Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = ZEBOV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2443 KiB  
Article
rVSVΔG-ZEBOV-GP Vaccine Is Highly Immunogenic and Efficacious Across a Wide Dose Range in a Nonhuman Primate EBOV Challenge Model
by Amy C. Shurtleff, John C. Trefry, Sheri Dubey, Melek M. E. Sunay, Kenneth Liu, Ziqiang Chen, Michael Eichberg, Peter M. Silvera, Steve A. Kwilas, Jay W. Hooper, Shannon Martin, Jakub K. Simon, Beth-Ann G. Coller and Thomas P. Monath
Viruses 2025, 17(3), 341; https://doi.org/10.3390/v17030341 - 28 Feb 2025
Cited by 1 | Viewed by 875
Abstract
The recombinant vesicular stomatitis virus-Zaire Ebolavirus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP) was highly effective against Ebola virus disease in a ring vaccination trial conducted during the 2014–2016 outbreak in Guinea and is licensed by regulatory agencies including US FDA, EMA, and prequalified by WHO. [...] Read more.
The recombinant vesicular stomatitis virus-Zaire Ebolavirus envelope glycoprotein vaccine (rVSVΔG-ZEBOV-GP) was highly effective against Ebola virus disease in a ring vaccination trial conducted during the 2014–2016 outbreak in Guinea and is licensed by regulatory agencies including US FDA, EMA, and prequalified by WHO. Vaccination studies in a nonhuman primate (NHP) model guided initial dose selection for clinical trial evaluation. We summarize two dose-ranging studies with the clinical-grade rVSVΔG-ZEBOV-GP vaccine candidate to assess the impact of dose level on immune responses and efficacy in an NHP Ebola virus (EBOV) challenge model. Forty-six cynomolgus macaques were vaccinated with a wide range of rVSVΔG-ZEBOV-GP doses and challenged 42 days later intramuscularly with 1000 pfu EBOV. Vaccination with rVSVΔG-ZEBOV-GP induced relatively high levels of EBOV-specific IgG and neutralizing antibodies, measured using the same validated assays as used in rVSVΔG-ZEBOV-GP clinical trials. Similar responses were observed across dose groups from 1 × 108 to 1 × 102 pfu. A single vaccination conferred 98% protection from lethal intramuscular EBOV challenge across all dose groups. These results demonstrate that robust antibody titers are induced in NHPs across a wide range of rVSVΔG-ZEBOV-GP vaccine doses, correlating with high levels of protection against death from EBOV challenge. Full article
(This article belongs to the Special Issue Vaccines and Treatments for Viral Hemorrhagic Fevers)
Show Figures

Figure 1

18 pages, 4073 KiB  
Article
Durability of Immunogenicity and Protection of rVSV∆G-ZEBOV-GP Vaccine in a Nonhuman Primate EBOV Challenge Model
by Sandra L. Bixler, Amy C. Shurtleff, Melek M. E. Sunay, Kenneth Liu, Ziqiang Chen, Michael Eichberg, Jakub K. Simon, Beth-Ann G. Coller and Sheri Dubey
Viruses 2025, 17(3), 342; https://doi.org/10.3390/v17030342 - 28 Feb 2025
Viewed by 715
Abstract
The rVSVΔG-ZEBOV-GP vaccine demonstrated efficacy in preventing Ebola virus (EBOV) disease in a ring vaccination clinical trial conducted during the 2014–2016 West Africa outbreak and is licensed by regulatory agencies, including the US FDA and the EMA. Here, we present two studies that [...] Read more.
The rVSVΔG-ZEBOV-GP vaccine demonstrated efficacy in preventing Ebola virus (EBOV) disease in a ring vaccination clinical trial conducted during the 2014–2016 West Africa outbreak and is licensed by regulatory agencies, including the US FDA and the EMA. Here, we present two studies that evaluated the durability of immunogenicity and protection from an EBOV challenge up to ~12 months following vaccination with rVSVΔG-ZEBOV-GP in nonhuman primates (NHPs). Cynomolgus macaques were vaccinated with either one or two doses of rVSVΔG-ZEBOV-GP or a saline control and were challenged intramuscularly with EBOV at a target dose of 1000 pfu at ~4 months (Study 1) or ~8 or ~12 months (Study 2) after the last vaccination. All vaccinated animals developed robust ZEBOV-GP-specific IgG and neutralizing antibody titers, which were sustained until the last time point tested prior to the challenge. The majority of animals (88–93%) challenged with EBOV at ~4 or ~8 months post-vaccination survived, whereas the survival rate was lower (53%) in animals challenged ~12 months post-vaccination. These results demonstrate that both one-dose and two-dose regimens of the rVSVΔG-ZEBOV-GP vaccine induced durable ZEBOV-GP-specific antibody titers in NHPs and provided high levels of protection against a lethal EBOV challenge up to ~8 months post-vaccination. In this stringent challenge model, decreased protection was observed at ~12 months post-vaccination despite sustained antibody levels. Full article
(This article belongs to the Special Issue Vaccines and Treatments for Viral Hemorrhagic Fevers)
Show Figures

Figure 1

12 pages, 1129 KiB  
Article
Immunogenicity of an Extended Dose Interval for the Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine Regimen in Adults and Children in the Democratic Republic of the Congo
by Edward Man-Lik Choi, Kambale Kasonia, Hugo Kavunga-Membo, Daniel Mukadi-Bamuleka, Aboubacar Soumah, Zephyrin Mossoko, Tansy Edwards, Darius Tetsa-Tata, Rockyath Makarimi, Oumar Toure, Grace Mambula, Hannah Brindle, Anton Camacho, Nicholas E. Connor, Pierre Mukadi, Chelsea McLean, Babajide Keshinro, Auguste Gaddah, Cynthia Robinson, Kerstin Luhn, Julie Foster, Chrissy h. Roberts, John Emery Johnson, Nathalie Imbault, Daniel G. Bausch, Rebecca F. Grais, Deborah Watson-Jones and Jean Jacques Muyembe-Tamfumadd Show full author list remove Hide full author list
Vaccines 2024, 12(8), 828; https://doi.org/10.3390/vaccines12080828 - 23 Jul 2024
Viewed by 2025
Abstract
During the 2018–2020 Ebola virus disease outbreak in Democratic Republic of the Congo, a phase 3 trial of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine (DRC-EB-001) commenced in Goma, with participants being offered the two-dose regimen given 56 days apart. Suspension of trial activities in [...] Read more.
During the 2018–2020 Ebola virus disease outbreak in Democratic Republic of the Congo, a phase 3 trial of the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine (DRC-EB-001) commenced in Goma, with participants being offered the two-dose regimen given 56 days apart. Suspension of trial activities in 2020 due to the COVID-19 pandemic led to some participants receiving a late dose 2 outside the planned interval. Blood samples were collected from adults, adolescents, and children prior to their delayed dose 2 vaccination and 21 days after, and tested for IgG binding antibodies against Ebola virus glycoprotein using the Filovirus Animal Nonclinical Group (FANG) ELISA. Results from 133 participants showed a median two-dose interval of 9.3 months. The pre-dose 2 antibody geometric mean concentration (GMC) was 217 ELISA Units (EU)/mL (95% CI 157; 301) in adults, 378 EU/mL (281; 510) in adolescents, and 558 EU/mL (471; 661) in children. At 21 days post-dose 2, the GMC increased to 22,194 EU/mL (16,726; 29,449) in adults, 37,896 EU/mL (29,985; 47,893) in adolescents, and 34,652 EU/mL (27,906; 43,028) in children. Participants receiving a delayed dose 2 had a higher GMC at 21 days post-dose 2 than those who received a standard 56-day regimen in other African trials, but similar to those who received the regimen with an extended interval. Full article
Show Figures

Figure 1

16 pages, 975 KiB  
Article
Delivery and Safety of a Two-Dose Preventive Ebola Virus Disease Vaccine in Pregnant and Non-Pregnant Participants during an Outbreak in the Democratic Republic of the Congo
by Hugo Kavunga-Membo, Deborah Watson-Jones, Kambale Kasonia, Tansy Edwards, Anton Camacho, Grace Mambula, Darius Tetsa-Tata, Edward Man-Lik Choi, Soumah Aboubacar, Hannah Brindle, Chrissy Roberts, Daniela Manno, Benjamin Faguer, Zephyrin Mossoko, Pierre Mukadi, Michel Kakule, Benith Balingene, Esther Kaningu Mapendo, Rockyath Makarimi, Oumar Toure, Paul Campbell, Mathilde Mousset, Robert Nsaibirni, Ibrahim Seyni Ama, Kikongo Kambale Janvier, Babajide Keshinro, Badara Cissé, Mateus Kambale Sahani, John Johnson, Nicholas Connor, Shelley Lees, Nathalie Imbault, Cynthia Robinson, Rebecca F. Grais, Daniel G. Bausch and Jean Jacques Muyembe-Tamfumadd Show full author list remove Hide full author list
Vaccines 2024, 12(8), 825; https://doi.org/10.3390/vaccines12080825 - 23 Jul 2024
Cited by 4 | Viewed by 2342
Abstract
During the 2018–2020 Ebola virus disease (EVD) outbreak, residents in Goma, Democratic Republic of the Congo, were offered a two-dose prophylactic EVD vaccine. This was the first study to evaluate the safety of this vaccine in pregnant women. Adults, including pregnant women, and [...] Read more.
During the 2018–2020 Ebola virus disease (EVD) outbreak, residents in Goma, Democratic Republic of the Congo, were offered a two-dose prophylactic EVD vaccine. This was the first study to evaluate the safety of this vaccine in pregnant women. Adults, including pregnant women, and children aged ≥1 year old were offered the Ad26.ZEBOV (day 0; dose 1), MVA-BN-Filo (day 56; dose 2) EVD vaccine through an open-label clinical trial. In total, 20,408 participants, including 6635 (32.5%) children, received dose 1. Fewer than 1% of non-pregnant participants experienced a serious adverse event (SAE) following dose 1; one SAE was possibly related to the Ad26.ZEBOV vaccine. Of the 1221 pregnant women, 371 (30.4%) experienced an SAE, with caesarean section being the most common event. No SAEs in pregnant women were considered related to vaccination. Of 1169 pregnancies with a known outcome, 55 (4.7%) ended in a miscarriage, and 30 (2.6%) in a stillbirth. Eleven (1.0%) live births ended in early neonatal death, and five (0.4%) had a congenital abnormality. Overall, 188/891 (21.1%) were preterm births and 79/1032 (7.6%) had low birth weight. The uptake of the two-dose regimen was high: 15,328/20,408 (75.1%). The vaccine regimen was well-tolerated among the study participants, including pregnant women, although further data, ideally from controlled trials, are needed in this crucial group. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

15 pages, 4038 KiB  
Article
Safety and Immunogenicity of an Accelerated Ebola Vaccination Schedule in People with and without Human Immunodeficiency Virus: A Randomized Clinical Trial
by Julie A. Ake, Kristopher Paolino, Jack N. Hutter, Susan Biggs Cicatelli, Leigh Anne Eller, Michael A. Eller, Margaret C. Costanzo, Dominic Paquin-Proulx, Merlin L. Robb, Chi L. Tran, Lalaine Anova, Linda L. Jagodzinski, Lucy A. Ward, Nicole Kilgore, Janice Rusnak, Callie Bounds, Christopher S. Badorrek, Jay W. Hooper, Steven A. Kwilas, Ine Ilsbroux, Dickson Nkafu Anumendem, Auguste Gaddah, Georgi Shukarev, Viki Bockstal, Kerstin Luhn, Macaya Douoguih and Cynthia Robinsonadd Show full author list remove Hide full author list
Vaccines 2024, 12(5), 497; https://doi.org/10.3390/vaccines12050497 - 4 May 2024
Cited by 2 | Viewed by 2276
Abstract
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose [...] Read more.
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015). Full article
Show Figures

Figure 1

13 pages, 271 KiB  
Article
Long-Term Clinical Safety of the Ad26.ZEBOV and MVA-BN-Filo Ebola Vaccines: A Prospective, Multi-Country, Observational Study
by Adeep Puri, Andrew J. Pollard, Catherine Schmidt-Mutter, Fabrice Lainé, George PrayGod, Hannah Kibuuka, Houreratou Barry, Jean-François Nicolas, Jean-Daniel Lelièvre, Sodiomon Bienvenu Sirima, Beatrice Kamala, Daniela Manno, Deborah Watson-Jones, Auguste Gaddah, Babajide Keshinro, Kerstin Luhn, Cynthia Robinson and Macaya Douoguih
Vaccines 2024, 12(2), 210; https://doi.org/10.3390/vaccines12020210 - 17 Feb 2024
Cited by 3 | Viewed by 2697
Abstract
In this prospective, observational study (ClinicalTrials.gov Identifier: NCT02661464), long-term safety information was collected from participants previously exposed to the Ebola vaccines Ad26.ZEBOV and/or MVA-BN-Filo while enrolled in phase 1, 2, or 3 clinical studies. The study was conducted at 15 sites in seven [...] Read more.
In this prospective, observational study (ClinicalTrials.gov Identifier: NCT02661464), long-term safety information was collected from participants previously exposed to the Ebola vaccines Ad26.ZEBOV and/or MVA-BN-Filo while enrolled in phase 1, 2, or 3 clinical studies. The study was conducted at 15 sites in seven countries (Burkina Faso, France, Kenya, Tanzania, Uganda, the United Kingdom, and the United States). Adult participants and offspring from vaccinated female participants who became pregnant (estimated conception ≤28 days after vaccination with MVA-BN-Filo or ≤3 months after vaccination with Ad26.ZEBOV) were enrolled. Adults were followed for 60 months after their first vaccination, and children born to female participants were followed for 60 months after birth. In the full analysis set (n = 614 adults; median age [range]: 32.0 [18–65] years), 49 (8.0%) had ≥1 serious adverse event (SAE); the incidence rate of any SAE was 27.4 per 1000 person-years (95% confidence interval: 21.0, 35.2). The unrelated SAEs of malaria were reported in the two infants in the full analysis set, aged 11 and 18 months; both episodes were resolved. No deaths or life-threatening SAEs occurred during the study. Overall, no major safety issues were identified; one related SAE was reported. These findings support the long-term clinical safety of the Ad26.ZEBOV and MVA-BN-Filo vaccines. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
14 pages, 979 KiB  
Article
The Effect of Previous Exposure to Malaria Infection and Clinical Malaria Episodes on the Immune Response to the Two-Dose Ad26.ZEBOV, MVA-BN-Filo Ebola Vaccine Regimen
by Daniela Manno, Catriona Patterson, Abdoulie Drammeh, Kevin Tetteh, Mattu Tehtor Kroma, Godfrey Tuda Otieno, Bolarinde Joseph Lawal, Seyi Soremekun, Philip Ayieko, Auguste Gaddah, Abu Bakarr Kamara, Frank Baiden, Muhammed Olanrewaju Afolabi, Daniel Tindanbil, Kwabena Owusu-Kyei, David Ishola, Gibrilla Fadlu Deen, Babajide Keshinro, Yusupha Njie, Mohamed Samai, Brett Lowe, Cynthia Robinson, Bailah Leigh, Chris Drakeley, Brian Greenwood and Deborah Watson-Jonesadd Show full author list remove Hide full author list
Vaccines 2023, 11(8), 1317; https://doi.org/10.3390/vaccines11081317 - 2 Aug 2023
Viewed by 2260
Abstract
We assessed whether the immunogenicity of the two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen with a 56-day interval between doses was affected by exposure to malaria before dose 1 vaccination and by clinical episodes of malaria in the period immediately after dose 1 and [...] Read more.
We assessed whether the immunogenicity of the two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen with a 56-day interval between doses was affected by exposure to malaria before dose 1 vaccination and by clinical episodes of malaria in the period immediately after dose 1 and after dose 2 vaccinations. Previous malaria exposure in participants in an Ebola vaccine trial in Sierra Leone (ClinicalTrials.gov: NCT02509494) was classified as low, intermediate, and high according to their antibody responses to a panel of Plasmodium falciparum antigens detected using a Luminex MAGPIX platform. Clinical malaria episodes after vaccinations were recorded as part of the trial safety monitoring. Binding antibody responses against the Ebola virus (EBOV) glycoprotein (GP) were measured 57 days post dose 1 and 21 days post dose 2 by ELISA and summarized as Geometric Mean Concentrations (GMCs). Geometric Mean Ratios (GMRs) were used to compare groups with different levels of exposure to malaria. Overall, 587 participants, comprising 188 (32%) adults (aged ≥ 18 years) and 399 (68%) children (aged 1–3, 4–11, and 12–17 years), were included in the analysis. There was no evidence that the anti-EBOV-GP antibody GMCs post dose 1 and post dose 2 differed between categories of previous malaria exposure. There was weak evidence that the GMC at 57 days post dose 1 was lower in participants who had had at least one episode of clinical malaria post dose 1 compared to participants with no diagnosed clinical malaria in the same period (GMR = 0.82, 95% CI: 0.69–0.98, p-value = 0.02). However, GMC post dose 2 was not reduced in participants who experienced clinical malaria post-dose 1 and/or post-dose 2 vaccinations. In conclusion, the Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen is immunogenic in individuals with previous exposure to malaria and in those who experience clinical malaria after vaccination. This vaccine regimen is suitable for prophylaxis against Ebola virus disease in malaria-endemic regions. Full article
Show Figures

Figure 1

21 pages, 4565 KiB  
Article
Optimal Expression, Function, and Immunogenicity of an HIV-1 Vaccine Derived from the Approved Ebola Vaccine, rVSV-ZEBOV
by Hiva Azizi, Jason P. Knapp, Yue Li, Alice Berger, Marc-Alexandre Lafrance, Jannie Pedersen, Marc-Antoine de la Vega, Trina Racine, Chil-Yong Kang, Jamie F. S. Mann, Jimmy D. Dikeakos, Gary Kobinger and Eric J. Arts
Vaccines 2023, 11(5), 977; https://doi.org/10.3390/vaccines11050977 - 12 May 2023
Cited by 3 | Viewed by 2996
Abstract
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain [...] Read more.
Vesicular stomatitis virus (VSV) remains an attractive platform for a potential HIV-1 vaccine but hurdles remain, such as selection of a highly immunogenic HIV-1 Envelope (Env) with a maximal surface expression on recombinant rVSV particles. An HIV-1 Env chimera with the transmembrane domain (TM) and cytoplasmic tail (CT) of SIVMac239 results in high expression on the approved Ebola vaccine, rVSV-ZEBOV, also harboring the Ebola Virus (EBOV) glycoprotein (GP). Codon-optimized (CO) Env chimeras derived from a subtype A primary isolate (A74) are capable of entering a CD4+/CCR5+ cell line, inhibited by HIV-1 neutralizing antibodies PGT121, VRC01, and the drug, Maraviroc. The immunization of mice with the rVSV-ZEBOV carrying the CO A74 Env chimeras results in anti-Env antibody levels as well as neutralizing antibodies 200-fold higher than with the NL4-3 Env-based construct. The novel, functional, and immunogenic chimeras of CO A74 Env with the SIV_Env-TMCT within the rVSV-ZEBOV vaccine are now being tested in non-human primates. Full article
(This article belongs to the Section HIV Vaccines)
Show Figures

Figure 1

17 pages, 1316 KiB  
Review
Lessons Learned from the Development and Roll-Out of the rVSVΔG-ZEBOV-GP Zaire ebolavirus Vaccine to Inform Marburg Virus and Sudan ebolavirus Vaccines
by Beth-Ann G. Coller, William Lapps, Mahum Yunus, Samantha Bruno, Michael J. Eichberg, Andrew Wen-Tseng Lee, Kenneth Liu, Rosybel Drury, Jules Millogo, Louis Robert Macareo, Thomas H. Armstrong, Jeffrey T. Blue, Lynne A. Isopi, Melissa Hughes, Susan M. VanRheenen, Jonathan Deutsch, Joan G. Tell and Sheri A. Dubey
Vaccines 2022, 10(9), 1446; https://doi.org/10.3390/vaccines10091446 - 1 Sep 2022
Cited by 9 | Viewed by 3374
Abstract
This review describes key aspects of the development of the rVSVΔG-ZEBOV-GP Ebola vaccine and key activities which are continuing to further expand our knowledge of the product. Extensive partnerships and innovative approaches were used to address the various challenges encountered during this process. [...] Read more.
This review describes key aspects of the development of the rVSVΔG-ZEBOV-GP Ebola vaccine and key activities which are continuing to further expand our knowledge of the product. Extensive partnerships and innovative approaches were used to address the various challenges encountered during this process. The rVSVΔG-ZEBOV-GP Ebola vaccine was initially approved by the European Medicines Agency and prequalified by the World Health Organization in November 2019. It was approved by the United States Food and Drug Administration in December 2019 and approved in five African countries within 90 days of prequalification. The development resulted in the first stockpile of a registered Ebola vaccine that is available to support outbreak response. This also provides insights into how the example of rVSVΔG-ZEBOV-GP can inform the development of vaccines for Sudan ebolavirus, Marburg virus, and other emerging epidemic diseases in terms of the types of approaches and data needed to support product registration, availability, and the use of a filovirus vaccine. Full article
Show Figures

Figure 1

16 pages, 1998 KiB  
Article
NK Cell Subset Redistribution and Antibody Dependent Activation after Ebola Vaccination in Africans
by Helen R. Wagstaffe, Omu Anzala, Hannah Kibuuka, Zacchaeus Anywaine, Sodiomon B. Sirima, Rodolphe Thiébaut, Laura Richert, Yves Levy, Christine Lacabaratz, Viki Bockstal, Kerstin Luhn, Macaya Douoguih and Martin R. Goodier
Vaccines 2022, 10(6), 884; https://doi.org/10.3390/vaccines10060884 - 31 May 2022
Cited by 2 | Viewed by 2898
Abstract
Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies [...] Read more.
Natural killer cells play an important role in the control of viral infections both by regulating acquired immune responses and as potent innate or antibody-mediated cytotoxic effector cells. NK cells have been implicated in control of Ebola virus infections and our previous studies in European trial participants have demonstrated durable activation, proliferation and antibody-dependent NK cell activation after heterologous two-dose Ebola vaccination with adenovirus type 26.ZEBOV followed by modified vaccinia Ankara-BN-Filo. Regional variation in immunity and environmental exposure to pathogens, in particular human cytomegalovirus, have profound impacts on NK cell functional capacity. We therefore assessed the NK cell phenotype and function in African trial participants with universal exposure to HCMV. We demonstrate a significant redistribution of NK cell subsets after vaccine dose two, involving the enrichment of less differentiated CD56dimCD57 and CD56dimFcεR1γ+ (canonical) cells and the increased proliferation of these subsets. Sera taken after vaccine dose two support robust antibody-dependent NK cell activation in a standard NK cell readout; these responses correlate strongly with the concentration of anti-Ebola glycoprotein specific antibodies. These sera also promote comparable IFN-γ production in autologous NK cells taken at baseline and post-vaccine dose two. However, degranulation responses of post-vaccination NK cells were reduced compared to baseline NK cells and these effects could not be directly attributed to alterations in NK cell phenotype after vaccination. These studies demonstrate consistent changes in NK cell phenotypic composition and robust antibody-dependent NK cell function and reveal novel characteristics of these responses after heterologous two dose Ebola vaccination in African individuals. Full article
Show Figures

Graphical abstract

25 pages, 1353 KiB  
Review
Development of Pandemic Vaccines: ERVEBO Case Study
by Jayanthi Wolf, Risat Jannat, Sheri Dubey, Sean Troth, Matthew T. Onorato, Beth-Ann Coller, Mary E. Hanson and Jakub K. Simon
Vaccines 2021, 9(3), 190; https://doi.org/10.3390/vaccines9030190 - 25 Feb 2021
Cited by 50 | Viewed by 6967
Abstract
Preventative vaccines are considered one of the most cost-effective and efficient means to contain outbreaks and prevent pandemics. However, the requirements to gain licensure and manufacture a vaccine for human use are complex, costly, and time-consuming. The 2013–2016 Ebola virus disease (EVD) outbreak [...] Read more.
Preventative vaccines are considered one of the most cost-effective and efficient means to contain outbreaks and prevent pandemics. However, the requirements to gain licensure and manufacture a vaccine for human use are complex, costly, and time-consuming. The 2013–2016 Ebola virus disease (EVD) outbreak was the largest EVD outbreak to date and the third Public Health Emergency of International Concern in history, so to prevent a pandemic, numerous partners from the public and private sectors combined efforts and resources to develop an investigational Zaire ebolavirus (EBOV) vaccine candidate (rVSVΔG-ZEBOV-GP) as quickly as possible. The rVSVΔG-ZEBOV-GP vaccine was approved as ERVEBOTM by the European Medicines Authority (EMA) and the United States Food and Drug Administration (FDA) in December 2019 after five years of development. This review describes the development program of this EBOV vaccine, summarizes what is known about safety, immunogenicity, and efficacy, describes ongoing work in the program, and highlights learnings applicable to the development of pandemic vaccines. Full article
(This article belongs to the Special Issue Advances in Vaccine Development and Immunotherapies)
Show Figures

Figure 1

15 pages, 2303 KiB  
Article
Human Transcriptomic Response to the VSV-Vectored Ebola Vaccine
by Francesco Santoro, Alessia Donato, Simone Lucchesi, Sara Sorgi, Alice Gerlini, Marielle C. Haks, Tom H. M. Ottenhoff, Patricia Gonzalez-Dias, VSV-EBOVAC Consortium, VSV-EBOPLUS Consortium, Helder I. Nakaya, Angela Huttner, Claire-Anne Siegrist, Donata Medaglini and Gianni Pozzi
Vaccines 2021, 9(2), 67; https://doi.org/10.3390/vaccines9020067 - 20 Jan 2021
Cited by 15 | Viewed by 4037
Abstract
Ebolavirus Disease (EVD) is a severe haemorrhagic fever that occurs in epidemic outbreaks, with a high fatality rate and no specific therapies available. rVSVΔG-ZEBOV-GP (Ervebo®), a live-attenuated recombinant vesicular stomatitis virus vector expressing the glycoprotein G of Zaire Ebolavirus, is the [...] Read more.
Ebolavirus Disease (EVD) is a severe haemorrhagic fever that occurs in epidemic outbreaks, with a high fatality rate and no specific therapies available. rVSVΔG-ZEBOV-GP (Ervebo®), a live-attenuated recombinant vesicular stomatitis virus vector expressing the glycoprotein G of Zaire Ebolavirus, is the first vaccine approved for prevention of EVD. Both innate and adaptive responses are deemed to be involved in vaccine-induced protection, yet the mechanisms are not fully elucidated. A global transcriptomic approach was used to profile the blood host-response in 51 healthy volunteers enrolled in a phase 1/2 clinical trial. Signatures of the host responses were investigated assessing the enrichment in differentially expressed genes (DEGs) of specific “blood transcription modules” (BTM). Comparison of gene-expression levels showed that vaccination produces a peak of 5469 DEGs at day one, representing 38.6% of the expressed genes. Out of 346 BTMs, 144 were significantly affected by vaccination. Innate immunity pathways were induced from day 1 to day 14. At days 2 and 3, neutrophil modules were downregulated and complement-related modules upregulated. T-cell and cell-cycle associated modules were upregulated at days 7 and 14, while at day 28, no modules remained activated. At day 14, a direct correlation was observed between ZEBOV glycoprotein-specific antibody titres and activation of seven BTMs, including two related to B-cell activation and B cell receptor signalling. Transcriptomic analysis identified an rVSVΔG-ZEBOV-GP-induced signature and demonstrated a direct correlation of blood transcriptomic changes with ZEBOV glycoprotein-specific antibody titres. Full article
(This article belongs to the Special Issue Vaccines for Ebola Virus and Related Diseases)
Show Figures

Figure 1

23 pages, 2774 KiB  
Review
Environmental Risk Assessment for rVSVΔG-ZEBOV-GP, a Genetically Modified Live Vaccine for Ebola Virus Disease
by Joan G. Tell, Beth-Ann G. Coller, Sheri A. Dubey, Ursula Jenal, William Lapps, Liman Wang and Jayanthi Wolf
Vaccines 2020, 8(4), 779; https://doi.org/10.3390/vaccines8040779 - 19 Dec 2020
Cited by 12 | Viewed by 5972
Abstract
rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental [...] Read more.
rVSVΔG-ZEBOV-GP is a live, attenuated, recombinant vesicular stomatitis virus (rVSV)-based vaccine for the prevention of Ebola virus disease caused by Zaire ebolavirus. As a replication-competent genetically modified organism, rVSVΔG-ZEBOV-GP underwent various environmental evaluations prior to approval, the most in-depth being the environmental risk assessment (ERA) required by the European Medicines Agency. This ERA, as well as the underlying methodology used to arrive at a sound conclusion about the environmental risks of rVSVΔG-ZEBOV-GP, are described in this review. Clinical data from vaccinated adults demonstrated only infrequent, low-level shedding and transient, low-level viremia, indicating a low person-to-person infection risk. Animal data suggest that it is highly unlikely that vaccinated individuals would infect animals with recombinant virus vaccine or that rVSVΔG-ZEBOV-GP would spread within animal populations. Preclinical studies in various hematophagous insect vectors showed that these species were unable to transmit rVSVΔG-ZEBOV-GP. Pathogenicity risk in humans and animals was found to be low, based on clinical and preclinical data. The overall risk for non-vaccinated individuals and the environment is thus negligible and can be minimized further through defined mitigation strategies. This ERA and the experience gained are relevant to developing other rVSV-based vaccines, including candidates under investigation for prevention of COVID-19. Full article
(This article belongs to the Special Issue Vaccines for Ebola Virus and Related Diseases)
Show Figures

Figure 1

18 pages, 3312 KiB  
Article
Expression of a Large Single-Chain 13F6 Antibody with Binding Activity against Ebola Virus-Like Particles in a Plant System
by Sohee Lim, Do-Sun Kim and Kisung Ko
Int. J. Mol. Sci. 2020, 21(19), 7007; https://doi.org/10.3390/ijms21197007 - 23 Sep 2020
Cited by 7 | Viewed by 3433
Abstract
Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic [...] Read more.
Pathogenic animal and human viruses present a growing and persistent threat to humans worldwide. Ebola virus (EBOV) causes zoonosis in humans. Here, two structurally different anti-Ebola 13F6 antibodies, recognizing the heavily glycosylated mucin-like domain (MLD) of the glycoprotein (GP), were expressed in transgenic Nicotiana tabacum plants and designed as inexpensive and effective diagnostic antibodies against Ebola virus disease (EVD). The first was anti-EBOV 13F6 full size antibody with heavy chain (HC) and light chain (LC) (monoclonal antibody, mAb 13F6-FULL), while the second was a large single-chain (LSC) antibody (mAb 13F6-LSC). mAb 13F6-LSC was constructed by linking the 13F6 LC variable region (VL) with the HC of mAb 13F6-FULL using a peptide linker and extended to the C-terminus using the endoplasmic reticulum (ER) retention motif KDEL. Agrobacterium-mediated plant transformation was employed to express the antibodies in N. tabacum. PCR, RT-PCR, and immunoblot analyses confirmed the gene insertion, transcription, and protein expression of these antibodies, respectively. The antibodies tagged with the KDEL motif displayed high-mannose type N-glycan structures and efficient binding to EBOV-like particles (VLPs). Thus, various forms of anti-EBOV plant-derived mAbs 13F6-FULL and LSC with efficient binding affinity to EBOV VLP can be produced in the plant system. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 4680 KiB  
Article
Ebola Virus Disease Survivors Show More Efficient Antibody Immunity than Vaccinees Despite Similar Levels of Circulating Immunoglobulins
by Till Koch, Monika Rottstegge, Paula Ruibal, Sergio Gomez-Medina, Emily V. Nelson, Beatriz Escudero-Pérez, Matthias Pillny, My Linh Ly, Fara Raymond Koundouno, Joseph Akoi Bore, N’Faly Magassouba, Christine Dahlke, Stephan Günther, Miles W. Carroll, Marylyn M. Addo and César Muñoz-Fontela
Viruses 2020, 12(9), 915; https://doi.org/10.3390/v12090915 - 20 Aug 2020
Cited by 16 | Viewed by 5340
Abstract
The last seven years have seen the greatest surge of Ebola virus disease (EVD) cases in equatorial Africa, including the 2013–2016 epidemic in West Africa and the recent epidemics in the Democratic Republic of Congo (DRC). The vaccine clinical trials that took place [...] Read more.
The last seven years have seen the greatest surge of Ebola virus disease (EVD) cases in equatorial Africa, including the 2013–2016 epidemic in West Africa and the recent epidemics in the Democratic Republic of Congo (DRC). The vaccine clinical trials that took place in West Africa and the DRC, as well as follow-up studies in collaboration with EVD survivor communities, have for the first time allowed researchers to compare immune memory induced by natural infection and vaccination. These comparisons may be relevant to evaluate the putative effectiveness of vaccines and candidate medical countermeasures such as convalescent plasma transfer. In this study, we compared the long-term functionality of anti-EBOV glycoprotein (GP) antibodies from EVD survivors with that from volunteers who received the recombinant vesicular stomatitis virus vectored vaccine (rVSV-ZEBOV) during the Phase I clinical trial in Hamburg. Our study highlights important differences between EBOV vaccination and natural infection and provides a framework for comparison with other vaccine candidates. Full article
(This article belongs to the Collection Advances in Ebolavirus, Marburgvirus, and Cuevavirus Research)
Show Figures

Figure 1

Back to TopTop