Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Zirfon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 4309 KiB  
Communication
A Conceptual Approach to Reduce the Product Gas Crossover in Alkaline Electrolyzers
by Diogo Loureiro Martinho and Torsten Berning
Membranes 2025, 15(7), 206; https://doi.org/10.3390/membranes15070206 - 12 Jul 2025
Viewed by 466
Abstract
The crossover of the product gases hydrogen and oxygen in alkaline electrolyzer operation is a critical factor, severely limiting the operational window in terms of current density and pressure. In prior experiments, it was found that a large degree of oversaturation of the [...] Read more.
The crossover of the product gases hydrogen and oxygen in alkaline electrolyzer operation is a critical factor, severely limiting the operational window in terms of current density and pressure. In prior experiments, it was found that a large degree of oversaturation of the reaction products in the liquid electrolyte phase leads to high amounts of crossover. We are proposing to reduce this amount of oversaturation by introducing micro-cracks in the Zirfon diaphragm. These cracks are meant to induce the formation of hydrogen and oxygen bubbles on the respective sides, and thereby reduce the oversaturation and amount of crossover. In theory, the size of the bubble corresponds to the size of the cracks, and from our computational fluid dynamics simulations, we conclude that the bubbles should be as large as possible to minimize the ohmic resistance in the electrolyte phase. The results suggest that an increase in bubble diameter from 50 microns to 150 microns results in a 10% higher current density at a cell voltage of 2.1 V. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

12 pages, 2694 KiB  
Article
In-Situ Measurement of Gas Permeability for Membranes in Water Electrolysis
by Shuaimin Li, Chuan Song, Li Xu, Yuxin Wang and Wen Zhang
Membranes 2025, 15(5), 147; https://doi.org/10.3390/membranes15050147 - 13 May 2025
Viewed by 898
Abstract
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable [...] Read more.
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable measurement method has been developed for evaluating the gas barrier behavior of the membranes. Hence, an in-situ electrochemical method is developed to measure the gas permeability of membranes in the actual electrolysis environment, with the supersaturated state of H2 in the electrolyte and H2 bubbles during the electrolysis process. Four membranes, including Zirfon (a state-of-the-art alkaline WE membrane), polyphenylene sulfide fabric (PPS, a commercial alkaline WE membrane), FAA-3-PK-75 (a commercial anion-exchange membrane), and BILP-PE (a home-made composite membrane) were employed as the standard samples to perform the electrochemical measurement under different current densities, temperatures, and electrolyte concentrations. The results show that an increase in electrolytic current density or temperature or a decrease in KOH concentration can increase the H2 permeability of the membrane. The two porous membranes, Zirfon and PPS, are more affected by the current density and KOH concentration, while the dense FAA-3-PK-75 and BILP-PE membranes have a stronger ability to hinder H2 permeation. Under the conditions of 80 °C, 30 wt.% KOH, 101 kPa, and 400 mA·cm−2, the hydrogen permeability (×1010 L·cm·cm−2·s−1) of Zirfon, PPS, FAA, and BILP-PE are 263, 367, 28.3, and 5.32, respectively. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

12 pages, 3215 KiB  
Article
Advanced Alkaline Water Electrolysis Stack with Non-Noble Catalysts and Hybrid Electrical Connections of the Single Cells
by Galin Borisov, Vasil Bachvarov, Rashko Rashkov and Evelina Slavcheva
Catalysts 2024, 14(3), 179; https://doi.org/10.3390/catal14030179 - 4 Mar 2024
Cited by 2 | Viewed by 4500
Abstract
In this research, a thin layer of multi-metallic non-precious catalyst is prepared by electroplating from an electrolyte bath containing Ni, Co, and Fe sulfates over pressed commercial nickel foam electrode. The composition of the deposited catalytic film and its morphology are characterized by [...] Read more.
In this research, a thin layer of multi-metallic non-precious catalyst is prepared by electroplating from an electrolyte bath containing Ni, Co, and Fe sulfates over pressed commercial nickel foam electrode. The composition of the deposited catalytic film and its morphology are characterized by scanning electron microscopy (SEM) with energy dispersion X-ray (EDX) techniques. The efficiency of the prepared binder-free electrodes for electrochemical water splitting is investigated in a self-designed short water electrolysis stack with zero-gap configuration of the integrated single cells and hybrid electrical connections. The separator used is a commercial Zirfon Perl 500 membrane, doped with 25% KOH. The performance of the catalyst, the single cells, and the developed electrolyzer stack are examined by steady state polarization curves and stationery galvanostatic stability tests in the temperature range 20 °C to 80 °C. The NiFeCoP multi-metallic alloy demonstrates superior catalytic efficiency compared to the pure nickel foam electrodes and reliable stability with time. The single cells in the stack show identical performance and the cumulative stack parameters strictly follow the theoretical considerations. The applied hybrid electrical connections enable scaling of both the stack voltage and the passing current, which in turn ensures flexibility with regard to the input power and the hydrogen production capacity. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Figure 1

10 pages, 2214 KiB  
Article
Role of the Membrane Transport Mechanism in Electrochemical Nitrogen Reduction Experiments
by Marco Leonardi, Giuseppe Tranchida, Roberto Corso, Rachela G. Milazzo, Salvatore A. Lombardo and Stefania M. S. Privitera
Membranes 2022, 12(10), 969; https://doi.org/10.3390/membranes12100969 - 2 Oct 2022
Cited by 8 | Viewed by 2831
Abstract
The electrochemical synthesis of ammonia through the nitrogen reduction reaction (NRR) is receiving much attention, since it is considered a promising alternative to the Haber–Bosch process. In NRR experiments, a Nafion membrane is generally adopted as a separator. However, its use is controversial [...] Read more.
The electrochemical synthesis of ammonia through the nitrogen reduction reaction (NRR) is receiving much attention, since it is considered a promising alternative to the Haber–Bosch process. In NRR experiments, a Nafion membrane is generally adopted as a separator. However, its use is controversial since ammonia can be trapped in the membrane, to some extent, or even pass through it. We systematically investigate the interaction of a Nafion membrane with ammonia and with an electrolyte and compare it with Zirfon as a possible alternative separator. We show that Nafion containing ammonia can easily release it when immersed in a 0.1 M Na2SO4 ammonia-free electrolyte, due to the cation exchange mechanism (Na+-NH4+). Since Na2SO4 is a commonly adopted electrolyte for NRR experiments, this may cause serious measurement errors and non-reproducible results. The same experiments performed using the polysulfone Zirfon separator clearly show that it is immune to interactions with ammonia, because of its different ion conduction mechanism. The findings provide a deeper understanding of the choice of membrane and electrolyte to be adopted for NRR tests, and may allow one to obtain more accurate and reliable results. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes, Fourth Edition)
Show Figures

Figure 1

12 pages, 2459 KiB  
Article
Importance of Hydroxide Ion Conductivity Measurement for Alkaline Water Electrolysis Membranes
by Jun Hyun Lim, Jian Hou, Jaehong Chun, Rae Duk Lee, Jaehan Yun, Jinwoo Jung and Chang Hyun Lee
Membranes 2022, 12(6), 556; https://doi.org/10.3390/membranes12060556 - 26 May 2022
Cited by 12 | Viewed by 5454
Abstract
Alkaline water electrolysis (AWE) refers to a representative water electrolysis technology that applies electricity to synthesize hydrogen gas without the production of carbon dioxide. The ideal polymer electrolyte membranes for AWE should be capable of transporting hydroxide ions (OH) quickly in [...] Read more.
Alkaline water electrolysis (AWE) refers to a representative water electrolysis technology that applies electricity to synthesize hydrogen gas without the production of carbon dioxide. The ideal polymer electrolyte membranes for AWE should be capable of transporting hydroxide ions (OH) quickly in harsh alkaline environments at increased temperatures. However, there has not yet been any desirable impedance measurement method for estimating hydroxide ions’ conduction behavior across the membranes, since their impedance spectra are significantly affected by connection modes between electrodes and membranes in the test cells and the impedance evaluation environments. Accordingly, the measurement method suitable for obtaining precise hydroxide ion conductivity values through the membranes should be determined. For this purpose, Zirfon®, a state-of-the-art AWE membrane, was adopted as the standard membrane sample to perform the impedance measurement. The impedance spectra were acquired using homemade test cells with different electrode configurations in alkaline environments, and the corresponding hydroxide ion conductivity values were determined based on the electrochemical spectra. Furthermore, a modified four-probe method was found as an optimal measurement method by comparing the conductivity obtained under alkaline conditions. Full article
(This article belongs to the Special Issue Advance in Electromembrane Technology)
Show Figures

Figure 1

19 pages, 4611 KiB  
Article
Zirconia Toughened Alumina-Based Separator Membrane for Advanced Alkaline Water Electrolyzer
by Muhammad Farjad Ali, Hae In Lee, Christian Immanuel Bernäcker, Thomas Weißgärber, Sechan Lee, Sang-Kyung Kim and Won-Chul Cho
Polymers 2022, 14(6), 1173; https://doi.org/10.3390/polym14061173 - 15 Mar 2022
Cited by 23 | Viewed by 8518
Abstract
Hydrogen is nowadays considered a favorable and attractive energy carrier fuel to replace other fuels that cause global warming problems. Water electrolysis has attracted the attention of researchers to produce green hydrogen mainly for the accumulation of renewable energy. Hydrogen can be safely [...] Read more.
Hydrogen is nowadays considered a favorable and attractive energy carrier fuel to replace other fuels that cause global warming problems. Water electrolysis has attracted the attention of researchers to produce green hydrogen mainly for the accumulation of renewable energy. Hydrogen can be safely used as a bridge to successfully connect the energy demand and supply divisions. An alkaline water electrolysis system owing to its low cost can efficiently use renewable energy sources on large scale. Normally organic/inorganic composite porous separator membranes have been employed as a membrane for alkaline water electrolyzers. However, the separator membranes exhibit high ionic resistance and low gas resistance values, resulting in lower efficiency and raised safety issues as well. Here, in this study, we report that zirconia toughened alumina (ZTA)–based separator membrane exhibits less ohmic resistance 0.15 Ω·cm2 and low hydrogen gas permeability 10.7 × 10−12 mol cm−1 s−1 bar−1 in 30 wt.% KOH solution, which outperforms the commercial, state-of-the-art Zirfon® PERL separator. The cell containing ZTA and advanced catalysts exhibit an excellent performance of 2.1 V at 2000 mA/cm2 at 30 wt.% KOH and 80 °C, which is comparable with PEM electrolysis. These improved results show that AWEs equipped with ZTA separators could be superior in performance to PEM electrolysis. Full article
(This article belongs to the Special Issue Advanced Polymers for Electrochemical Applications)
Show Figures

Graphical abstract

20 pages, 2116 KiB  
Article
Pristine and Modified Porous Membranes for Zinc Slurry–Air Flow Battery
by Misgina Tilahun Tsehaye, Getachew Teklay Gebreslassie, Nak Heon Choi, Diego Milian, Vincent Martin, Peter Fischer, Jens Tübke, Nadia El Kissi, Mateusz L. Donten, Fannie Alloin and Cristina Iojoiu
Molecules 2021, 26(13), 4062; https://doi.org/10.3390/molecules26134062 - 2 Jul 2021
Cited by 18 | Viewed by 4959
Abstract
The membrane is a crucial component of Zn slurry–air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (Cellophane™ 350PØØ, Zirfon®, Fumatech® PBI, Celgard® 3501, 3401 [...] Read more.
The membrane is a crucial component of Zn slurry–air flow battery since it provides ionic conductivity between the electrodes while avoiding the mixing of the two compartments. Herein, six commercial membranes (Cellophane™ 350PØØ, Zirfon®, Fumatech® PBI, Celgard® 3501, 3401 and 5550) were first characterized in terms of electrolyte uptake, ion conductivity and zincate ion crossover, and tested in Zn slurry–air flow battery. The peak power density of the battery employing the membranes was found to depend on the in-situ cell resistance. Among them, the cell using Celgard® 3501 membrane, with in-situ area resistance of 2 Ω cm2 at room temperature displayed the highest peak power density (90 mW cm−2). However, due to the porous nature of most of these membranes, a significant crossover of zincate ions was observed. To address this issue, an ion-selective ionomer containing modified poly(phenylene oxide) (PPO) and N-spirocyclic quaternary ammonium monomer was coated on a Celgard® 3501 membrane and crosslinked via UV irradiation (PPO-3.45 + 3501). Moreover, commercial FAA-3 solutions (FAA, Fumatech) were coated for comparison purpose. The successful impregnation of the membrane with the anion-exchange polymers was confirmed by SEM, FTIR and Hg porosimetry. The PPO-3.45 + 3501 membrane exhibited 18 times lower zincate ions crossover compared to that of the pristine membrane (5.2 × 10−13 vs. 9.2 × 10−12 m2 s−1). With low zincate ions crossover and a peak power density of 66 mW cm−2, the prepared membrane is a suitable candidate for rechargeable Zn slurry–air flow batteries. Full article
(This article belongs to the Special Issue Redox Flow Batteries: Developments and Applications)
Show Figures

Graphical abstract

11 pages, 4979 KiB  
Article
Cerium Oxide–Polysulfone Composite Separator for an Advanced Alkaline Electrolyzer
by Jung Won Lee, ChangSoo Lee, Jae Hun Lee, Sang-Kyung Kim, Hyun-Seok Cho, MinJoong Kim, Won Chul Cho, Jong Hoon Joo and Chang-Hee Kim
Polymers 2020, 12(12), 2821; https://doi.org/10.3390/polym12122821 - 27 Nov 2020
Cited by 36 | Viewed by 6037
Abstract
The intermittent and volatile nature of renewable energy sources threatens the stable operation of power grids, necessitating dynamically operated energy storage. Power-to-gas technology is a promising method for managing electricity variations on a large gigawatt (GW) scale. The electrolyzer is a key component [...] Read more.
The intermittent and volatile nature of renewable energy sources threatens the stable operation of power grids, necessitating dynamically operated energy storage. Power-to-gas technology is a promising method for managing electricity variations on a large gigawatt (GW) scale. The electrolyzer is a key component that can convert excess electricity into hydrogen with high flexibility. Recently, organic/inorganic composite separators have been widely used as diaphragm membranes; however, they are prone to increase ohmic resistance and gas crossover, which inhibit electrolyzer efficiency. Here, we show that the ceria nanoparticle and polysulfone composite separator exhibits a low area resistance of 0.16 Ω cm2 and a hydrogen permeability of 1.2 × 10–12 mol cm–1 s–1 bar–1 in 30 wt% potassium hydroxide (KOH) electrolyte, which outperformed the commercial separator, the Zirfon PERL separator. The cell using a 100 nm ceria nanoparticle/polysulfone separator and advanced catalysts has a remarkable capability of 1.84 V at 800 mA cm−2 at 30 wt% and 80 °C. The decrease in the average pore size of 77 nm and high wettability (contact angle 75°) contributed to the reduced ohmic resistance and low gas crossover. These results demonstrate that the use of ceria nanoparticle-based separators can achieve high performance compared to commercial zirconia-based separators. Full article
(This article belongs to the Special Issue Advanced Polymers for Electrochemical Applications)
Show Figures

Graphical abstract

11 pages, 1644 KiB  
Article
Electrochemical Hydrogen Production Using Separated-Gas Cells for Soybean Oil Hydrogenation
by Jorge Eduardo Esquerre Verastegui, Marco Antonio Zamora Antuñano, Juvenal Rodríguez Resendiz, Raul García García, Pedro Jacinto Paramo Kañetas and Daniel Larrañaga Ordaz
Processes 2020, 8(7), 832; https://doi.org/10.3390/pr8070832 - 13 Jul 2020
Cited by 3 | Viewed by 4993
Abstract
Although hydrogen is the most abundant element in the universe, it is not possible to find it in its purest state in nature. In this study, two-stage experimentation was carried out. The first stage was hydrogen production. The second stage was an electrochemical [...] Read more.
Although hydrogen is the most abundant element in the universe, it is not possible to find it in its purest state in nature. In this study, two-stage experimentation was carried out. The first stage was hydrogen production. The second stage was an electrochemical process to hydrogenate soybean oil in a PEM fuel cell. In the fist stage a Zirfon Perl UTP 500 membrane was used in an alkaline hydrolizer of separated gas to produce hydrogen, achieving 9.6 L/min compared with 5.1 L/min, the maximum obtained using a conventional membrane. The hydrogen obtained was used in the second stage to feed the fuel cell hydrogenating the soybean oil. Hydrogenated soybean oil showed a substantial diminished iodine index from 131 to 54.85, which represents a percentage of 58.13. This happens when applying a voltage of 90 mV for 240 min, constant temperature of 50 °C and one atm. This result was obtained by depositing 1 mg of Pt/cm 2 in the cathode of the fuel cell. This system represents a viable alternative for the use of hydrogen in energy generation. Full article
Show Figures

Figure 1

11 pages, 1104 KiB  
Article
Woven Stainless-Steel Mesh as a Gas Separation Membrane for Alkaline Water-Splitting Electrolysis
by William J. F. Gannon, Michael E. A. Warwick and Charles W. Dunnill
Membranes 2020, 10(5), 109; https://doi.org/10.3390/membranes10050109 - 23 May 2020
Cited by 4 | Viewed by 6530
Abstract
A 316-grade woven stainless-steel mesh membrane was investigated as a gas-separation membrane for alkaline water-splitting electrolysis. Its resistance was measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV), with the conclusion that it presented approximately half the resistance of a comparable [...] Read more.
A 316-grade woven stainless-steel mesh membrane was investigated as a gas-separation membrane for alkaline water-splitting electrolysis. Its resistance was measured using electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV), with the conclusion that it presented approximately half the resistance of a comparable commercial alternative (ZirfonTM). Its gas-separation performance was analysed using gas chromatography (GC) at 140 mA cm−2, where it achieved 99.25% purity at the hydrogen outlet of the electrolyser. This fell to 97.5% under pumped circulation, which highlights that it is sensitive to pressure differentials. Nevertheless, this mixture is still more than a factor two inside the upper flammability limit of hydrogen in oxygen. It is hoped that such a low-cost material may bring entry-level electrolysis to many hitherto discounted applications. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Graphical abstract

19 pages, 3971 KiB  
Article
Simple and Precise Approach for Determination of Ohmic Contribution of Diaphragms in Alkaline Water Electrolysis
by Jesús Rodríguez, Simonetta Palmas, Margarita Sánchez-Molina, Ernesto Amores, Laura Mais and Roberto Campana
Membranes 2019, 9(10), 129; https://doi.org/10.3390/membranes9100129 - 4 Oct 2019
Cited by 65 | Viewed by 13426
Abstract
A simple and low-cost alternating current (AC)-based method, without electrolyte correction, is proposed (Electrochemical Impedance Spectroscopy (EIS)-Zero Gap Cell) for the determination of ohmic contribution of diaphragms. The effectiveness of the proposed methodology was evaluated by using a commercial Alkaline Water Electrolysis (AWE) [...] Read more.
A simple and low-cost alternating current (AC)-based method, without electrolyte correction, is proposed (Electrochemical Impedance Spectroscopy (EIS)-Zero Gap Cell) for the determination of ohmic contribution of diaphragms. The effectiveness of the proposed methodology was evaluated by using a commercial Alkaline Water Electrolysis (AWE) diaphragm (Zirfon®). Furthermore, the results were compared with two conventional electrochemical methodologies for calculating the separator resistance, based on direct current (DC), and AC measurements, respectively. Compared with the previous techniques, the proposed approach reported more accurate and precise values of resistance for new and aged samples. Compared with the manufacturer reference, the obtained error values for new samples were 0.33%, 5.64%, and 41.7%, respectively for EIS-Zero gap cell, AC and DC methods, confirming the validity and convenience of the proposed technique. Full article
(This article belongs to the Special Issue Membranes for Electrolysis, Fuel Cells and Batteries)
Show Figures

Graphical abstract

15 pages, 1564 KiB  
Article
Site-Dependent Environmental Impacts of Industrial Hydrogen Production by Alkaline Water Electrolysis
by Jan Christian Koj, Christina Wulf, Andrea Schreiber and Petra Zapp
Energies 2017, 10(7), 860; https://doi.org/10.3390/en10070860 - 28 Jun 2017
Cited by 120 | Viewed by 18116
Abstract
Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely [...] Read more.
Industrial hydrogen production via alkaline water electrolysis (AEL) is a mature hydrogen production method. One argument in favor of AEL when supplied with renewable energy is its environmental superiority against conventional fossil-based hydrogen production. However, today electricity from the national grid is widely utilized for industrial applications of AEL. Also, the ban on asbestos membranes led to a change in performance patterns, making a detailed assessment necessary. This study presents a comparative Life Cycle Assessment (LCA) using the GaBi software (version 6.115, thinkstep, Leinfelden-Echterdingen, Germany), revealing inventory data and environmental impacts for industrial hydrogen production by latest AELs (6 MW, Zirfon membranes) in three different countries (Austria, Germany and Spain) with corresponding grid mixes. The results confirm the dependence of most environmental effects from the operation phase and specifically the site-dependent electricity mix. Construction of system components and the replacement of cell stacks make a minor contribution. At present, considering the three countries, AEL can be operated in the most environmentally friendly fashion in Austria. Concerning the construction of AEL plants the materials nickel and polytetrafluoroethylene in particular, used for cell manufacturing, revealed significant contributions to the environmental burden. Full article
(This article belongs to the Special Issue Environmental Impact Assessment of Energy Technologies)
Show Figures

Figure 1

Back to TopTop