Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = absolute quantum yields of fluorescence emission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3226 KB  
Article
Design, Synthesis, and Photophysical Properties of 5-Aminobiphenyl Substituted [1,2,4]Triazolo[4,3-c]- and [1,2,4]Triazolo[1,5-c]quinazolines
by Tatyana N. Moshkina, Alexandra E. Kopotilova, Marya A. Ivan’kina, Ekaterina S. Starnovskaya, Denis A. Gazizov, Emiliya V. Nosova, Dmitry S. Kopchuk, Oleg S. El’tsov, Pavel A. Slepukhin and Valery N. Charushin
Molecules 2024, 29(11), 2497; https://doi.org/10.3390/molecules29112497 - 24 May 2024
Cited by 4 | Viewed by 2705
Abstract
Two series of novel [1,2,4]triazolo[4,3-c]- and [1,2,4]triazolo[1,5-c]quinazoline fluorophores with 4′-amino[1,1′]-biphenyl residue at position 5 have been prepared via Pd-catalyzed cross-coupling Suzuki–Miyaura reactions. The treatment of 2-(4-bromophenyl)-4-hydrazinoquinazoline with orthoesters in solvent-free conditions or in absolute ethanol leads to the formation [...] Read more.
Two series of novel [1,2,4]triazolo[4,3-c]- and [1,2,4]triazolo[1,5-c]quinazoline fluorophores with 4′-amino[1,1′]-biphenyl residue at position 5 have been prepared via Pd-catalyzed cross-coupling Suzuki–Miyaura reactions. The treatment of 2-(4-bromophenyl)-4-hydrazinoquinazoline with orthoesters in solvent-free conditions or in absolute ethanol leads to the formation of [4,3-c]-annulated triazoloquinazolines, whereas [1,5-c] isomers are formed in acidic media as a result of Dimroth rearrangement. A 1D-NMR and 2D-NMR spectroscopy, as well as a single-crystal X-ray diffraction analysis, unambiguously confirmed the annelation type and determined the molecular structure of p-bromophenyl intermediates and target products. Photophysical properties of the target compounds were investigated in two solvents and in the solid state and compared with those of related 3-aryl-substituted [1,2,4]triazolo[4,3-c]quinazolines. The exclusion of the aryl fragment from the triazole ring has been revealed to improve fluorescence quantum yield in solution. Most of the synthesized structures show moderate to high quantum yields in solution. Additionally, the effect of solvent polarity on the absorption and emission spectra of fluorophores has been studied, and considerable fluorosolvatochromism has been stated. Moreover, electrochemical investigation and DFT calculations have been performed; their results are consistent with the experimental observation. Full article
(This article belongs to the Special Issue Synthesis and Properties of Heterocyclic Compounds: Recent Advances)
Show Figures

Figure 1

15 pages, 3212 KB  
Article
Tryptophanhydroxamic Acid-Stabilized Ultrasmall Gold Nanoclusters: Tuning the Selectivity for Metal Ion Sensing
by Gyöngyi Gombár, Ditta Ungor, István Szatmári, Ádám Juhász and Edit Csapó
Nanomaterials 2024, 14(5), 434; https://doi.org/10.3390/nano14050434 - 27 Feb 2024
Cited by 1 | Viewed by 2111
Abstract
Sub-nanometer-sized gold nanoclusters (Au NCs) were prepared via the spontaneous reduction of [AuCl4]- ions with a hydroxamate derivative of L-tryptophan (Trp) natural amino acid (TrpHA). The prepared TrpHA-Au NCs possess intense blue emission (λem = 470 nm; [...] Read more.
Sub-nanometer-sized gold nanoclusters (Au NCs) were prepared via the spontaneous reduction of [AuCl4]- ions with a hydroxamate derivative of L-tryptophan (Trp) natural amino acid (TrpHA). The prepared TrpHA-Au NCs possess intense blue emission (λem = 470 nm; λex = 380 nm) with a 2.13% absolute quantum yield and 1.47 ns average lifetime. The Trp-stabilized noble metal NCs are excellent metal ion sensors for Fe3+, but in this work, we highlighted that the incorporation of the hydroxamate functional group with an excellent metal ion binding capability can tune the selectivity and sensitivity of these NCs, which is a promising way to design novel strategies for the detection of other metal ions as well. Moreover, their simultaneous identification can also be realized. By decreasing the sensitivity of our nano-sensor for Fe3+ (limit of detection (LOD) ~11 µM), it was clearly demonstrated that the selectivity for Cu2+-ions can be significantly increased (LOD = 3.16 µM) in an acidic (pH = 3–4) condition. The surface-bounded TrpHA molecules can coordinate the Cu2+ confirmed by thermodynamic data, which strongly generates the linking of the NCs via the Cu2+ ions in acidic pH, and a parallel fluorescence quenching occurs. In the case of Fe3+, the degree of quenching strongly depends on the metal ion concentration, and it only occurs when the NCs are not able to bind more Fe3+ (~10 µM) on the surface, causing the NCs’ aggregation. Full article
(This article belongs to the Special Issue Noble Metal-Based Nanostructures: Optical Properties and Applications)
Show Figures

Graphical abstract

12 pages, 2554 KB  
Article
Synthesis of Cationic [4], [5], and [6]Azahelicenes with Extended π-Conjugated Systems
by Samuel Hrubý, Jan Ulč, Ivana Císařová and Martin Kotora
Catalysts 2023, 13(5), 912; https://doi.org/10.3390/catal13050912 - 22 May 2023
Cited by 4 | Viewed by 2694
Abstract
The scope of Rh-catalyzed C–C bond cleavage/annulation of biphenylene with various aromatic nitriles was studied. The subsequent Rh- and Ir-catalyzed C–H bond activation/annulation sequence of the formed 9-arylphenanthridines with alkynes gave rise to cationic [4], [5], [6] helical quinolizinium salts. The scope of [...] Read more.
The scope of Rh-catalyzed C–C bond cleavage/annulation of biphenylene with various aromatic nitriles was studied. The subsequent Rh- and Ir-catalyzed C–H bond activation/annulation sequence of the formed 9-arylphenanthridines with alkynes gave rise to cationic [4], [5], [6] helical quinolizinium salts. The scope of the reaction with respect to the structural features of the starting 9-arylphenanthridines and alkynes was studied. Their helical arrangement was confirmed through single-crystal X-ray analyses of selected compounds. Most of the prepared quinolizinium salts exhibited fluorescence emission maxima in the region of 525–623 nm with absolute quantum yields up to 25%. Full article
Show Figures

Graphical abstract

11 pages, 2874 KB  
Article
High Quantum Efficiency Rare-Earth-Doped Gd2O2S:Tb, F Scintillators for Cold Neutron Imaging
by Bin Tang, Wei Yin, Qibiao Wang, Long Chen, Heyong Huo, Yang Wu, Hongchao Yang, Chenghua Sun and Shuyun Zhou
Molecules 2023, 28(4), 1815; https://doi.org/10.3390/molecules28041815 - 15 Feb 2023
Cited by 13 | Viewed by 3459
Abstract
High-resolution neutron radiography provides novel and stirring opportunities to investigate the structures of light elements encased by heavy elements. For this study, a series of Gd2O2S:Tb, F particles were prepared using a high-temperature solid phase method and then used [...] Read more.
High-resolution neutron radiography provides novel and stirring opportunities to investigate the structures of light elements encased by heavy elements. For this study, a series of Gd2O2S:Tb, F particles were prepared using a high-temperature solid phase method and then used as a scintillation screen. Upon reaching 293 nm excitation, a bright green emission originated from the Tb3+ luminescence center. The level of F doping affected the fluorescence intensity. When the F doping level was 8 mol%, the fluorescence intensity was at its highest. The absolute quantum yield of the synthesized particles reached as high as 77.21%. Gd2O2S:Tb, F particles were applied to the scintillation screen, showing a resolution on the neutron radiograph as high as 12 μm. These results suggest that the highly efficient Gd2O2S:Tb, F particles are promising scintillators for the purposes of cold neutron radiography. Full article
Show Figures

Figure 1

13 pages, 6115 KB  
Article
Intense Blue Photo Emissive Carbon Dots Prepared through Pyrolytic Processing of Ligno-Cellulosic Wastes
by Loredana Stan, Irina Volf, Corneliu S. Stan, Cristina Albu, Adina Coroaba, Laura E. Ursu and Marcel Popa
Nanomaterials 2023, 13(1), 131; https://doi.org/10.3390/nano13010131 - 27 Dec 2022
Cited by 12 | Viewed by 2730
Abstract
In this work, Carbon Dots with intense blue photo-luminescent emission were prepared through a pyrolytic processing of forestry ligno-cellulosic waste. The preparation path is simple and straightforward, mainly consisting of drying and fine grinding of the ligno-cellulosic waste followed by thermal exposure and [...] Read more.
In this work, Carbon Dots with intense blue photo-luminescent emission were prepared through a pyrolytic processing of forestry ligno-cellulosic waste. The preparation path is simple and straightforward, mainly consisting of drying and fine grinding of the ligno-cellulosic waste followed by thermal exposure and dispersion in water. The prepared Carbon Dots presented characteristic excitation wavelength dependent emission peaks ranging within 438–473 nm and a remarkable 28% quantum yield achieved at 350 nm excitation wavelength. Morpho-structural investigations of the prepared Carbon Dots were performed through EDX, FT-IR, Raman, DLS, XRD, and HR-SEM while absolute PLQY, steady state, and lifetime fluorescence were used to highlight their luminescence properties. Due to the wide availability of this type of ligno-cellulosic waste, an easy processing procedure achieved photo-luminescent properties, and the prepared Carbon Dots could be an interesting approach for various applications ranging from sensors, contrast agents for biology investigations, to photonic conversion mediums in various optoelectronic devices. Additionally, their biocompatibility and waste valorization in new materials might be equally good arguments in their favor, bringing a truly “green” approach. Full article
(This article belongs to the Special Issue Carbon Nanostructures as Promising Future Materials)
Show Figures

Graphical abstract

13 pages, 4553 KB  
Article
Highly Bright Gold Nanowires Arrays for Sensitive Detection of Urea and Urease
by Yan Li, Aowei Zhao, Jieqiong Wang, Jieyu Yu, Fei Xiao and Hongcheng Sun
Nanomaterials 2022, 12(22), 4023; https://doi.org/10.3390/nano12224023 - 16 Nov 2022
Cited by 2 | Viewed by 2524
Abstract
In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthesized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopropionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong bluish green [...] Read more.
In this work, highly fluorescent gold nanowire arrays (Au NWs) are successfully synthesized by assembling Zn2+ ions and non-emissive oligomeric gold-thiolate clusters using mercaptopropionic acid both as a reducing agent and a growth ligand. The synthesized Au NWs exhibited strong bluish green fluorescence with an absolute quantum yield up to 32% and possessed ultrasensitive pH stimuli-responsive performance in the range of 7.0–7.8. Based on the excellent properties of the as-prepared nanowire arrays, we developed a facile, sensitive, and selective fluorescent method for quantitative detection of urea and urease. The fabricated nanoprobe showed superior biosensing response characteristics with good linearities in the range of 0–100 μM for urea concentration and 0–12 U/L for urease activity. In addition, this fluorescent probe afforded relatively high sensitivity with the detection limit as low as 2.1 μM and 0.13 U/L for urea and urease, respectively. Urea in human urine and urease in human serum were detected with satisfied results, exhibiting a promising potential for biomedical application. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanotechnologies for Micro/Nano-Sensors)
Show Figures

Figure 1

1 pages, 162 KB  
Abstract
Photophysical Studies of Poly(3,4-Ethylenedioxythiophene/Cucurbit[7]uril) Polypseudorotaxane and Polyrotaxane by Transient Absorption and Time-Resolved Fluorescence Spectroscopy
by Radu Ionut Tigoianu and Aurica Farcas
Eng. Proc. 2022, 27(1), 5; https://doi.org/10.3390/ecsa-9-13375 - 1 Nov 2022
Viewed by 1191
Abstract
The UV-Vis absorption, fluorescence, and phosphorescence spectra of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril), polypseudorotaxane (1), and polyrotaxane (2) in water and acetonitrile solutions were investigated. To achieve a deeper insight into the optical properties, the transient absorptions, lifetimes, and quantum yields have been [...] Read more.
The UV-Vis absorption, fluorescence, and phosphorescence spectra of poly(3,4-ethylenedioxythiophene/cucurbit[7]uril), polypseudorotaxane (1), and polyrotaxane (2) in water and acetonitrile solutions were investigated. To achieve a deeper insight into the optical properties, the transient absorptions, lifetimes, and quantum yields have been carried out on compounds 1 and 2. The transient absorption demonstrated an excited-state processes and involvement of high energy electronic states (Sn > 1). The transient absorption map in acetonitrile revealed at 210, 240, 300, and 315 nm a ground states bleaching bands (GSB), whereas at shorter wavelengths an absorption in excited states (ESA) and more than one excited state (Sn > 1). At 382 and 420 nm wavelength two negative bands appeared which were assigned to the stimulated emissions (SE). At longer wavelengths, i.e., 605, 625, and 710 nm, other stimulated emissions appeared that are probably a result of the triplet manifold, confirming their phosphorescence properties. Additionally, the quantum yield with absolute values in the range 5–25%, and phosphorescence lifetime with values in the range 1–9 μs were evaluated. Full article
1 pages, 168 KB  
Abstract
Photophysical Properties of Some Naphthalimide Derivatives
by Radu Ionut Tigoianu, Anton Airinei, Florentina Georgescu, Alina Nicolescu and Calin Deleanu
Eng. Proc. 2022, 27(1), 4; https://doi.org/10.3390/ecsa-9-13356 - 1 Nov 2022
Cited by 1 | Viewed by 1436
Abstract
Naphthalimide derivatives possess many interesting properties such as strong emission, high quantum efficiency, good photostability, thermal stability, etc. The electronic absorption and fluorescence spectra of naphthalimides are sensitive to the polarity of surrounding environment, and these derivatives can be excellent candidates for fluorescent [...] Read more.
Naphthalimide derivatives possess many interesting properties such as strong emission, high quantum efficiency, good photostability, thermal stability, etc. The electronic absorption and fluorescence spectra of naphthalimides are sensitive to the polarity of surrounding environment, and these derivatives can be excellent candidates for fluorescent sensors for water detection in solution because the emission is strongly depended on the solvent polarity and it is quenched even at low water levels. In order to find out more information about the excited state dynamics of the naphthalimide derivatives, time-resolved fluorescence experiments were conducted in solvents of different polarities, and lifetimes from 0.5 ns to 9 ns were obtained. The transient absorption map in dioxane, dimethylformamide and methanol in the presence or absence of water revealed ground state bleaching bands (GSB) in the range of 230–290 nm, whereas an absorption band in excited state (ESA) occurred at shorter wavelengths from 210 to 295 nm. At longer wavelength, negative bands appeared, which can be assigned to the stimulated emissions (SE). In addition, the quantum yields with absolute values from 0.01 to 0.87 were found depending on the solvent nature. Full article
19 pages, 52084 KB  
Article
Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics
by Mohamad Zen Eddin, Ekaterina F. Zhilina, Roman D. Chuvashov, Alyona I. Dubovik, Alexandr V. Mekhaev, Konstantin A. Chistyakov, Anna A. Baranova, Konstantin O. Khokhlov, Gennady L. Rusinov, Egor V. Verbitskiy and Valery N. Charushin
Molecules 2022, 27(20), 6957; https://doi.org/10.3390/molecules27206957 - 17 Oct 2022
Cited by 11 | Viewed by 2350
Abstract
Five random copolymers comprising styrene and styrene with pendant fluorophore moieties, namely pyrene, naphthalene, phenanthrene, and triphenylamine, in molar ratios of 10:1, were synthesized and employed as fluorescent sensors. Their photophysical properties were investigated using absorption and emission spectral analyses in dichloromethane solution [...] Read more.
Five random copolymers comprising styrene and styrene with pendant fluorophore moieties, namely pyrene, naphthalene, phenanthrene, and triphenylamine, in molar ratios of 10:1, were synthesized and employed as fluorescent sensors. Their photophysical properties were investigated using absorption and emission spectral analyses in dichloromethane solution and in solid state. All copolymers possessed relative quantum yields up to 0.3 in solution and absolute quantum yields up to 0.93 in solid state, depending on their fluorophore components. Fluorescence studies showed that the emission of these copolymers is highly sensitive towards various nitroaromatic compounds, both in solution and in the vapor phase. The detection limits of these fluorophores for nitroaromatic compounds in dichloromethane solution proved to be in the range of 10−6 to 10−7 mol/L. The sensor materials for new hand-made sniffers based on these fluorophores were prepared by electrospinning and applied for the reliable detection of nitrobenzene vapors at 1 ppm in less than 5 min. Full article
(This article belongs to the Special Issue Polymeric Photonic Materials)
Show Figures

Figure 1

8 pages, 14789 KB  
Article
A Versatile Tripodal Ligand for Sensitizing Lanthanide (LnIII) Ions and Color Tuning
by Rodney A. Tigaa, Raul E. Ortega, Xinsong Lin and Geoffrey F. Strouse
Chemistry 2021, 3(1), 138-145; https://doi.org/10.3390/chemistry3010011 - 26 Jan 2021
Cited by 4 | Viewed by 4404
Abstract
Lanthanide (LnIII) ions were successfully chelated and sensitized with a tripodal ligand. The absolute LnIII-centered emission efficiencies were ~3% for both the europium(III) (EuIII) and terbium (TbIII) complexes and up to 54% for the cerium(III) [...] Read more.
Lanthanide (LnIII) ions were successfully chelated and sensitized with a tripodal ligand. The absolute LnIII-centered emission efficiencies were ~3% for both the europium(III) (EuIII) and terbium (TbIII) complexes and up to 54% for the cerium(III) (CeIII) complex. The differences in emission quantum yields for the early lanthanides (CeIII) and the mid lanthanides (EuIII and TbIII) were attributed to their d–f and f–f nature, respectively. Despite the low quantum yield of the EuIII complex, the combination of the residual ligand fluorescence and the red EuIII emission resulted in a bluish-white material with the Commission Internationale de l’Eclairage (CIE) coordinates (0.258, 0.242). Thus, metal complexes of the ligand could be used in the generation of single-component white-light-emitting materials. Full article
(This article belongs to the Section Chemistry of Materials)
Show Figures

Graphical abstract

11 pages, 1355 KB  
Communication
Effects of Substituents on the Blue Luminescence of Disilane-Linked Donor‒Acceptor‒Donor Triads
by Tsukasa Usuki, Kenichiro Omoto, Masaki Shimada, Yoshinori Yamanoi, Hidetaka Kasai, Eiji Nishibori and Hiroshi Nishihara
Molecules 2019, 24(3), 521; https://doi.org/10.3390/molecules24030521 - 31 Jan 2019
Cited by 14 | Viewed by 4300
Abstract
A series of disilane-linked donor‒acceptor‒donor triads (D‒Si‒Si‒A‒Si‒Si‒D) was synthesized to investigate the effects of substituents on the photophysical properties. The triads were prepared by metal-catalyzed diiodosilylation of aryl iodides using a Pd(P(t-Bu)3)2/(i-Pr)2EtN/toluene system [...] Read more.
A series of disilane-linked donor‒acceptor‒donor triads (D‒Si‒Si‒A‒Si‒Si‒D) was synthesized to investigate the effects of substituents on the photophysical properties. The triads were prepared by metal-catalyzed diiodosilylation of aryl iodides using a Pd(P(t-Bu)3)2/(i-Pr)2EtN/toluene system that we previously developed. Optical measurements, X-ray diffraction analysis, and density functional theory calculations revealed relationships between the photophysical properties and molecular structures of these triads in solution and in the solid state. The compounds emitted blue to green fluorescence in CH2Cl2 solution and in the solid state. Notably, compound 2 showed fluorescence with an absolute quantum yield of 0.17 in the solid state but showed no fluorescence in CH2Cl2. Our findings confirmed that the substituent adjacent to the disilane moiety affects the conformations and emission efficiencies of compounds in solution and in the solid state. Full article
(This article belongs to the Special Issue Advances in Silicon Chemistry 2018)
Show Figures

Graphical abstract

12 pages, 2528 KB  
Article
Bis(1-pyrenylmethyl)-2-benzyl-2-methyl-malonate as a Cu2+ Ion-Selective Fluoroionophore
by Takayo Moriuchi-Kawakami, Youji Hisada, Akihisa Higashikado, Tsubasa Inoue, Keiichi Fujimori and Toshiyuki Moriuchi
Molecules 2017, 22(9), 1415; https://doi.org/10.3390/molecules22091415 - 25 Aug 2017
Cited by 3 | Viewed by 5825
Abstract
A new malonate possessing two pyrene moieties was synthesized as a fluoroionophore, and its structure and fluorescence spectroscopic properties were investigated. When excited at 344 nm in acetonitrile/chloroform (9:1, v/v), the synthesized bispyrenyl malonate has the fluorescence of intramolecular excimer [...] Read more.
A new malonate possessing two pyrene moieties was synthesized as a fluoroionophore, and its structure and fluorescence spectroscopic properties were investigated. When excited at 344 nm in acetonitrile/chloroform (9:1, v/v), the synthesized bispyrenyl malonate has the fluorescence of intramolecular excimer (λem = 467 nm) emissions and not a pyrene monomer emission (λem = 394 nm). A large absolute fluorescence quantum yield was obtained in the solid state (ΦPL = 0.65) rather than in solution (ΦPL = 0.13). X-ray crystallography analysis clarified the molecular structure and alignment of the bispyrenyl malonate in the crystal phase, elucidating its fluorescence spectroscopic properties. Such analysis also suggests there are intramolecular C–H···π interactions and intermolecular π···π interactions between the pyrenyl rings. Interestingly, the synthesized bispyrenyl malonate exhibits excellent fluorescence sensing for the Cu2+ ion. Remarkable fluorescence intensity enhancement was only observed with the addition of the Cu2+ ion. Full article
Show Figures

Graphical abstract

16 pages, 543 KB  
Article
Surface Photochemistry: 3,3'-Dialkylthia and Selenocarbocyanine Dyes Adsorbed onto Microcrystalline Cellulose
by Luís F. Vieira Ferreira, Diana P. Ferreira, Paulo Duarte, A. S. Oliveira, E. Torres, I. Ferreira Machado, P. Almeida, Lucinda V. Reis and Paulo F. Santos
Int. J. Mol. Sci. 2012, 13(1), 596-611; https://doi.org/10.3390/ijms13010596 - 9 Jan 2012
Cited by 13 | Viewed by 6968
Abstract
In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase [...] Read more.
In this work, thia and selenocarbocyanines with n-alkyl chains of different length, namely with methyl, ethyl, propyl, hexyl and decyl substituents, were studied in homogeneous and heterogeneous media for comparison purposes. For both carbocyanine dyes adsorbed onto microcrystalline cellulose, a remarkable increase in the fluorescence quantum yields and lifetimes were detected, when compared with solution. Contrary to the solution behaviour, where the increase in the n-alkyl chains length increases to a certain extent the fluorescence emission FF and τF, on powdered solid samples a decrease of FF and τF was observed. The use of an integrating sphere enabled us to obtain absolute FF’s for all the powdered samples. The main difference for liquid homogeneous samples is that the increase of the alkyl chain strongly decreases the FF values, both for thiacarbocyanines and selenocarbocyanines. A lifetime distribution analysis for the fluorescence of these dyes adsorbed onto microcrystalline cellulose, evidenced location on the ordered and crystalline part of the substrate, as well as on the more disordered region where the lifetime is smaller. The increase of the n-alkyl chains length decreases the photoisomer emission for the dyes adsorbed onto microcrystalline cellulose, as detected for high fluences of the laser excitation, for most samples. Full article
Show Figures

Back to TopTop