Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (186)

Search Parameters:
Keywords = Zonula occludens-1 (ZO-1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 7497 KiB  
Article
Hydrogel-Shielded Ellagic Acid Nanoparticles Prolong Colonic Retention and Mitigate DSS-Induced Colitis via Reactive Oxygen Species Scavenging
by Ximei Ye, Tao Chen, Lihang Chen, Di Wu, Yinan Du and Jiangning Hu
Foods 2025, 14(15), 2559; https://doi.org/10.3390/foods14152559 - 22 Jul 2025
Viewed by 259
Abstract
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into [...] Read more.
Inflammatory bowel disease (IBD) is characterized by oxidative stress imbalance and intestinal barrier disruption. Reducing excessive ROS has become a promising therapeutic strategy. Compared with conventional polyphenols, nanomaterials offer greater stability and bioavailability for ROS scavenging. Here, ellagic acid (EA) was converted into uniform nanoparticles (EAs) with reactive oxygen scavenging capacity through horseradish peroxidase (HRP)-mediated oxidative polymerization and subsequently encapsulated in the anti-gastric acid hydrogel F-DP to obtain the hybrid system F-DP@EAs. EAs reduced ROS, MDA, NO, IL-1β, and TNF-α levels in vitro, while increasing IL-4 and IL-10 expression, thus alleviating inflammation. Herein, F-DP@EAs prolonged intestinal retention time and exerted superior protective effects in the DSS-induced colitis model. Oral F-DP@EAs lowered DAI, preserved colon length, increased glutathione (GSH) and superoxide dismutase (SOD), decreased NO and MDA, restored zonula occludens-1 (ZO-1), and reduced mucosal lesions. These findings demonstrate that combining nanoparticle and hydrogel technologies markedly enhances the preventive and protective efficacy of EA, highlighting F-DP@EAs as a promising candidate for future IBD therapy. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 12756 KiB  
Article
The Antidiabetic Mechanisms of Cinnamon Extract: Insights from Network Pharmacology, Gut Microbiota, and Metabolites
by Rong Wang, Kuan Yang, Xuefeng Liu, Yiye Zhang, Yunmei Chen, Nana Wang, Lili Yu, Shaojing Liu, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(7), 543; https://doi.org/10.3390/cimb47070543 - 12 Jul 2025
Viewed by 531
Abstract
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management [...] Read more.
The progression of type 2 diabetes mellitus (T2DM) is shaped by a multifaceted interplay among genetic, behavioral, and environmental factors, alongside gut dysbiosis. Cinnamon, being abundant in polyphenols and flavonoids, shows significant antioxidant effects. Studies have substantiated that cinnamon contributes to the management of glucose and lipid metabolism. However, the anti-diabetic efficacy of cinnamon is not completely understood. The objective of this research was to clarify the anti-diabetic mechanism associated with cinnamon extract through a combination of chemical profiling, network pharmacology, and in vivo investigations. The results indicated that 32 chemical ingredients, including quercetin, were identified through UPLC-Q-TOF-MS. Network pharmacology revealed that 471 targets related to 14 compounds were screened. The analysis of GO enrichment revealed that the primary pathways were notably enhanced in the metabolism of insulin and glucose. In vivo analyses showed that cinnamon could effectively alleviate hyperglycemia, insulin resistance, and lipid metabolism abnormalities via increased relative abundance of Akkermansia and Ligilactobacillus at the genus level and a decreased Firmicutes/Bacteroidetes ratio at the phylum level. Moreover, cinnamon reduced the serum levels of lipopolysaccharide (LPS) and proinflammatory cytokines (IL-6 and TNF-α) and significantly increased the colon Zonula occludens-1 (ZO-1) and occludin protein levels. It was also observed that cinnamon improved the fecal SCFA levels (acetic, propionic, butyric, valeric and caproic acid), while also modifying the bile acid (BA) profile and increasing the conjugated-to-unconjugated BA ratio. The Western blotting analysis further demonstrated that cinnamon activated intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. In summary, the finding confirmed that cinnamon ameliorated glucose and lipid metabolism disorders by safeguarding the intestinal barrier and modulating the gut microbiota and metabolites, thereby activating intestinal FXR/FGF15 and hepatic PI3K/AKT signaling pathways. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

27 pages, 2323 KiB  
Article
The Effect of Parental Faecal Microbiome Transplantation from Children with Autism Spectrum Disorder on Behavior and Gastrointestinal Manifestations in the Male Offspring of Shank3 Mice
by Veronika Borbélyová, Jakub Szabó, Petronela Sušienková, Judith Potvin, Paulína Belvončíková, Tim Groß, Alžbeta Jančovičová, Zuzana Bačová, Barbara Rašková, Ivan Szadvári, Matúš Antal, Zdenko Pirník, Miloslav Karhánek, Katarína Šoltys, Roman Gardlík, Peter Celec, Daniela Ostatníková and Aleksandra Tomova
Int. J. Mol. Sci. 2025, 26(13), 5927; https://doi.org/10.3390/ijms26135927 - 20 Jun 2025
Viewed by 607
Abstract
The increasing incidence of autism spectrum disorder (ASD) increases the urgency of establishing the mechanism of its development for effective prevention and treatment. ASD’s etiology includes genetic predisposition and environmental triggers, both of which can play a role in the changed microbiota. Recent [...] Read more.
The increasing incidence of autism spectrum disorder (ASD) increases the urgency of establishing the mechanism of its development for effective prevention and treatment. ASD’s etiology includes genetic predisposition and environmental triggers, both of which can play a role in the changed microbiota. Recent research has proved the impact of maternal microbiota on the neurodevelopment of the child. To investigate the co-play of genetic and microbiota factors in ASD development, we performed fecal microbiota transplantation (FMT) from children with ASD to female Shank3b+/− mice and studied the autism-like symptoms in the male Shank3b−/− and wild-type (WT) offspring. WT animals with prenatal exposure to ASD microbiota had delayed neurodevelopment and impaired food intake behavior, but also elevated plasma leptin concentration and body weight. Shank3b−/− mice after FMT ASD exhibited impaired learning and exacerbated anxiety-like behavior in adulthood. Interestingly, FMT ASD improved learning in adolescent Shank3b−/− mice. Prenatal exposure to ASD microbiota decreased the activity of hypocretin neurons of the lateral hypothalamic area in both genotypes. The combination of genetic predisposition and FMT ASD led to an increased colon permeability, evaluated by zonula occludens (ZO1, ZO3) and claudin factors. These results suggest the effect of parental FMT exposure on shaping offspring behavior in Shank3b−/− mice and the potential of microbiota in the modulation of ASD. Full article
(This article belongs to the Special Issue Genetic Basis of Autism Spectrum Disorder)
Show Figures

Figure 1

14 pages, 1475 KiB  
Article
Anti-Inflammatory Effects of Amomum villosum Extract on Dextran Sodium Sulfate-Induced Colitis in Mice
by Han-Byeol Choi, Ryeo Won Kim, Gi-Sang Bae, Ji Hun Jang, Ye-Seul Kim, Byung Ouk Park and Kang-Beom Kwon
Curr. Issues Mol. Biol. 2025, 47(6), 389; https://doi.org/10.3390/cimb47060389 - 23 May 2025
Viewed by 595
Abstract
The pathogenesis of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, remains incompletely understood. Amomum villosum Lour. (Zingiberaceae) is a traditional herbal medicine used across Asia to treat digestive and inflammatory disorders. This study investigated the therapeutic effects of a [...] Read more.
The pathogenesis of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn’s disease, remains incompletely understood. Amomum villosum Lour. (Zingiberaceae) is a traditional herbal medicine used across Asia to treat digestive and inflammatory disorders. This study investigated the therapeutic effects of a water extract derived from the fruits of AV (referred to as AVE) in a mouse model of colitis induced by dextran sulfate sodium (DSS). The protective effects of AVE were evaluated by monitoring changes in body weight and colon length, as well as histological and molecular markers of inflammation. Neutrophil infiltration and levels of inflammatory cytokines in colon tissue and serum were assessed, and the integrity of the intestinal epithelial barrier was examined via Western blot analysis. Treatment with AVE significantly alleviated DSS-induced colitis, as evidenced by improved body weight, longer colon length, and reduced inflammatory responses. AVE administration restored tight junction protein expression (zonula occludens-1 [ZO-1] and occludin), suppressed phosphorylation of mitogen-activated protein kinases—specifically, extracellular signal-regulated kinase (ERK) and p38—and inhibited the expression of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), interleukin (IL)-6, IL-1β, and myeloperoxidase (MPO) activity. These findings suggest that oral AVE treatment effectively protects against experimental colitis by modulating inflammatory signaling and preserving epithelial barrier integrity. Further studies are warranted to explore the clinical potential and safety of AVE in the management of IBD. Full article
Show Figures

Figure 1

13 pages, 2962 KiB  
Article
Protocatechuic Acid Ameliorates Cisplatin-Induced Inflammation and Apoptosis in Mouse Proximal Tubular Cells
by Karim M. Saad, Khaled Elmasry, Babak Baban, Man J. Livingston, Zheng Dong, Marwa E. Abdelmageed, Rania R. Abdelaziz, Ghada M. Suddek and Ahmed A. Elmarakby
Int. J. Mol. Sci. 2025, 26(9), 4115; https://doi.org/10.3390/ijms26094115 - 26 Apr 2025
Viewed by 706
Abstract
Cisplatin is a highly cytotoxic drug used for the treatment of head, neck, and soft tissue cancers; however, it has nephrotoxic effects that can lead to acute kidney injury. Protocatechuic acid (PCA) is a natural widely available antioxidant found in many fruits such [...] Read more.
Cisplatin is a highly cytotoxic drug used for the treatment of head, neck, and soft tissue cancers; however, it has nephrotoxic effects that can lead to acute kidney injury. Protocatechuic acid (PCA) is a natural widely available antioxidant found in many fruits such as kiwi, mango, and berries. We have recently shown that PCA reduced renal injury in a mouse model of unilateral ureteral obstruction. The current study aims to investigate the protective effects of PCA in Cisplatin-induced inflammation in vitro in Boston University Mouse Proximal Tubular (BUMPT) cells. BUMPT cells were cultured in complete DMEM. Confluent BUMPT cells were then treated with 20 μM Cisplatin ± PCA 50 or 100 μM for 24 h. PCA treatment showed a dose-depending increase in % cell viability in Cisplatin-treated BUMPT cells. PCA treatment also dose-dependently decreased Cisplatin-induced increases in oxidative stress (ROS and TBARS), inflammation (p-NF-κB and IL-6), and apoptosis (cleaved caspase-3 and % of TUNEL+ cells) compared to Cisplatin-only treatment. The reduction in oxidative stress, inflammation, and apoptosis with PCA treatment in Cisplatin-treated BUMPT cells was associated with decreases in tubular physical barrier resistance and the expression of the tight junction protein zonula occludens-1 (ZO-1) when compared to BUMPT cells treated with Cisplatin alone. The current findings suggest that PCA treatment improves tubular barrier function in Cisplatin-treated BUMPT cells via reductions in oxidative stress, inflammation, and apoptosis. Full article
(This article belongs to the Special Issue Natural Products in Kidney Diseases)
Show Figures

Figure 1

17 pages, 1714 KiB  
Article
Gastric Infusion of Short-Chain Fatty Acids Improves Health via Enhance Liver and Intestinal Immune Response and Antioxidant Capacity in Goats
by Shaima Mohmed Nasr Abdu, Ismail Mohamed Abdalla, Yongkang Zhen, Chong Zhang, Zanna Xi, Jianjun Ma, Yuhong Zhong, Jiaqi Lin, Rahmat Ali and Mengzhi Wang
Vet. Sci. 2025, 12(5), 395; https://doi.org/10.3390/vetsci12050395 - 22 Apr 2025
Viewed by 591
Abstract
In the present study, we comprehensively investigated the impacts of the infusion of three short-chain fatty acids (SCFAs), sodium acetate (SA), propionate (SP), and butyrate (SB), to examine their respective roles in the gastrointestinal tract (GIT) health and innate immunity of twenty adult [...] Read more.
In the present study, we comprehensively investigated the impacts of the infusion of three short-chain fatty acids (SCFAs), sodium acetate (SA), propionate (SP), and butyrate (SB), to examine their respective roles in the gastrointestinal tract (GIT) health and innate immunity of twenty adult Guanzhong milk goats of 1.5 years of age. Infusion of SCFAs resulted in upregulating the activity of certain antioxidant enzymes in comparison with the control group. The SA group significantly (p < 0.05) increased the activity of the catalase (CAT) in the liver, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in the colon, and maleic dialdehyde (MDA) in the jejunum. SP significantly (p < 0.05) upregulated the activity of the total antioxidant capacity (T-AOC) in the ileum, CAT and MDA in the jejunum, CAT in the colon, and SOD in the liver. SB was significantly (p < 0.05) upregulated the activity of the T-AOC in the ileum, CAT in the jejunum, and T-AOC, CAT, SOD, and GSH-Px in the colon. Infusion of SCFAs resulted in significant (p < 0.05) increases in pro-inflammatory and anti-inflammatory cytokines in the intestine compared to the control group. We found that the SA group significantly (p < 0.05) upregulated the level of interleukin-1 beta (IL-1β) in the ileum and jejunum, as well as the levels of IL-6 and TNF-α in the colon, while the SP group significantly (p < 0.05) increased the level of IL-1β in the jejunum and the level of interleukin-10 (IL-10) in the colon. Furthermore, the SB group significantly (p < 0.05) upregulated levels of IL-1β in the jejunum, interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α) in the colon, and IL-10 in the cecum. Furthermore, some intestinal tight-junction proteins were significantly increased by SCFA infusion. SA significantly (p < 0.05) increased the claudin level in the ileum and occludin in the colon, while the SP group significantly (p < 0.05) upregulated the level of occludin in the jejunum and the claudin level in the ileum. Moreover, SB significantly (p < 0.05) increased the occludin level in the jejunum, claudin level in the ileum, and zonula occludens-1 (ZO-1) level in the colon and cecum. There are many positive associations among antioxidant, inflammatory cytokine, and tight-junction protein indexes in the liver and intestine. In conclusion, our results suggest that the gastric infusion of SA, SP, and SB might improve goat intestinal health through the positive influence on the antioxidant capacity, pro-inflammatory and anti-inflammatory cytokines, and tight-junction proteins. Full article
Show Figures

Figure 1

13 pages, 7563 KiB  
Article
Protective Roles of Zinc and Selenium Against Oxidative Stress in Brain Endothelial Cells Under Shear Stress
by Jacopo J. V. Branca, Massimo Gulisano and Alessandra Pacini
Antioxidants 2025, 14(4), 451; https://doi.org/10.3390/antiox14040451 - 9 Apr 2025
Cited by 1 | Viewed by 756
Abstract
Background: Hypertension is a major risk factor for cerebrovascular diseases due to its damaging effects on the blood–brain barrier (BBB) and associated pathologies. Oxidative stress-induced endothelial damage plays a critical role in BBB disruption, potentially leading to cognitive impairment and neurodegeneration. In this [...] Read more.
Background: Hypertension is a major risk factor for cerebrovascular diseases due to its damaging effects on the blood–brain barrier (BBB) and associated pathologies. Oxidative stress-induced endothelial damage plays a critical role in BBB disruption, potentially leading to cognitive impairment and neurodegeneration. In this study, we investigated the protective effects of two essential trace elements, zinc (Zn) and selenium (Se), against oxidative stress in human brain endothelial cells (HBCE5i) exposed to hypertensive shear stress. Using an innovative millifluidic system (LiveBox2), which allows for the precise simulation of continuous flow conditions, we replicated the hemodynamic forces associated with hypertension. Methods: Cells were treated with ZnCl2 (5–50 µM) or Na2SeO3 (50–500 nM) at concentrations selected based on previous studies and confirmed by cytotoxicity assays. Results: Our results demonstrated that shear stress significantly altered the localization of the tight junction protein zonula occludens-1 (ZO-1) and induced the nuclear translocation of the transcription factor NRF2, a hallmark of oxidative stress. Importantly, treatment with 10 µM ZnCl2 preserved ZO-1 membrane localization and prevented NRF2 translocation, as confirmed by quantitative image analysis. In contrast, Na2SeO3 did not provide comparable protection, although modest improvements in ZO-1 localization were observed in some replicates. Discussion: We discuss potential reasons for selenium’s limited efficacy, including differences in bioavailability and cellular uptake. Our findings underscore zinc’s promising role as a neurovascular protector and suggest that further investigation into more complex in vitro models and in vivo studies is warranted. Full article
(This article belongs to the Special Issue Antioxidant Therapy for Obesity-Related Diseases)
Show Figures

Figure 1

21 pages, 10338 KiB  
Article
Breaking Barriers: The Detrimental Effects of Combined Ragweed and House Dust Mite Allergen Extract Exposure on the Bronchial Epithelium
by Răzvan-Ionuț Zimbru, Manuela Grijincu, Gabriela Tănasie, Elena-Larisa Zimbru, Florina-Maria Bojin, Roxana-Maria Buzan, Tudor-Paul Tamaș, Monica-Daniela Cotarcă, Octavia Oana Harich, Raul Pătrașcu, Laura Haidar, Elena Ciurariu, Karina Cristina Marin, Virgil Păunescu and Carmen Panaitescu
Appl. Sci. 2025, 15(8), 4113; https://doi.org/10.3390/app15084113 - 9 Apr 2025
Cited by 1 | Viewed by 855
Abstract
(1) Background: Respiratory allergens, particularly ragweed (RW) pollen and house dust mites (HDMs), are major triggers of respiratory inflammation and allergic diseases. This study investigated the impact of single- versus combined-allergen exposure on the barrier function of normal human bronchial epithelial (NHBE) cells [...] Read more.
(1) Background: Respiratory allergens, particularly ragweed (RW) pollen and house dust mites (HDMs), are major triggers of respiratory inflammation and allergic diseases. This study investigated the impact of single- versus combined-allergen exposure on the barrier function of normal human bronchial epithelial (NHBE) cells cultured at the air–liquid interface (ALI). (2) Methods: NHBE cells were exposed to RW pollen extract (200 µg/mL), HDM extract (200 µg/mL) and their combination at varying concentrations (200 µg/mL, 100 µg/mL, 50 µg/mL, 25 µg/mL). Additional groups included a mixture of Amb a 1, Amb a 11 and Amb a 12 (100 mg/mL) and combinations of Der p 1 with the ragweed allergens (50 mg/mL, 100 µg/mL). Transepithelial electrical resistance (TEER) was recorded over 72 hours to assess barrier integrity, and immunofluorescence (IF) staining for zonula occludens-1 (ZO-1) was performed to evaluate tight junction alterations. (3) Results: TEER measurements showed a significant reduction in epithelial barrier integrity following allergen exposure, with the most pronounced disruption observed with the combined exposure to RW and HDM groups. IF staining confirmed extensive tight junction damage, highlighting their synergistic impact. (4) Conclusions: These findings emphasize the importance of assessing cumulative allergen effects, as combined exposure may exacerbate epithelial dysfunction and represent a key aspect in the management of allergic rhinitis and asthma. Full article
(This article belongs to the Special Issue Clinical Research on Severe Asthma: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 8241 KiB  
Article
Ganoderic Acid Ameliorates Ulcerative Colitis by Improving Intestinal Barrier Function via Gut Microbiota Modulation
by Yuwei Ye, Abudumijiti Abulizi, Yukun Zhang, Feng Lu, Yongpan An, Chaoqun Ren, Hang Zhang, Yiming Wang, Dongmei Lin, Dan Lu, Min Li and Baoxue Yang
Int. J. Mol. Sci. 2025, 26(6), 2466; https://doi.org/10.3390/ijms26062466 - 10 Mar 2025
Cited by 1 | Viewed by 1221
Abstract
Ulcerative colitis (UC) is a chronic and recurrent gastrointestinal disease that affects millions of humans worldwide and imposes a huge social and economic burden. It is necessary to find safe and efficient drugs for preventing and treating UC. The aim of this study [...] Read more.
Ulcerative colitis (UC) is a chronic and recurrent gastrointestinal disease that affects millions of humans worldwide and imposes a huge social and economic burden. It is necessary to find safe and efficient drugs for preventing and treating UC. The aim of this study was to determine whether ganoderic acid (GA), the main bioactive components of Ganoderma lucidum, has preventive and therapeutic effect on UC in a dextran sulfate sodium (DSS)-induced UC mouse model. Our experimental results showed that GA significantly ameliorated the body weight loss and disease activity index (DAI) of UC mice. GA significantly restored 11% of the colon length and 69% of the spleen index compared to UC mice. GA significantly decreased the intestinal inflammatory response and improved the barrier function of the intestine by upregulating the tight junction proteins Zonula occludens-1 (ZO-1), occludin and claudin-1. A co-housing experiment showed that gut microbiota accounted for the therapeutic activity of GA on UC, which was confirmed by fecal microbiota transplantation from GA-treated mice to the UC mice. Furthermore, 16S rDNA high-throughput sequencing of fecal bacteria showed that GA significantly enriched the abundance of Lactobacillus, Oscillospira, Odoribacter and Ruminococcus, which were positively correlated with colon length. Furthermore, this study found the functional metabolites, including Indole-3-acetaldehyde (IAAld), Glutamine (Gln) and Glutathione (GSH), reduced barrier damage in the Caco-2 cell model. In conclusion, this study suggests that GA could ameliorate UC by improving intestinal barrier function via modulating gut microbiota and associated metabolites. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

19 pages, 15824 KiB  
Article
Effects of Dietary Pretreatment with All-trans Lycopene on Lipopolysaccharide-Induced Jejunal Inflammation: A Multi-Pathway Phenomenon
by Daolin Mou, Dajiang Ding, Junning Pu, Pan Zhou, Enming Cao, Xueyan Zhang, Junrong Lan, Lu Ye and Wanxue Wen
Foods 2025, 14(5), 794; https://doi.org/10.3390/foods14050794 - 26 Feb 2025
Cited by 1 | Viewed by 928
Abstract
This study was conducted to investigate the effects and mechanisms of all-trans lycopene on intestinal health by establishing lipopolysaccharide-induced (LPS-induced) jejunal inflammation model. Dietary lycopene supplementation enhanced serum and jejunum antioxidant capacity. Lycopene significantly reduced LPS-induced upregulation of toll-like receptor-4 (TLR-4) and [...] Read more.
This study was conducted to investigate the effects and mechanisms of all-trans lycopene on intestinal health by establishing lipopolysaccharide-induced (LPS-induced) jejunal inflammation model. Dietary lycopene supplementation enhanced serum and jejunum antioxidant capacity. Lycopene significantly reduced LPS-induced upregulation of toll-like receptor-4 (TLR-4) and nuclear factor kappa-B (NF-κB), suggesting that lycopene reduced the activation of TLR-4/NF-κB signaling pathway induced by LPS challenge, and further protected mice from LPS induced jejunal inflammation. Furthermore, lycopene increased jejunal zonula occludens-1 (ZO-1) protein expression that was reduced by LPS challenge, and increased abundance of Rikenella, Lachnospiraceae_NK4A136_group and Mucispirillum potentially associated with reducing gut inflammation. Overall, these results showed that pretreatment with lycopene can improve jejunal inflammation and ensure intestinal health in mice by improving antioxidant capacity, intestinal barrier function, microorganisms potentially associated with anti-inflammatory effects and reducing the activation of TLR-4/NF-κB signaling pathway by LPS. We provided a new insight into lycopene prevented LPS-induced jejunal inflammation by corresponding alterations in serum metabolites and gut microbiota, improving antioxidant capacity and regulating the TLR-4/NF-κB signaling pathway in mice. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

23 pages, 1507 KiB  
Article
Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers
by Shawn G. Rhind, Maria Y. Shiu, Catherine Tenn, Ann Nakashima, Rakesh Jetly, Venkata Siva Sai Sujith Sajja, Joseph B. Long and Oshin Vartanian
Int. J. Mol. Sci. 2025, 26(5), 1808; https://doi.org/10.3390/ijms26051808 - 20 Feb 2025
Cited by 1 | Viewed by 1276
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains [...] Read more.
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood–brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions—such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation—that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure. Full article
Show Figures

Figure 1

22 pages, 12777 KiB  
Article
Effect of Food Matrix on Regulation of Intestinal Barrier and Microbiota Homeostasis by Polysaccharides Sulfated Carrageenan
by Xuke Shang, Juanjuan Guo and Peilin Chen
Foods 2025, 14(4), 635; https://doi.org/10.3390/foods14040635 - 14 Feb 2025
Cited by 1 | Viewed by 830
Abstract
Carrageenan (CGN) has side effects on the intestinal barrier. Damage to the intestinal barrier is associated with exposure to sulfate groups. Food matrix has significant influence on the exposure quantity of sulfate groups and conformation in κ-CGN, but the corresponding side effects are [...] Read more.
Carrageenan (CGN) has side effects on the intestinal barrier. Damage to the intestinal barrier is associated with exposure to sulfate groups. Food matrix has significant influence on the exposure quantity of sulfate groups and conformation in κ-CGN, but the corresponding side effects are not reported specifically. This study aimed to explore the regulatory effect of κ-CGN dissolved in aqueous (κ-CGN) and in 3% casein (κ-carrageenan-casein, κ-CC) on the intestinal barrier and microbiota homeostasis. Research has shown that both κ-CGN and κ-CC can induce different extents of intestinal barrier damage through disrupting microbiota homeostasis. Importantly, κ-CGN in casein with lower sulfate groups content was found to repair the intestinal barrier injury induced by an equivalent dose of κ-CGN aqueous through increasing the abundance of Oscillibacter and decreasing Weissella. These alleviating effects were reflected in lower levels of tumor necrosis factor (TNF)-α and C-reaction protein (CRP), higher levels of interleukin (IL)-10, raised secretion of mucus and goblet cells, and improved expression of epithelial cell compact proteins zonula occluden (ZO)-1 and mucin protein 2 (MUC2). This study states that κ-CGN in casein has a positive regulatory effect on the intestinal barrier damage compared to in aqueous solution, which can provide guidance for processing and utilization of CGN. Full article
Show Figures

Figure 1

22 pages, 3606 KiB  
Article
The Potential Role of Intestinal Microbiota on the Intestine-Protective and Lipid-Lowering Effects of Berberine in Zebrafish (Danio rerio) Under High-Lipid Stress
by Chang Gao, Heng Wang, Xuan Xue, Lishun Qi, Yanfeng Lin and Lei Wang
Metabolites 2025, 15(2), 118; https://doi.org/10.3390/metabo15020118 - 11 Feb 2025
Viewed by 1174
Abstract
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and [...] Read more.
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and high-lipid·diets·supplemented with an antibiotic cocktail (HLA), berberine (HLB), or both (HLAB) were fed to zebrafish (Danio rerio) for 30 days. Results: The HLB group showed significantly greater weight gain and feed intake than the HLA and other groups, respectively (p < 0.05). Hepatic triglyceride (TG) and total cholesterol (TC) levels, lipogenesis, and proinflammatory cytokine gene expression were significantly upregulated by the high-lipid diet, but significantly downregulated by berberine supplementation. Conversely, the expression levels of intestinal and/or hepatic farnesoid X receptor (fxr), Takeda G protein-coupled receptor 5 (tgr5), lipolysis genes, and zonula occludens 1 (zo1) exhibited the opposite trend. Compared with the HLB group, the HLAB group displayed significantly greater hepatic TG content and proinflammatory cytokine expression, but significantly lower intestinal bile salt hydrolase (BSH) activity and intestinal and/or hepatic fxr and tgr5 expression levels. The HL treatment decreased the abundance of certain probiotic bacteria (e.g., Microbacterium, Cetobacterium, and Gemmobacter) and significantly increased the pathways involved in cytochrome P450, p53 signaling, and ATP-binding cassette (ABC) transporters. The HLB group increased some probiotic bacteria abundance, particularly BSH-producing bacteria (e.g., Escherichia Shigella). Compared with the HLB group, the abundance of BSH-producing bacteria (e.g., Bifidobacterium and Enterococcus) and pathways related to Notch signaling and Wnt signaling were reduced in the HLAB group. Conclusions: This study revealed that berberine’s lipid-lowering and intestine-protective effects are closely related to the intestinal microbiota, especially BSH-producing bacteria. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

16 pages, 1172 KiB  
Article
Effects of In Vitro Fermented Pleurotus eryngii on Intestinal Barrier Integrity and Immunomodulation in a Lipopolysaccharide-Induced Colonic Model
by Evangelia N. Kerezoudi, Georgia Saxami, Georgios I. Zervakis, Vasiliki Pletsa, Robert J. Brummer, Adamantini Kyriacou and Ignacio Rangel
Biomedicines 2025, 13(2), 430; https://doi.org/10.3390/biomedicines13020430 - 11 Feb 2025
Cited by 1 | Viewed by 1298
Abstract
Background: This study investigates the impact of fermentation supernatants (FSs) from Pleurotus eryngii whole mushrooms (PEWS), as well as its subcomponents, digested (PEWSD) and extracted (PEWSE) forms, on intestinal barrier function and immune modulation in lipopolysaccharide (LPS) -stimulated Caco-2 cells. Methods: [...] Read more.
Background: This study investigates the impact of fermentation supernatants (FSs) from Pleurotus eryngii whole mushrooms (PEWS), as well as its subcomponents, digested (PEWSD) and extracted (PEWSE) forms, on intestinal barrier function and immune modulation in lipopolysaccharide (LPS) -stimulated Caco-2 cells. Methods: Gene expression of tight junction (TJs) genes, cytokines, and key immune/metabolic receptors was assessed via qRT-PCR, while cytokine protein levels were measured using ELISA to explore post-transcriptional regulation. Results: LPS challenge significantly downregulated TJs zonula occludens-1 (ZO-1,) occludin, and claudin-1, compromising epithelial integrity. Treatment with FS-PEWS notably restored ZO-1 and occludin expression, outperforming FS-PEWSD and FS-PEWSE, which only partially mitigated the LPS-induced damage. FS-PEWS further demonstrated potent immunomodulatory effects, upregulating anti-inflammatory IL-10 and pro-inflammatory cytokines such as IL-8 and TNF-α. The activation of key receptors like TLR-2 and mTOR suggests that FS-PEWS modulates critical immune and metabolic pathways, such as NF-kB signaling, to maintain immune homeostasis. Although mRNA expression of pro-inflammatory cytokines was altered, no corresponding protein release was detected, suggesting potential post-transcriptional regulation. Conclusions: FS-PEWS preserves intestinal barrier integrity and modulates immune responses, particularly in low-grade inflammation, highlighting the whole food matrix’s role in enhancing its bioactivity and functional food potential. Full article
Show Figures

Figure 1

20 pages, 7456 KiB  
Article
The Role of TRPV1/CGRP Pathway Activated by Prevotella melaninogenica in Pathogenesis of Oral Lichen Planus
by Pan Xu, Ruru Shao, Pingyi Zhu, Jian Fei and Yuan He
Int. J. Mol. Sci. 2025, 26(2), 662; https://doi.org/10.3390/ijms26020662 - 14 Jan 2025
Cited by 2 | Viewed by 1414
Abstract
The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 [...] Read more.
The distinctive clinicopathologic characteristics of OLP indicated that both microbial dysbiosis and neurogenic inflammation may be jointly involved in its progression, and transient receptor potential vanilloid receptor-1 (TRPV1) may be a crucial element. The purpose of this study was to explore how TRPV1 mediated P. melaninogenica-induced inflammation. Meanwhile, we aimed to unravel how IL-36γ dysregulated the barrier function in oral keratinocytes. Here, the expression of TRPV1, calcitonin gene-related peptide (CGRP), and its receptor receptor activity-modifying protein 1 (RAMP1) in OLP patients were detected. Prevotella melaninogenica (P. melaninogenica) was used to build a mouse model of oral chronic inflammation. Normal human oral keratinocytes (NHOKs) stimulated by P. melaninogenica were used to examine TRPV1 activation and CGRP release. To investigate the effect of exogenous CGRP on Interleukin-36 gamma (IL-36γ) expression in NHOKs and bacterial viability, P. melaninogenica and NHOKs were treated with it, respectively. Recombinant IL-36γ protein was used to probe its regulation of oral epithelial barrier function. TRPV1, CGRP, and RAMP1 were substantially expressed in OLP. P. melaninogenica increased TRPV1 expression in mice and caused the release of CGRP and an increase in pro-inflammatory cytokines via activating TRPV1 in NHOKs. Blockade of TRPV1 suppressed P. melaninogenica-induced inflammation. CGRP boosted the production of IL-36γ released by NHOKs, resulting in lower expression of zonula occludens-1 (ZO-1). Also, CGRP can decrease the viability of P. melaninogenica. Together, these findings provide fresh insight into the vital role performed by P. melaninogenica-induced functional changes in oral epithelial cells and neurons in an intricate OLP inflammatory process. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop