in the ice-covered period. Full article
(This article belongs to the Special Issue Ice and Snow Properties and Their Applications)
Show Figures

Figure 1

59 pages, 20006 KiB  
Review
Magnetoelectric BAW and SAW Devices: A Review
by Bin Luo, Prasanth Velvaluri, Yisi Liu and Nian-Xiang Sun
Micromachines 2024, 15(12), 1471; https://doi.org/10.3390/mi15121471 - 3 Dec 2024
Cited by 5 | Viewed by 3178
Abstract
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in [...] Read more.
Magnetoelectric (ME) devices combining piezoelectric and magnetostrictive materials have emerged as powerful tools to miniaturize and enhance sensing and communication technologies. This paper examines recent developments in bulk acoustic wave (BAW) and surface acoustic wave (SAW) ME devices, which demonstrate unique capabilities in ultra-sensitive magnetic sensing, compact antennas, and quantum applications. Leveraging the mechanical resonance of BAW and SAW modes, ME sensors achieve the femto- to pico-Tesla sensitivity ideal for biomedical applications, while ME antennas, operating at acoustic resonance, allow significant size reduction, with high radiation gain and efficiency, which is suited for bandwidth-restricted applications. In addition, ME non-reciprocal magnetoacoustic devices using hybrid magnetoacoustic waves present novel solutions for RF isolation, which have also shown potential for the efficient control of quantum defects, such as negatively charged nitrogen-vacancy (NV) centers. Continued advancements in materials and device structures are expected to further enhance ME device performance, positioning them as key components in future bio-sensing, wireless communication, and quantum information technologies. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

14 pages, 1732 KiB  
Review
Abscopal Effect with Liver-Directed Therapy: A Review of the Current Literature and Future Directions
by Jonah M. Levine, Alyssar Habib, Mikhail Silk, Greg D. Sacks, Rafael Winograd, Colin S. Hill, Ammar A. Javed, Christopher L. Wolfgang and D. Brock Hewitt
Livers 2024, 4(4), 601-614; https://doi.org/10.3390/livers4040042 - 22 Nov 2024
Viewed by 2219
Abstract
The liver is a common site for metastatic disease. In select patients with isolated liver metastases, surgical resection improves survival and may be potentially curative in patients with favorable “tumor biology”. However, when surgical resection is not feasible, liver-directed therapies (LDTs) can also [...] Read more.
The liver is a common site for metastatic disease. In select patients with isolated liver metastases, surgical resection improves survival and may be potentially curative in patients with favorable “tumor biology”. However, when surgical resection is not feasible, liver-directed therapies (LDTs) can also improve outcomes, including survival, in the appropriate clinical situations. LDTs, including hepatic artery infusion, radioembolization, radiation, and ablation techniques, such as thermal ablation and histotripsy, offer local control and potential systemic effects, including the abscopal effect. The abscopal effect occurs when nontargeted, nontreated tumors regress following localized therapy to other tumors. Preclinical and clinical studies suggest that antigen-induced upregulation of key immune regulators plays a central role in this process. Unfortunately, clinical reports of the abscopal effect following LDT are exceedingly rare. However, histotripsy, a noninvasive, nonionizing, and nonthermal ablation technique, may induce an abscopal effect more frequently and robustly than other LDTs. Histotripsy enhances tumor immunogenicity through precise acoustic cavitation that better preserves the local tissue architecture while increasing antigen release, resulting in a robust local and systemic immune response. Ongoing trials are investigating these immunogenic mechanisms and the ability to generate an abscopal effect more reliably with adjuncts such as checkpoint inhibitors. This work has significant implications regarding the management of patients with liver metastasis. Full article
Show Figures

Figure 1

28 pages, 7710 KiB  
Article
Research on Underwater Acoustic Target Recognition Based on a 3D Fusion Feature Joint Neural Network
by Weiting Xu, Xingcheng Han, Yingliang Zhao, Liming Wang, Caiqin Jia, Siqi Feng, Junxuan Han and Li Zhang
J. Mar. Sci. Eng. 2024, 12(11), 2063; https://doi.org/10.3390/jmse12112063 - 14 Nov 2024
Cited by 2 | Viewed by 2006
Abstract
In the context of a complex marine environment, extracting and recognizing underwater acoustic target features using ship-radiated noise present significant challenges. This paper proposes a novel deep neural network model for underwater target recognition, which integrates 3D Mel frequency cepstral coefficients (3D-MFCC) and [...] Read more.
In the context of a complex marine environment, extracting and recognizing underwater acoustic target features using ship-radiated noise present significant challenges. This paper proposes a novel deep neural network model for underwater target recognition, which integrates 3D Mel frequency cepstral coefficients (3D-MFCC) and 3D Mel features derived from ship audio signals as inputs. The model employs a serial architecture that combines a convolutional neural network (CNN) with a long short-term memory (LSTM) network. It replaces the traditional CNN with a multi-scale depthwise separable convolutional network (MSDC) and incorporates a multi-scale channel attention mechanism (MSCA). The experimental results demonstrate that the average recognition rate of this method reaches 87.52% on the DeepShip dataset and 97.32% on the ShipsEar dataset, indicating a strong classification performance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 9787 KiB  
Article
Combined ResNet Attention Multi-Head Net (CRAMNet): A Novel Approach to Fault Diagnosis of Rolling Bearings Using Acoustic Radiation Signals and Advanced Deep Learning Techniques
by Xiaozheng Xu, Ying Li and Xuebao Ding
Appl. Sci. 2024, 14(18), 8431; https://doi.org/10.3390/app14188431 - 19 Sep 2024
Cited by 1 | Viewed by 2014
Abstract
The fault diagnosis of rolling bearing acoustic radiation signals holds significant importance in industrial equipment maintenance. It effectively prevents equipment failures and downtime, ensuring the smooth operation of the production process. Compared with traditional vibration signals, acoustic radiation signals have the advantage of [...] Read more.
The fault diagnosis of rolling bearing acoustic radiation signals holds significant importance in industrial equipment maintenance. It effectively prevents equipment failures and downtime, ensuring the smooth operation of the production process. Compared with traditional vibration signals, acoustic radiation signals have the advantage of non-contact measurement. They can diagnose faults in special conditions where sensors cannot be installed and provide more comprehensive equipment status information. Therefore, to extract the fault characteristic information of rolling bearings from complex acoustic signals, this paper proposes an advanced deep learning model combining Gramian Angular Field (GAF), ResNet1D, ResNet2D, and multi-head attention mechanism, named CRAMNet (Combined ResNet Attention Multi-Head Net), to diagnose the faults of rolling bearing acoustic radiation signals. Firstly, this method includes converting one-dimensional signals into GAF images and performing data standardization and segmentation. Then, the method utilizes ResNet1D to extract features from one-dimensional signals and ResNet2D to extract features from GAF images. Further, it combines the multi-head attention mechanism to enhance feature representation and capture dependencies between different channels. Finally, this paper compares the proposed method with several traditional models (including CNN, LSTM, DenseNet, and CNN-Transformers). Experimental results show that the proposed method performs outstandingly in terms of accuracy and robustness. The combination of residual networks and multi-head attention mechanism in the model significantly enhances its ability to accurately diagnose rolling bearing faults, proving the superiority of the algorithm. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

25 pages, 5956 KiB  
Review
Methods of Manipulation of Acoustic Radiation Using Metamaterials with a Focus on Polymers: Design and Mechanism Insights
by Qibo Deng, Tianying Du, Hassanien Gomaa, Yong Cheng and Cuihua An
Polymers 2024, 16(17), 2405; https://doi.org/10.3390/polym16172405 - 24 Aug 2024
Cited by 1 | Viewed by 1600
Abstract
The manipulation of acoustic waves is becoming increasingly crucial in research and practical applications. The coordinate transformation methods and acoustic metamaterials represent two significant areas of study that offer innovative strategies for precise acoustic wave control. This review highlights the applications of these [...] Read more.
The manipulation of acoustic waves is becoming increasingly crucial in research and practical applications. The coordinate transformation methods and acoustic metamaterials represent two significant areas of study that offer innovative strategies for precise acoustic wave control. This review highlights the applications of these methods in acoustic wave manipulation and examines their synergistic effects. We present the fundamental concepts of the coordinate transformation methods and their primary techniques for modulating electromagnetic and acoustic waves. Following this, we deeply study the principle of acoustic metamaterials, with particular emphasis on the superior acoustic properties of polymers. Moreover, the polymers have the characteristics of design flexibility and a light weight, which shows significant advantages in the preparation of acoustic metamaterials. The current research on the manipulation of various acoustic characteristics is reviewed. Furthermore, the paper discusses the combined use of the coordinate transformation methods and polymer acoustic metamaterials, emphasizing their complementary nature. Finally, this article envisions future research directions and challenges in acoustic wave manipulation, considering further technological progress and polymers’ application potential. These efforts aim to unlock new possibilities and foster innovative ideas in the field. Full article
Show Figures

Figure 1

Back to TopTop