Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Yilong lake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1610 KB  
Article
Vegetation Restoration in Karst Southwest China: Effects of Plant Community Diversity and Soil Physicochemical Properties on Soil Cadmium
by Yun Xing, Lin Zhang, Zhuoyi Mei, Xiuwen Wang, Chao Li, Zuran Li and Yuan Li
Toxics 2026, 14(1), 102; https://doi.org/10.3390/toxics14010102 (registering DOI) - 21 Jan 2026
Abstract
In southwest China, vegetation restoration is widely used in karst rocky desertification control projects. However, mechanistic evidence explaining how plant community composition and species diversity regulate cadmium (Cd) bioavailability remains limited. Here, the plant community’s species diversity, soil properties, Cd, and available Cd [...] Read more.
In southwest China, vegetation restoration is widely used in karst rocky desertification control projects. However, mechanistic evidence explaining how plant community composition and species diversity regulate cadmium (Cd) bioavailability remains limited. Here, the plant community’s species diversity, soil properties, Cd, and available Cd contents were evaluated. Four plant community types, NR (natural recovery), PMC (Pistacia weinmannifolia + Medicago sativa + Chrysopogon zizanioides), and PME (Pistacia weinmannifolia + Medicago sativa + Eragrostis curvula), were selected as the research objects. The species composition was recorded, and dominant plant species and soil samples were collected to analyze Cd accumulation characteristics. Relative to NR, composite restorations increased plant diversity and soil nutrient availability and reduced soil compaction, with PMC showing the strongest remediation, decreasing total Cd by 49.4% and available Cd by 59.5%. Model-averaged regression and hierarchical partitioning analyses further identified nitrogen availability and community structure as the dominant drivers. Specifically, available nitrogen (AN), vegetation coverage, Margalef species richness (DMG), ammonium nitrogen (NH4+–N), and total N (TN) were the main factors of soil total Cd, and BD, TN, nitrate nitrogen (NO3–N), mean crown diameter (MCD), and Shannon–Wiener index (H′) were the main factors of soil available Cd. The results indicate that PMC provides a plant community structure configuration decisions of a scalable, site-adaptable strategy for durable Cd stabilization and soil conservation in thin, carbonate-rich karst soils. Full article
(This article belongs to the Special Issue Plant Responses to Heavy Metal)
29 pages, 11331 KB  
Article
Socio-Ecological Coupling and Multifunctional Spatial Differentiation in Watershed Rural Systems: Toward Coordinated Development
by Yanjun Meng, Hui Zhai, Yuhong Xu, Bak Koon Teoh and Robert Lee Kong Tiong
Land 2026, 15(1), 194; https://doi.org/10.3390/land15010194 - 21 Jan 2026
Abstract
Socio-ecological systems in basin regions characterized by diverse cultural traditions and hierarchical village spatial structure are undergoing profound transformation driven by multifunctional demands and spatial restructuring. This study develops an analytical framework encompassing economic production, socio-cultural functions, and ecological potential to examine the [...] Read more.
Socio-ecological systems in basin regions characterized by diverse cultural traditions and hierarchical village spatial structure are undergoing profound transformation driven by multifunctional demands and spatial restructuring. This study develops an analytical framework encompassing economic production, socio-cultural functions, and ecological potential to examine the spatial differentiation and socio-ecological coupling mechanisms within the Yilong Lake Basin, Yunnan Province. Through the entropy weighting method and a coupling coordination model, the framework evaluates the “lake–mountain–village” gradient of spatial differentiation. The results indicate that: (1) the overall coordination level of multifunctional systems in the region remains relatively low, exhibiting a decreasing trend from lakeshore to the mountain periphery; (2) village-level dependencies of spatial functions can be summarized into three coupling categories—associated with institutional embedding, self-organization, and value mismatch—revealing distinct socio-ecological interaction patterns; and (3) three coupling categories correspond to three differentiated governance pathways, namely coupling optimization, functional transition, and conflict mitigation. The study advances theoretical and methodological insights into the spatial differentiation and evolution of complex village systems, highlighting the nonlinear coexistence of interdependence and constraint among economic, social, and ecological functions. It further provides practical guidance for coordinated governance and sustainable spatial planning in similar rural and basin environments worldwide. Full article
(This article belongs to the Special Issue Human–Land Coupling in Watersheds and Sustainable Development)
18 pages, 5573 KB  
Article
Assessing the Impact of Land Use and Landscape Patterns on Water Quality in Yilong Lake Basin (1993–2023)
by Yue Huang, Ronggui Wang, Jie Li and Yuhan Jiang
Water 2026, 18(1), 30; https://doi.org/10.3390/w18010030 - 22 Dec 2025
Viewed by 562
Abstract
To investigate the influence of land use landscape patterns on lake water quality in the basin, the land use and water quality data of the Yilong Lake Basin from 1993 to 2023 were analyzed with a geographic information system, remote sensing, and landscape [...] Read more.
To investigate the influence of land use landscape patterns on lake water quality in the basin, the land use and water quality data of the Yilong Lake Basin from 1993 to 2023 were analyzed with a geographic information system, remote sensing, and landscape ecology methods in this research. The results show that (1) the land use landscape pattern and water quality of the Yilong Lake Basin had significant changes: the lake surface area, farmland, and shrubland declined, with grassland showing the sharpest decrease and serving as the main source of conversion to other land types, while forest land expanded and built-up land increased by five times. The landscape pattern analysis showed that the aggregation degree of the core habitat in the basin increased and the landscape had decreased patch density and increased heterogeneity. Regarding water quality, the concentrations of total nitrogen (TN), total phosphorus (TP), and ammonium nitrogen (NH4+-N); permanganate index (IMn); and biochemical oxygen demand over 5 days (BOD5) decreased. Furthermore, the concentration of dissolved oxygen (DO) increased and the concentration of chlorophyll-a (Chl-a) fluctuated for a long time but did not decrease dramatically at the end of the period compared with the beginning. In general, the eutrophication degree of Yilong Lake slightly decreased. (2) The landscape configuration strongly shaped the water quality: the redundancy analysis (RDA) revealed that the edge density (ED), landscape shape index (LSI), largest patch index (LPI), and patch density (PD) were negatively associated with the eutrophication of Yilong Lake (TN, TP, NH4+-N, Chl-a), whereas the contagion index (CONTAG) was positively associated; the Shannon’s diversity index (SHDI) was closely linked with TN and IMn but negatively with DO; and the patch cohesion index (COHESION) had a low interpretation power for water quality changes. In particular, larger and more cohesive ecological patches supported a higher DO, while an increased patch density was linked to an elevated IMn and reduced DO. These results indicate that the restoration of key ecological patches and enhanced landscape cohesion helped to improve the water quality, whereas increased patch density and landscape heterogeneity negatively affected it. (3) In the past 30 years, the ecological management and protection work on Yilong Lake, such as returning farmland to forests and lakes, wetland restoration, and sewage pipe network construction, achieved remarkable results that were reflected in the change in the relationship between land use landscape pattern and water quality in the basin. However, human activities still affected the dynamic evolution of water quality: the expansion of built-up land increased the patch density, the reduction in shrubland and grassland weakened natural filtration, and the rapid urbanization process introduced more pollution sources. Although the increase in forest land helped to improve the water quality, the effect was not fully developed. These findings provide a scientific basis for the management and ecological restoration of plateau lakes. Strengthening land use planning, controlling urban expansion, and maintaining ecological patches are essential for sustaining water quality and promoting the coordinated development of the ecology and economy in the Yilong Lake Basin. Full article
(This article belongs to the Special Issue Advances in Plateau Lake Water Quality and Eutrophication)
Show Figures

Figure 1

27 pages, 10572 KB  
Article
Temporal Hydrological Responses to Progressive Land Cover Changes and Climate Trends in a Plateau Lake Basin in Southwest China
by Zhengduo Bao, Yuxuan Wu, Weining He, Nian She, Hua Shao and Chao Fan
Water 2025, 17(13), 1890; https://doi.org/10.3390/w17131890 - 25 Jun 2025
Viewed by 834
Abstract
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change [...] Read more.
The reducing streamflow is a major concern in the Yilong Lake Basin (YLB), which supplies water for agriculture and the growing population in the basin and to maintain the health of the regional ecosystem. The YLB has experienced remarkable land use/land cover change (LUCC) and climate change (CC) in recent years. To understand the drivers of the streamflow change in this basin, the effects of the land use change and climate variation on the temporal flow variability were studied using the Soil and Water Assessment Tool (SWAT). The calibration and validation results indicated that the SWAT simulated the streamflow well. Then the streamflow responses to the land use change between 2010 and 2020 and climate change with future climate projections (SSP245, SSP370, and SSP585) were evaluated. Results showed that the LUCC in the YLB caused a marginal decline in the annual streamflow at the whole basin scale but significantly altered rainfall–runoff relationships and intra-annual discharge patterns; e.g., monthly streamflows decreased by up to 3% in the dry season under the surface modification, with subbasins of the YLB exhibiting divergent responses attributed to spatial heterogeneity in land surface transitions. Under future climate scenarios, streamflow projections revealed general declining trends with significant uncertainties, particularly under high-emission pathways, e.g., SSP370 and SSP585, in which the streamflow could be projected to reduce by up to 5.9% in the mid-future (2031–2045). In addition, droughts were expected to intensify, exacerbating seasonal water stress in the future. It suggests that integrated water governance should synergize climate-resilient land use policies with adaptive infrastructure to address regional water resources challenges. Full article
Show Figures

Figure 1

20 pages, 7207 KB  
Article
Multi-Source Remote Sensing Analysis of Yilong Lake’s Surface Water Dynamics (1965–2022): A Temporal and Spatial Investigation
by Ningying Bao, Weifeng Song, Jiangang Ma and Ya Chu
Water 2024, 16(14), 2058; https://doi.org/10.3390/w16142058 - 20 Jul 2024
Cited by 1 | Viewed by 1744
Abstract
With the acceleration of global warming and the intensification of anthropogenic activities, numerous lakes worldwide are experiencing reductions in their water surface areas. Yilong Lake, a typical shallow plateau lake located on the Yunnan–Guizhou Plateau in China, serves as a crucial water resource [...] Read more.
With the acceleration of global warming and the intensification of anthropogenic activities, numerous lakes worldwide are experiencing reductions in their water surface areas. Yilong Lake, a typical shallow plateau lake located on the Yunnan–Guizhou Plateau in China, serves as a crucial water resource for local human production, daily life, and ecosystem services. Hence, long-term comprehensive monitoring of its dynamic changes is essential for its effective protection. However, previous studies have predominantly utilized remote sensing data with limited temporal resolution, thus failing to reflect the long-term variations in Yilong Lake’s water body. This study employs high temporal resolution monitoring, utilizing multi-source satellite data (e.g., KeyHole, Landsat, HJ-1 A/B) images spanning from 1965 to 2022 to investigate the changes in Yilong Lake’s surface area, analyzing the influencing factors and ecological impacts of these changes. The results indicate that from 1965 to 2022, Yilong Lake’s water surface area decreased by 8.33 km2, with a maximum surface area of 40.49 km2 on 7 January 1986, and a minimum surface area of 10.64 km2 on 20 April 2013. These changes are characterized by three significant phases: (1) a rapid shrinking phase (1965–1979); (2) a fluctuating shrinking period (1986–2016); and (3) an expanding recovery phase (2016–2022). Spatially, the most significant shrinkage was observed along the southern and southwestern shores of the lake. The driving factors varied across different periods: sunshine duration was the dominant influence during the rapid shrinking phase (1965–1979), accounting for 82% of the changes; population and cropland area were the main drive factors during the fluctuating shrinking period (1986–2016), accounting for 56% of the changes; and during the expanding recovery phase (2016–2022), the population accounted for 75% of the changes in the lake’s surface area. Currently, the protection of Yilong Lake depends on water supplementation and strict regulation of outflow, resulting in the lake exhibiting characteristics similar to a reservoir. This long-term investigation provides baseline information for future lake monitoring. Our research findings can also guide decision-makers in urban water resource management and environmental protection, ensuring the scientific and rational use of watershed water resources, effectively curbing the shrinkage of Yilong Lake, and achieving long-term sustainable restoration of the lake’s ecology. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

15 pages, 7674 KB  
Article
A Comparative Study on the Removal of Microcystis and Cylindrospermopsis Blooms in Two Lakes by Flocculation–Filtration Treatment
by Cheng Zhou, Sisi Deng, Lei Xu, Xiang Liu, Chunbo Wang and Junjun Chang
Environments 2024, 11(1), 3; https://doi.org/10.3390/environments11010003 - 20 Dec 2023
Viewed by 2524
Abstract
Dianchi Lake and Yilong Lake, two prominent plateau lakes in Yunnan Province, China, have suffered from Microcystis and Cylindrospermopsis blooms for decades. While cyanobacteria harvest boats utilizing cationic polyacrylamide (CPAM) flocculation and screen filtration have been proven effective for harvesting Microcystis biomass in [...] Read more.
Dianchi Lake and Yilong Lake, two prominent plateau lakes in Yunnan Province, China, have suffered from Microcystis and Cylindrospermopsis blooms for decades. While cyanobacteria harvest boats utilizing cationic polyacrylamide (CPAM) flocculation and screen filtration have been proven effective for harvesting Microcystis biomass in Dianchi Lake, they struggle against Cylindrospermopsis blooms in Yilong Lake. This study systematically compared the removal of Microcystis and Cylindrospermopsis blooms using flocculation–filtration treatment, aiming to identify key factors influencing flocculation and propose enhancements to improve treatment efficiency for Cylindrospermopsis blooms. The reduction of turbidity, OD680, biovolume and phytoplankton density all revealed significantly better treatment efficiency for Microcystis blooms compared to Cylindrospermopsis blooms. In Dianchi Lake, 1 mg/L CPAM achieved a 95% turbidity reduction, while in Yilong Lake, even with 4.0 mg/L CPAM, the removal efficiency remained below 90%. Post-treatment, Dianchi Lake’s water quality showed substantial improvements, including over 50% reductions in total nitrogen, total phosphorus, permanganate index, and chemical oxygen demand. Conversely, nutrient level reductions were limited in Yilong Lake’s treated water. The average molecular weight of dissolved organic matters (DOM) in Yilong Lake was notably smaller than in Dianchi Lake. The treatment selectively removed high molecular weight, microbial-sourced, and protein-like DOM components, leading to a decrease in average molecular weight and an increase in humification index (HIX) in both lakes. Excessive humic matters in the water of Yilong Lake was found to hamper algae flocculation significantly. Introducing additional acidic polysaccharides or oxidants emerged as potential strategies to enhance Yilong Lake’s treatment efficiency. Full article
Show Figures

Figure 1

22 pages, 869 KB  
Article
Does Livelihood Determine Attitude? The Impact of Farmers’ Livelihood Capital on the Performance of Agricultural Non-Point Source Pollution Management: An Empirical Investigation in Yilong Lake Basin, China
by Ning Zhou, Fanglei Zhong and Yanjie Yin
Agriculture 2023, 13(5), 1036; https://doi.org/10.3390/agriculture13051036 - 10 May 2023
Cited by 2 | Viewed by 2759
Abstract
Agricultural non-point source pollution is intricately connected to the rural population’s production and lifestyle. The heterogeneous composition of livelihood capital results in varied livelihood types, influencing the farmers’ attitudes and perceptions of the treatment projects. This ultimately causes discrepancies in the farmers’ evaluation [...] Read more.
Agricultural non-point source pollution is intricately connected to the rural population’s production and lifestyle. The heterogeneous composition of livelihood capital results in varied livelihood types, influencing the farmers’ attitudes and perceptions of the treatment projects. This ultimately causes discrepancies in the farmers’ evaluation of agricultural non-point source pollution control. In this study, a participatory evaluation method was employed to evaluate the performance of agricultural non-point source pollution control projects in the Yilong Lake Watershed of Yunnan Province and analyze the underlying reasons for the differing performance evaluations. The findings revealed that pure farmers’ performance evaluation value for agricultural non-point source pollution control projects in Yilong Lake Basin was 0.4811 (with the full mark being 1), with a general evaluation grade. Part-time business households had a performance evaluation value of 0.5969, also with a general evaluation grade, while non-farmers had a performance evaluation value of 0.7057, with a good evaluation grade. The performance evaluation value ranked from highest to lowest is non-farmer > part-time farmer > pure farmer. The main factor affecting the variation in farmers’ performance evaluation is the key index of different livelihood capital. If pollution control projects can promote the adjustment of farmers’ livelihood capital types, it can enhance not only the performance evaluation degree of farmers, but also the sustainability of farmers’ livelihoods and increase their adaptability to livelihood risks. Therefore, pollution control projects should consider farmers’ livelihood capital types and be implemented accurately to improve farmers’ satisfaction and sustainability. Full article
(This article belongs to the Special Issue Agricultural Environmental Pollution, Risk Assessment, and Control)
Show Figures

Figure 1

15 pages, 2790 KB  
Article
Centennial Lake Environmental Evolution Reflected by Diatoms in Yilong Lake, Yunnan Province, China
by Yue Huang, Ruiwen Ma, Hongbo Shi, Jie Li and Shuyu Tu
Appl. Sci. 2023, 13(9), 5288; https://doi.org/10.3390/app13095288 - 23 Apr 2023
Cited by 5 | Viewed by 2508
Abstract
The 64 cm sediment diatoms, representing a timescale from 1938 to 2020 A.D., were analyzed to reconstruct the evolutionary history of Yilong Lake in Yunnan Province, China. Some main diatoms with important environmental indicating significance were selected through Principal Component Analysis (PCA). In [...] Read more.
The 64 cm sediment diatoms, representing a timescale from 1938 to 2020 A.D., were analyzed to reconstruct the evolutionary history of Yilong Lake in Yunnan Province, China. Some main diatoms with important environmental indicating significance were selected through Principal Component Analysis (PCA). In addition, their ecological affinities indicated that the PCA sample scores 1 and 2, which were the main factors affecting the environmental change of Yilong Lake, corresponded to pH value and eutrophication, respectively. According to the pH value and the eutrophication data obtained from the PCA, the lake had successively gone through six major stages. Though high pH value and eutrophication had been the main characteristics for a long time, the quality of Yilong Lake was gradually improved through planned treatment in the last decades. The drying up of the lake under natural conditions resulted in an increase in pH values and high eutrophication. Meanwhile, the impact of human activities played a more important role in lake evolution: unreasonable human development in lake basins led to abnormal changes in pH values and eutrophication, and planned and targeted treatment could restore the natural state of the lake. Full article
(This article belongs to the Special Issue Lake Processes under Climate Change and Human Activities)
Show Figures

Figure 1

14 pages, 3361 KB  
Article
Seasonal Water Quality Changes and the Eutrophication of Lake Yilong in Southwest China
by Qingyu Sui, Lizeng Duan, Yang Zhang, Xiaonan Zhang, Qi Liu and Hucai Zhang
Water 2022, 14(21), 3385; https://doi.org/10.3390/w14213385 - 25 Oct 2022
Cited by 17 | Viewed by 4630
Abstract
To better understand the seasonal variation characteristics and trend of water quality in Lake Yilong, we monitored water quality parameters and measured nutrients, including the water temperature (WT), Chlorophyll-a (Chl-a), dissolved oxygen (DO) and pH from September 2016 to May 2020, total nitrogen [...] Read more.
To better understand the seasonal variation characteristics and trend of water quality in Lake Yilong, we monitored water quality parameters and measured nutrients, including the water temperature (WT), Chlorophyll-a (Chl-a), dissolved oxygen (DO) and pH from September 2016 to May 2020, total nitrogen (TN) and total phosphorus (TP) from October 2016 to August 2018. The results showed that the lake water was well mixed, resulting in no significant thermal stratification. The DO content was decreased in the northwest part of the lake during September and October, resulting in a hypoxic condition. It also varied at different locations of the lake and showed a high heterogeneity and seasonal variability. The Chl-a concentration in Lake Yilong demonstrated seasonal and spatial changes. It was maximum at the center and southwest area of the lake in January. However, in the northwest part of the lake, the maximum value appeared in September and October. The content of TN in the rainy season increased by 75% compared with that in dry season and TP content show a downward trend (from 0.11 mg/L to 0.05 mg/L). The comprehensive nutrition index evaluation shows that the water quality of Lake Yilong in 2016 was middle eutrophic (TLI = 60.56), and that in 2017 (TLI = 56.05) and 2018 (TLI = 56.38) was weak eutrophic, showing that the nutritional status has improved. TN remained at a high level (2.15 ± 0.48 mg/L), water quality needs further improvement. Based on our monitoring and analysis, it is recommended that human activities in the watershed of the lake should be constrained and managed carefully to maintain the water quality of the lake and adopt effective water quality protection and ecological restoration strategies and measures to promote continuous improvement of water quality, for a sustainable social development. Full article
(This article belongs to the Special Issue Plateau Lake Water Quality and Eutrophication: Status and Challenges)
Show Figures

Figure 1

13 pages, 1995 KB  
Article
Analysis of Landscape Pattern Evolution and Driving Forces Based on Land-Use Changes: A Case Study of Yilong Lake Watershed on Yunnan-Guizhou Plateau
by Guoqiang Ma, Qiujie Li, Shuyu Yang, Rong Zhang, Lixun Zhang, Jianping Xiao and Guojun Sun
Land 2022, 11(8), 1276; https://doi.org/10.3390/land11081276 - 9 Aug 2022
Cited by 19 | Viewed by 3417
Abstract
In order to explore the landscape pattern evolution and driving forces of the Yilong Lake watershed, the combined method of supervised classification with manual visual interpretation based on the landsat5TM/8OLI remote sensing image data sources was used to establish a high-precision spatial distribution [...] Read more.
In order to explore the landscape pattern evolution and driving forces of the Yilong Lake watershed, the combined method of supervised classification with manual visual interpretation based on the landsat5TM/8OLI remote sensing image data sources was used to establish a high-precision spatial distribution information database of the Yilong Lake watershed. Landscape index was used to analyze the distribution and spatial pattern change characteristics of various land-use types. Based on correlation and principal component analysis, we discuss the relationship between the change characteristics of land-use type, distribution and spatial pattern, and the interference of local socio-economic development and natural factors. The results show that: (1) In the past 30 years, the land-use types of the Yilong Lake watershed are mainly forest, garden plot and cultivated land. The forest area decreased significantly by 30.45 km2, of which the fastest reduction stage was from 2000 to 2005, with a total reduction of 20.56 km2. The garden plot conversion is relatively large, with a total of 181.69 km2 transferred out, of which 28.84 km2 has become unused land, respectively. (2) In the past 30 years, the maximum patch index decreased by 9.94% and the patch density index increased by 14.25%, indicating that the landscape fragmentation in the whole basin increased. The Shannon diversity index showed an increasing process; the aggregation index showed a decreasing process. (3) The change in landscape pattern in the watershedwas closely related to economic growth, population growth, social affluence and agricultural development. Natural factors, social factors and economic indicators are significantly positively correlated with patch density, edge density, landscape shape index and Shannon diversity index, and significantly negatively correlated with the largest patch index and the contagion index. On the whole, the wetlands in the basin are shrinking and the landscape diversity is changing. Reducing the excessive impact of human activities on the watershed ecosystem is a key factor for the local protection of wetland resources and the maintenance of wetland ecological functions. Full article
(This article belongs to the Special Issue Urban Land Development in the Process of Urbanization)
Show Figures

Figure 1

12 pages, 2487 KB  
Article
Effects of Water Level Fluctuations on the Growth Characteristics and Community Succession of Submerged Macrophytes: A Case Study of Yilong Lake, China
by Fengbin Zhao, Xin Fang, Zeyu Zhao and Xiaoli Chai
Water 2021, 13(20), 2900; https://doi.org/10.3390/w13202900 - 15 Oct 2021
Cited by 19 | Viewed by 4983
Abstract
Water level fluctuation (WLF) has a significant effect on aquatic macrophytes, but few experimental studies have examined the effect of WLF on submerged community succession, especially from a large-scale perspective. In this study, field monitoring of WLF and submerged macrophytes was conducted in [...] Read more.
Water level fluctuation (WLF) has a significant effect on aquatic macrophytes, but few experimental studies have examined the effect of WLF on submerged community succession, especially from a large-scale perspective. In this study, field monitoring of WLF and submerged macrophytes was conducted in Yilong Lake (SE China) over two years, and the impacts of WLF on the growth characteristics and the community structure of submerged macrophytes were determined. The results show that the biomass of submerged macrophytes decreased significantly after the water level increased and submerged macrophytes could cope with the adverse environment by adjusting their growth posture, for example, increasing plant length and reducing branch number. However, different submerged plants have different regulatory abilities, which leads to a change in the community structure. Myriophyllum spicatum, Stuckenia pectinata, and Najas marina had better adaptation abilities to WLF than Najas minor and Utricularia vulgaris. Changes in water depth, dissolved oxygen, and transparency significantly contribute to the effect of WLF on submerged plant communities. Therefore, when determining the range of WLF, the above three critical factors and submerged plant species should be considered. WLF changed the spatial distribution of the aquatic plant community. When water levels rose, the density of the submerged macrophyte community in the original growth region reduced as the emergent plants migrated to shallower water, and the seed bank germination was aided by transparent water produced among emergent plants. This can be used as a pioneering measure to restore submerged plants in eutrophic lakes with low transparency. In addition, a suitable water depth created by WLF was conducive to activating the seed bank and improving the diversity of aquatic plants. Finally, a distribution map of aquatic plants in Yilong Lake is drawn. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

12 pages, 1568 KB  
Article
Identification of Regime Shifts and Their Potential Drivers in the Shallow Eutrophic Lake Yilong, Southwest China
by Lei Zhao, Mingguo Wang, Zhongyao Liang and Qichao Zhou
Sustainability 2020, 12(9), 3704; https://doi.org/10.3390/su12093704 - 3 May 2020
Cited by 15 | Viewed by 3361
Abstract
Regime shifts in shallow lakes can lead to great changes in ecosystem structures and functions, making ecosystem management more complicated. Lake Yilong, located in Yunnan Province, is one of the most eutrophic lakes in China. Although there is a high possibility that this [...] Read more.
Regime shifts in shallow lakes can lead to great changes in ecosystem structures and functions, making ecosystem management more complicated. Lake Yilong, located in Yunnan Province, is one of the most eutrophic lakes in China. Although there is a high possibility that this lake has undergone regime shift one or more times, the presence of regime shifts and their drivers remain unknown. Here, we employed the sequential t-test analysis of regime shifts to detect the regime shifts based on the long-term (1989–2018) dataset of the lake. We further determined their potential drivers, and explored the nutrient thresholds of regime shifts and hysteresis. The results showed that during the testing period, three regime shifts occurred in 1996 (restorative type), 2009 (catastrophic type) and 2014 (restorative type). The potential key drivers for the first two regime shifts (1996 and 2009) were both related to aquaculture. The abolition of cage fish culture may have led to the restorative regime shift in 1996, and the stocking of crabs and excessive premature releasing of fry possibly caused the catastrophic regime shift in 2009. However, the third regime shift, which occurred in 2014, was possibly related to the drought and succedent hydration. These results indicate that adjustments of aquaculture strategy and hydrological conditions are critical for the lake ecosystem’s recovery. Moreover, the total phosphorus thresholds were identified to be lower than 0.046 mg/L (restorative type) and higher than 0.105 mg/L (catastrophic type), respectively. In addition, an obvious hysteresis was observed after 2014, suggesting that nutrient reduction is important for this lake’s management in the future. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop