Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = Yangtze craton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 29045 KiB  
Article
Earliest Cambrian Carbonate Platform Evolution, Environmental Change, and Organic Matter Accumulation in the Northwestern Yangtze Block, South China
by Jincheng Liu, Qingchun Jiang, Yan Zhang, Jingjiang Liu, Yifei Ai, Pengzhen Duan and Guangyou Zhu
Minerals 2025, 15(8), 812; https://doi.org/10.3390/min15080812 - 31 Jul 2025
Viewed by 171
Abstract
The earliest Cambrian (ca., 538.8–524.8 Ma) was an important period in geological history witnessing significant environmental change, during which organic-rich facies were developed in the Yangtze Platform, South China. However, the contemporaneous paleogeographic and stratigraphic framework within which the environmental change and organic [...] Read more.
The earliest Cambrian (ca., 538.8–524.8 Ma) was an important period in geological history witnessing significant environmental change, during which organic-rich facies were developed in the Yangtze Platform, South China. However, the contemporaneous paleogeographic and stratigraphic framework within which the environmental change and organic matter accumulation took place remains poorly understood. We investigate this based on facies, sequence stratigraphic, and geochemical analyses of the lowermost Cambrian Maidiping and Zhujiaqing formations in the northwestern Yangtze Block. The results show that the terminal Ediacaran rimmed platform changed into a foredeep carbonate ramp and backbulge basin after the onset of the earliest Cambrian transgression. Across the Ediacaran–Cambrian boundary, the shallow-marine redox condition rapidly transitioned from relative euxinia to an oxygen-rich state. During the late transgression to highstand normal regression, the foredeep carbonate ramp expanded to the cratonic interior, and nutrients brought by intensified continental weathering and upwelling promoted significant phytoplankton proliferation, an increase in oxygen level and primary productivity, and then organic matter enrichment. During the forced regression, the carbonate ramp gradually changed into a rimmed platform. The weakening continental weathering and expanding anoxic area during the forced to lowstand normal regression led to the significant organic carbon burial in the foredeep basin. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

19 pages, 3459 KiB  
Article
Triassic Retrograde Metamorphism and Anatexis in the Sulu Orogenic Zone, Central China: Constraints from U–Pb Ages, Trace Elements, and Hf Isotopic Compositions of Zircon
by Yongkang Ye, Hengcong Lei, Fei Xia, Hui Zhang and Congjun Yu
Appl. Sci. 2025, 15(11), 6145; https://doi.org/10.3390/app15116145 - 29 May 2025
Viewed by 358
Abstract
We report information on the protolith, the Triassic retrograde metamorphism, and anatexis recorded in zircons extracted from granitic gneiss and biotite schist in the Sulu orogenic zone, central China. The schist is enclosed within the granitic gneiss in the form of a lens. [...] Read more.
We report information on the protolith, the Triassic retrograde metamorphism, and anatexis recorded in zircons extracted from granitic gneiss and biotite schist in the Sulu orogenic zone, central China. The schist is enclosed within the granitic gneiss in the form of a lens. Zircon grains from the schist sample indicate anatexis occurred at 214.6 ± 3.6 Ma (MSWD = 5.1), with εHf (t) values ranging from −22.6 to −18.3, corresponding to TDMC(Hf) ages between 2675 Ma and 2407 Ma. The granitic gneiss originated from magmatic rock formed at 774 ± 32 Ma (MSWD = 5.7) and subsequently underwent metamorphism at ~211 Ma. Three zircon cores from the granitic gneiss exhibit εHf (t) values ranging from −13.6 to −6.3, with TDM C(Hf) ages spanning 2487–2075 Ma. Six zircon rims from the gneiss yield εHf (t) values of −14.7 to −13.3, and TDM C(Hf) ages ranging from 2176 to 2092 Ma. We believe that the protolith of granitic gneiss is the Neoproterozoic magmatic rock, whose tectonic affinity is the northern margin of the Yangtze craton. The granitic gneiss experienced Triassic collisional orogeny-related metamorphism and subsequent retrograde metamorphism, with the timing of retrograde overprinting consistent with zircon-recorded anatexis in the schist. In addition, the protoliths of both the gneiss and schist exhibit close affinity to Archean-Paleoproterozoic crustal sources. Full article
Show Figures

Figure 1

22 pages, 6467 KiB  
Article
Integrated Geophysical Signatures of the Jiaodong Region in China and Their Implications for Deep Architecture and Gold Metallogenic Systems
by Haiyang Kuang, Jiayong Yan, Kun Zhang, Wenlong Tang, Chao Fu, Jiangang Liang, Guoli Zhang and Yuexin You
Minerals 2025, 15(4), 417; https://doi.org/10.3390/min15040417 - 17 Apr 2025
Cited by 1 | Viewed by 478
Abstract
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, [...] Read more.
The Jiaodong region ranks as the world’s third-largest gold metallogenic province, where Late Mesozoic gold mineralization exhibits close genetic connections with cratonic destruction and multi-stage plate tectonic interactions. This study systematically deciphers the deep-seated architecture and metallogenic controls through integrated analysis of gravity, aeromagnetic, and magnetotelluric datasets. The key findings demonstrate the following: (1) Bouguer gravity anomalies reveal a “two uplifts flanking a central depression” tectonic framework, reflecting superimposed effects from Yangtze Plate subduction and Pacific Plate rollback; (2) zoned aeromagnetic anomalies suggest that the Sanshandao–Jiaojia–Zhaoyuan–Pingdu Metallogenic Belt extends seaward with significant exploration potential; (3) magnetotelluric inversion identifies three lithosphere penetrating conductive zones, confirming the Jiaojia and Zhaoyuan–Pingdu faults as crust mantle fluid conduits, while the Taocun–Jimo fault marks the North China–Sulu Block boundary; and (4) metallogenic materials derive from hybrid sources of deep Yangtze Plate subduction and mantle upwelling, with gold enrichment controlled by intersections of NE-trending faults and EW-oriented basement folds. Integrated geophysical signatures indicate that the northwestern Jiaodong offshore area (north of Sanshandao) holds supergiant gold deposit potential. This research provides critical constraints for the craton destruction type gold mineralization model. Full article
Show Figures

Figure 1

23 pages, 7514 KiB  
Article
Origin and Implication of the Paoma Granite in the Western Yangtze Block, South China Craton
by Awei Mabi, Changhong Zhong, Yanlong Li, Niuben Yu, Bo Liu, Feifei Lv, Gang Li and Ping Gan
Minerals 2025, 15(2), 188; https://doi.org/10.3390/min15020188 - 18 Feb 2025
Viewed by 511
Abstract
The Meso- to Neoproterozoic magmatic rocks cropping out in the western Yangtze Block are pivotal to comprehending the tectonic-magmatic revolutionary processes of the South China Craton during the breakup and assembly of Rodinia. A combined study including a detailed geological survey, systemic measurement [...] Read more.
The Meso- to Neoproterozoic magmatic rocks cropping out in the western Yangtze Block are pivotal to comprehending the tectonic-magmatic revolutionary processes of the South China Craton during the breakup and assembly of Rodinia. A combined study including a detailed geological survey, systemic measurement of the geological section, petrographic observations, geochronology, and elemental geochemistry was carried out on the southern margin of the Paoma granitic pluton in SW China. The obtained data of major elements, along with the mineralogy that includes aluminosilicate minerals, indicate that the studied 825.7 ± 6.0 Ma Paoma granites are peraluminous, which is consistent with an affinity with S-type granites. They show seagull-shaped chondrite-normalized REE patterns with strongly negative Eu anomalies. They are enriched in LRREs and Large Ion Lithophile Elements but are depleted in High Field Strength Elements, with strongly negative Nb, Sr, P, and Ti anomalies. We conclude that the Paoma granite magma originated from the partial melting of clay-rich mudstone from the upper crust. The geochemical data of Paoma granite, integrated with the regional geological context, are consistent with a tectonic setting involving a fossil ridge subduction. The 825.7 Ma Paoma granite, along with the 830 Ma Guandaoshan gabbros showing N-MORB geochemical signatures, defines an east-west trending Neoproterozoic “slab window” in the WYB. Full article
Show Figures

Figure 1

21 pages, 7653 KiB  
Article
The Geochemical Characteristics of Zircon and K-Feldspar Grains from the Lower Yellow and Yangtze Rivers: Implications for Provenance Tracing Studies in the Western Pacific Ocean
by Shumei Tian, Kaige Guan, Xu Lin, Haijin Liu and Yang Zhang
Minerals 2025, 15(2), 121; https://doi.org/10.3390/min15020121 - 26 Jan 2025
Viewed by 579
Abstract
The Yellow River (~5464 km) and the Yangtze River (~6300 km) are large rivers that originate from the Tibetan Plateau and flow into the western Pacific Ocean. The shelf seas of the western Pacific Ocean (e.g., Bohai, Yellow, and East China seas) serve [...] Read more.
The Yellow River (~5464 km) and the Yangtze River (~6300 km) are large rivers that originate from the Tibetan Plateau and flow into the western Pacific Ocean. The shelf seas of the western Pacific Ocean (e.g., Bohai, Yellow, and East China seas) serve as critical sites for investigating the evolution of these rivers. Distinguishing the material signals of the Yellow River from those of the Yangtze River is an essential step in this research. Therefore, we analyzed published zircon U-Pb ages (n = 1568 for the Yellow River and n = 1216 for the Yangtze River) and K-feldspar Pb isotopes (n = 380 for the Yellow River and n = 158 for the Yangtze River) from the middle and lower reaches of both rivers. The results indicate that the detrital material in the lower reaches of the Yellow River is primarily influenced by the western North China Craton and the Qinling Mountains, whereas the detrital material in the lower reaches of the Yangtze River mainly derives from the South China Block. The Qinling Mountains influence the material composition of the lower Yellow River, primarily due to the formation of overhanging rivers along the river’s course. These geological features inhibit the inflow of materials from the eastern North China Craton, thereby preventing the mixing from the Qinling Mountains. In contrast, the influence of the Qinling Mountains on the material composition of the lower Yangtze River is minimal. This limited impact is attributed to the influx of materials from the South China Block, which dilutes the contributions from the Qinling Mountains. Notably, substantial discrepancies exist in the U-Pb ages and Pb isotopic compositions of detrital zircons and K-feldspar from the lower Yellow River compared to those from the lower Yangtze River and the surrounding geological units. These disparities provide a robust foundation for investigating large river provenance tracing in the western Pacific Ocean shelf sea through the integration of these two analytical methods. However, the U-Pb age distributions of detrital zircons in the lower Yellow River have changed significantly over geological time. The U-Pb age data for detrital zircons collected from the eastern Sanmen Gorge of the middle Yellow River should be utilized to examine river evolution prior to the Quaternary period. Conversely, the U-Pb data from detrital zircons in the lower Yellow and the Yiluo rivers should be considered when discussing Quaternary river evolution. The zircon U-Pb age characteristics of the lower Yangtze River can be directly employed to analyze the evolution of large rivers in the western Pacific Ocean shelf sea during the Neogene. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 10810 KiB  
Article
Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes
by Zhiwei Qiu, Zhenju Zhou, Nan Qi, Pocheng Huang, Junming Yao, Yantao Feng and Yanjing Chen
Minerals 2024, 14(11), 1173; https://doi.org/10.3390/min14111173 - 19 Nov 2024
Cited by 1 | Viewed by 967
Abstract
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages [...] Read more.
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages of 150.1 ± 1.3 Ma and 151.0 ± 1.1 Ma for the monzogranite and 148.1 ± 1.0 Ma and 148.5 ± 1.3 Ma for the syenogranite. The pluton is characterized by geochemical features of high silicon, metaluminous, and high-K calc-alkaline compositions, enriched in Rb, U, Th, and Pb, and exhibits high Sr/Y (18.53–58.82), high (La/Yb)N (9.01–35.51), and weak Eu anomalies. These features indicate a source region from a thickened lower crust with garnet and rutile as residual phases at depths of approximately 40–60 km. Sr-Nd-Pb isotopic analyses suggest that the magmatic source is mainly derived from the Taihua and Xiong’er Groups of the Huaxiong Block, mixed with juvenile crustal rocks from the Kuanping and Erlangping Groups of the North Qinling Accretion Belt. Combined with geological and isotopic characteristics, it is concluded that the Shibaogou pluton formed during the compression–extension transition period associated with the collision between the Yangtze Block and the North China Craton, reflecting the complex partial melting processes in the thickened lower crust. The present study reveals that the magmatic–hydrothermal activity at Shibaogou lasted approximately 5 Ma, showing multi-phase characteristics, further demonstrating the close relationship between the pluton and the Mo-W mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 8969 KiB  
Article
Petrogenesis and Geodynamic Mechanisms of Porphyry Copper Deposits in a Collisional Setting: A Case from an Oligocene Porphyry Cu (Au) Deposit in Western Yangtze Craton, SW China
by Mimi Yang, Xingyuan Li, Guoxiang Chi, Hao Song, Zhengqi Xu and Fufeng Zhao
Minerals 2024, 14(9), 874; https://doi.org/10.3390/min14090874 - 27 Aug 2024
Viewed by 1463
Abstract
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing [...] Read more.
The Xifanping deposit is a distinct Cenozoic porphyry Cu (Au) deposit located in the Sanjing porphyry metallogenic belt 100–150 km east of the JinshajFiang fault in the western Yangtze craton. We present new zircon U–Pb–Lu–Hf isotopic studies and geochemical data of the ore-bearing quartz monzonite porphyry from the Xifanping deposit to determine their petrogenesis and geodynamic mechanisms. LA–ICP–MS zircon U–Pb dating yielded precise emplacement ages of 31.87 ± 0.41 Ma (MSWD = 0.86) and 32.24 ± 0.61 Ma (MSWD = 1.8) for quartz monzonite porphyry intrusions, and 254.9 ± 5.1 Ma (MSWD = 1.7) for inherited zircons of the monzonite porphyry. The ore-bearing monzonite porphyry is characterized by high-K calc–alkaline to shoshonite and peraluminous series, relatively enriched in light over heavy REEs, with no distinct Eu anomalies, as well as enrichment in LILEs and depletion of HFSEs, with adakitic affinities. The zircon Lu–Hf isotope data ranged from εHf(t) values of −2.94 to +3.68 (average −0.47) with crustal model (TDM2) ages ranging from 0.88 to 1.30 Ga, whereas the inherited zircons displayed positive εHf(t) values ranging from +1.83 to +7.98 (average +5.82), with crustal model (TDM2) ages ranging from 0.77 to 1.17 Ga. Results suggest that the Xifanping porphyry Cu (Au) deposit is related to two periods of magmatic activities. Early magmas were generated from the Paleo-Tethys oceanic subduction during the Late Permian. The subsequent porphyry magma was likely formed by the remelting of previously subduction-modified arc lithosphere, triggered by the continental collision between the Indian and Asian plates in the Cenozoic. The deep magmas and late hydrothermal fluids took advantage of the early magma transport channels along tectonically weak zones during the transition from an extrusive to an extensional–tensional tectonic environment. Early dikes from remelted and assimilated crust contributed to the two age ranges observed in the porphyry intrusions from the Xifanping deposit. The juvenile lower crust materials of the early magmatic arc were potential sources of the Cenozoic porphyry magmas, which has significant implications for mineral exploration and the geological understanding of porphyry Cu deposits in this region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

30 pages, 12450 KiB  
Article
The Early Neoproterozoic Andean-Type Orogenic and Within-Plate Magmatic Events in the Northern Margin of the Yangtze Craton during the Convergence of the Rodinia Supercontinent
by Yunxu Wei, Haiquan Li, Wenxiao Zhou, Changqian Ma, Ernest Chi Fru, Daliang Xu, Xin Deng, Mantang Tan, Xiaoming Zhao, Yang Xu and Hao Liu
Minerals 2024, 14(8), 820; https://doi.org/10.3390/min14080820 - 13 Aug 2024
Cited by 1 | Viewed by 1353
Abstract
Although considered a crucial component of the Rodinia supercontinent, it remains uncertain how the Yangtze craton relates to the accretion and breakup of Rodinia. Here, the Huanglingmiao granitic complex (HGC), an intermediate-acid rock series that intruded on the southern Kongling terrane of the [...] Read more.
Although considered a crucial component of the Rodinia supercontinent, it remains uncertain how the Yangtze craton relates to the accretion and breakup of Rodinia. Here, the Huanglingmiao granitic complex (HGC), an intermediate-acid rock series that intruded on the southern Kongling terrane of the northern Yangtze craton margin, is investigated to help resolve this conundrum. Our analysis indicates that these rocks consist of tonalite, trondhjemite, granodiorite, oligoporphyritic granodiorite, porphyric biotite granodiorite, and fine- to medium-grained granodiorite dyke compositions. Collectively, this assemblage is further subdivided into two categories by their temporal, spatial, and geochemical features into early TTG-like and later granitic–dioritic units, which are composed of tonalite, trondhjemite, granodiorite, porphyritic granodiorite, and the fine- to medium-grained granodiorite dykes, respectively. Zircon U-Pb dating yields ages of 865~850 Ma for the TTG-like rocks, 844~825 Ma for the porphyritic granodiorites, and ~800 Ma for the granodiorite dykes. Combined with geochemical evidence, the data suggest that the early- and late-series rocks were formed by a partial melting of Mesoproterozoic and Paleoproterozoic crustal materials, respectively, suggesting that the vertical layering of the crust controlled the composition of the independent units. In addition, isotopic evidence points to different sources for the various rocks in the Kongling terrane and that mantle-derived materials influenced the early-series lithologies. Combined with previous studies on the northern margin of the Yangtze craton, it is inferred that the early-series rocks formed in an active continental margin environment, while the late-series rocks display within-plate boundary formation characteristics. The multiple magmatic activities revealed by this study record sequential partial melting with tectonic transition characteristics from an Andean-type to within-plate magmatism in the northern margin of the Yangtze craton. Taken together, these observations point to a strong association between these rocks, convergence, and incorporation of the northern Yangtze craton margin into the Rodinia supercontinent during the Tonian Period. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 9935 KiB  
Article
Insights from Dikes for Multistage Granitic Magmatism in the Huayangchuan Uranium Polymetallic Deposit, Qinling Orogen
by Wenyi Wang, Shuang Tan, Jianjun Wan, Xuelian Hu, Haoyang Peng and Chengdong Liu
Minerals 2024, 14(3), 261; https://doi.org/10.3390/min14030261 - 29 Feb 2024
Cited by 1 | Viewed by 1472
Abstract
The Huayangchuan U-polymetallic deposit in the Qinling Orogen is a newly verified carbonatite-hosted deposit on the southern margin of the North China Craton (NCC) in Central China. Granitic magmatism is extensively developed in the Huayangchuan deposit area and is lacking analysis on the [...] Read more.
The Huayangchuan U-polymetallic deposit in the Qinling Orogen is a newly verified carbonatite-hosted deposit on the southern margin of the North China Craton (NCC) in Central China. Granitic magmatism is extensively developed in the Huayangchuan deposit area and is lacking analysis on the reasons for these situations; however, its ages, petrogenesis, and relationship with uranium mineralization are not well constrained. Zircon U–Pb ages for the hornblende-bearing granite porphyry and medium-fine-grained biotite granites in close proximity to carbonatite rocks are 229.8 ± 1.1 and 135.3 ± 0.6 Ma, respectively. High-K calc-alkaline series and weakly peraluminous Triassic hornblende-bearing granite porphyry are slightly enriched in light rare earth elements (LREE) with flat heavy rare earth element (HREE) patterns, enriched in Ba and Sr, and depleted in Nb, Ta, P, and Ti, i.e., geochemical characteristics similar to those of adakite-like rocks. The Early Cretaceous medium-fine-grained biotite granites are characterized by LREE enrichment and flat HREE patterns, which belong to high-K calc-alkaline series, and metaluminous belong to weakly peraluminous I-type granite, with U and large ion lithophile element (LILE) enrichment and high field strength element depletion. The high initial 87Sr/86Sr ratios and enriched Nd (εNd(t) = −10.7 to −9.5 and −19.9 to −18.9, respectively) and Hf (εHf(t) = −21.8 to −13.0 and −30.5 to −19.0, respectively) isotopes revealed that both granitic rocks from the Huayangchuan deposit mainly originated from lower crustal materials, generated by partial melting of the ancient basement materials of the Taihua Group. Triassic hornblende-bearing granite porphyry is significantly different from the mantle origin of the contemporaneous U-mineralization carbonatite. In combination with tectonic evolution, we argue that the Qinling Orogenic Belt was affected by the subduction of the North Mianlian Ocean during the Late Triassic. The ongoing northward subduction of the Yangtze Craton resulted in crustal thickening, forming large-scale Indosinian carbonatites, U-polymetallic mineralization, and contemporaneous intermediate-acid magmatism. Additionally, due to the tectonic system transformation caused by Paleo-Pacific Plate subduction, intracontinental lithosphere extension and lithospheric thinning occurred along the southern NCC margin in the Early Cretaceous. Intense magma underplating of the post-orogeny created a large number of magmatic rocks. The tremendous heat could have provided a thermal source and dynamic mechanism for the Yanshanian large-scale U-polymetallic mineralization events. Full article
(This article belongs to the Special Issue Advances in Uranium Metallogenic Theory, Exploration and Exploitation)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
U–Pb Dating of Fibrous Dolomite in the Hydrothermal Dolostone of the Dengying Formation, Central Sichuan Basin, and Its Response to Supercontinent Breakup
by Jiang Zheng, Long Wen, Yuhui Ge, Gang Zhou, Ya Zhang, Wei Yan, Huan Jiang, Zili Zhang and Aihua Xi
Minerals 2023, 13(10), 1353; https://doi.org/10.3390/min13101353 - 23 Oct 2023
Cited by 3 | Viewed by 1842
Abstract
Super-deep drilling in the central Sichuan Basin encountered volcanic rocks of the Suxiong Formation, which are overlain by multiple hydrothermal alterations within the upper section of the Ediacaran Dengying Formation. This provides an excellent research opportunity to understand the pre-Cambrian hydrothermal activity and [...] Read more.
Super-deep drilling in the central Sichuan Basin encountered volcanic rocks of the Suxiong Formation, which are overlain by multiple hydrothermal alterations within the upper section of the Ediacaran Dengying Formation. This provides an excellent research opportunity to understand the pre-Cambrian hydrothermal activity and geological evolution of the western margin of the Yangtze Craton. Observations revealed the development of a series of hydrothermal dolomite aggregates characterized by the presence of brown sphalerite within fractures and pores of the carbonate rock. Microscopically, the dolomite exhibited fibrous columnar crystallization, forming radial bands with a gradual decrease in crystallization intensity from the center to the periphery. Cathodoluminescence analysis revealed the presence of approximately eight dolomite bands within the aggregate. U–Pb dating from the inner to outer bands yielded isotopic ages of 781 ± 12 Ma for the second band, 683 ± 12 Ma for the fifth, 562 ± 12 Ma for the sixth, and 545.4 ± 6.9 Ma for the seventh. The in situ rare earth element (REE) distribution patterns of the 781 and 683 Ma dolomite bands exhibited similarities. They both showed low total REE content (∑REE), with significant fractionation between light and heavy REEs. Additionally, they exhibited negative anomalies in cerium (Ce) and europium (Eu), while heavy REEs were relatively enriched. The dolomite bands at 562 and 545 Ma also exhibited similar REE characteristics, with low ∑REE and weak fractionation between light and heavy REEs. They also displayed distinct negative anomalies in Ce and Eu, indicating similar distribution patterns. These findings suggested that formation of the banded hydrothermal dolostone occurred during different tectonic events, and the presence of heavy REE-enriched hydrothermal fluids suggested a deep-seated origin. This study has provided preliminary evidence that the Dengying Formation, previously considered to be of the Ediacaran age, has undergone multiple episodes of deep-seated fluid infiltration and alteration since the Mesoproterozoic Era. Importantly, these events coincide with the rifting of the Rodinia and Pannotia supercontinents, aligning with their respective timeframes. This finding raises questions regarding the stratigraphic division and correlation of the formations in the deeply buried core area of the basin. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

19 pages, 4085 KiB  
Article
Meso–Cenozoic Exhumation in the South Qinling Shan (Central China) Recorded by Detrital Apatite Fission-Track Dating of Modern River Sediments
by Xu Lin, Jing Liu-Zeng, Lin Wu, Soares Jose Cleber, Dongliang Liu, Jingen Dai, Chengwei Hu, Xiaokang Chen, Lingling Li and Liyu Zhang
Minerals 2023, 13(10), 1314; https://doi.org/10.3390/min13101314 - 11 Oct 2023
Cited by 7 | Viewed by 2145
Abstract
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of [...] Read more.
The Qinling Shan is located between the North China Craton and the South China Block. Not only is investigating the exhumation process of the Qinling Shan beneficial for comprehending the tectonic collision history of mainland China but also for enhancing our understanding of the development of the Yellow and Yangtze Rivers. Previous studies have predominantly focused on bedrock analysis in the Qinling Shan. However, modern fluvial detrital samples offer a more extensive range of thermal history information. Therefore, we gathered modern fluvial debris samples from the Hanjiang River, which is the largest river in the South Qinling Shan. Subsequently, we conducted apatite fission-track analysis using the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method. A total of 214 valid track ages were obtained, with an age distribution ranging from 9.5 to 334.0 Ma. The Density Plotter software was employed to decompose the data and generate four prominent age peaks: 185, 103, 69, 35, and 12 Ma. The exhumation events of the Early Jurassic (185 Ma) and Cretaceous (103–69 Ma) in the Southern Qinling Shan were strongly influenced by the collision between the South China Block and the North China Craton, as well as the subduction of the West Pacific Plate, respectively. The far-field effect of the collision between the Indian Plate and the southern Asian continent influenced the exhumation of the South Qinling Shan during the Late Eocene (35 Ma) and Middle Miocene (12 Ma), respectively. In conjunction with the reported findings, we comprehensively analyzed the geological implications of the Mesozoic and Cenozoic exhumations of the Qinling Shan. The Qinling Shan emerged as a watershed between the Ordos and Sichuan Basins in the early Mesozoic and Cenozoic, respectively. However, the exhumation and expansion of the Tibetan Plateau has forced the Yangtze River to flow eastward, resulting in its encounter with the South Qinling Shan in the late Cenozoic. The exhumation of the Qinling Shan has resulted in fault depression in the southern Ordos Basin. This geological process has also contributed to the widespread arid climatic conditions in the basin. During the Miocene, the Yellow River experienced limited connectivity due to a combination of structural and climatic factors. As a result, the Qinling Shan served as an obstacle, dividing the connected southern Yangtze River from the northern segment of the Yellow River during the late Cenozoic era. Full article
(This article belongs to the Special Issue Low-Temperature Thermochronology and Its Applications to Tectonics)
Show Figures

Figure 1

20 pages, 9070 KiB  
Review
Precambrian Tectonic Affinity of Hainan and Its Evolution from Columbia to Rodinia
by Limin Zhang, Xiang Cui, Yong Yang, Si Chen, Bin Zhao and Xiguang Deng
Minerals 2023, 13(10), 1237; https://doi.org/10.3390/min13101237 - 22 Sep 2023
Cited by 2 | Viewed by 1469
Abstract
The assembly and break-up of supercontinents have been hot research topics in international earth sciences because they represent a breakthrough in reconstructing the history of continental evolution and deepening the theory of plate tectonics, which is of indispensable importance to the development of [...] Read more.
The assembly and break-up of supercontinents have been hot research topics in international earth sciences because they represent a breakthrough in reconstructing the history of continental evolution and deepening the theory of plate tectonics, which is of indispensable importance to the development of earth sciences. With the continuous enrichment of paleomagnetic, paleontological, chronological, and geochemical data in the last two decades, the evolution of the supercontinent from Columbia to Rodinia has gradually gained unified understanding, and the reconstruction of the major plates within the supercontinent has basically been constrained. In contrast, the reconstruction of microplates, such as South China, Tarim, and Kabul, is controversial and has now become a popular topic and frontier area of supercontinent reconstruction. Hainan lies at the southern tip of South China, and a few Proterozoic units are exposed on the island. At present, Hainan is often taken as a part of the Cathaysia Block. However, due to the lack of exposed Mesoproterozoic igneous and supercrustal rocks in Cathaysia, the reconstruction model of the Cathaysia Block and even the South China Craton based solely on Mesoproterozoic units in Hainan are distinct from those based on units in the Yangtze Block and younger Proterozoic units within the Cathaysia Block, which makes the paleoposition of the South China Craton controversial. In this paper, we provide new detrital zircon U–Pb age data for the Baoban Complex, Hainan, together with the available data to comment on the affinities between Hainan and the Yangtze and Cathaysia Blocks in the Proterozoic, and on this basis, we can reconstruct the South China Craton within the Proterozoic supercontinents. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 8499 KiB  
Article
Archean Crustal Evolution of the Alxa Block, Western North China Craton: Constraints from Zircon U-Pb Ages and the Hf Isotopic Composition
by Pengfei Niu, Junfeng Qu, Jin Zhang, Beihang Zhang and Heng Zhao
Minerals 2023, 13(5), 685; https://doi.org/10.3390/min13050685 - 17 May 2023
Cited by 5 | Viewed by 2122
Abstract
The Alxa Block is an important component of the North China Craton, but its metamorphic basement has been poorly studied, which hampers the understanding of the Alxa Block and the North China Craton. In this study, we conducted geochronological and geochemical studies on [...] Read more.
The Alxa Block is an important component of the North China Craton, but its metamorphic basement has been poorly studied, which hampers the understanding of the Alxa Block and the North China Craton. In this study, we conducted geochronological and geochemical studies on three TTG (tonalite–trondhjemite–granodiorite) gneisses and one granitic gneiss exposed in the Langshan area of the eastern Alxa Block to investigate their crustal evolution. The zircon U-Pb dating results revealed that the protoliths of the TTG and granitic gneisses were formed at 2836 ± 20 Ma, 2491 ± 18 Ma, 2540 ± 38 Ma, and 2763 ± 42 Ma, respectively, and were overprinted by middle–late Paleoproterozoic metamorphism (1962–1721 Ma). All gneiss samples had high Sr/Y ratios (41–274) and intermediate Mg# values (44.97–55.78), with negative Nb, Ta, and Ti anomalies and moderately to strongly fractionated REE patterns ((La/Yb)N = 10.6–107.1), slight Sr enrichment, and positive Eu anomalies, displaying features of typical high-SiO2 adakites and Archean TTGs. The magmatic zircons from the 2.84 Ga and 2.49 Ga TTG rocks had low εHf(t) values of −1.9–1.7, and −3.83–2.12 with two-stage model ages (TDMC) of 3.24–3.11 Ga and 3.10–3.01 Ga, respectively, whereas those from the 2.54 Ga TTG rock exhibited εHf(t) values ranging from −1.1 to 3.46 and TDMC from 3.0 Ga to 2.83 Ga, suggesting that the crustal materials of the basement rocks in the eastern Alxa Block were initially extracted from the depleted mantle during the late Paleoarchean to Mesoarchean era and were reworked in the late Mesoarchean and late Neoarchean era. By contrast, the Alxa Block probably had a relative younger crustal evolutionary history (<3.24 Ga) than the main North China (<3.88 Ga), Tarim (<3.9 Ga), and Yangtze (<3.8 Ga) Cratons and likely had a unique crustal evolutionary history before the early Paleoproterozoic era. Full article
Show Figures

Figure 1

17 pages, 9604 KiB  
Article
Upper Mantle beneath the Myanmar and Surrounding Tomography: New Insight into Plate Subduction and Volcanism
by Xiangyu Meng, Tonglin Li, Rongzhe Zhang, Huiyan Shi and Ying Han
Remote Sens. 2022, 14(24), 6225; https://doi.org/10.3390/rs14246225 - 8 Dec 2022
Cited by 1 | Viewed by 3152
Abstract
Myanmar and its surrounding areas have complex topography and strong tectonic movement, which has always been a challenge to most geoscientists. We used teleseismic tomography to study the subsurface velocity structure in this area. We present a new P-wave tomographic model beneath Myanmar [...] Read more.
Myanmar and its surrounding areas have complex topography and strong tectonic movement, which has always been a challenge to most geoscientists. We used teleseismic tomography to study the subsurface velocity structure in this area. We present a new P-wave tomographic model beneath Myanmar and the surrounding areas by inverting 129,788 arrival-time data recorded by 372 stations. We found an inclined high-velocity subducting plate beneath central Myanmar, where the dip angle becomes smaller near 25°~26°N, and the seismic depth is limited below 200 km. The Indian oceanic lithosphere is being detached from the Indian continental lithosphere, which limits the depth of the earthquake. The active Tengchong volcano is underlain by a prominent low-velocity (low-V) anomaly in the shallow mantle, which may be caused by the subduction and dehydration of the Burma microplate (or Indian plate). The formation of the Singu volcano is related to the mantle flow of the Qinghai–Tibet plateau and the tearing of the Indian plate. The Yangtze craton (beneath the Sichuan Basin) shows a high-velocity anomaly, and both the shallow and deep parts have been destroyed, which may be related to the upwelling of deep heat flow. Full article
Show Figures

Graphical abstract

23 pages, 5395 KiB  
Article
Did a Late Paleoproterozoic-Early Mesoproterozoic Landmass Exist in the Eastern Cathaysia Block? New Evidence from Detrital Zircon U-Pb Geochronology and Sedimentary Indicators
by Renbo Huang, Zhiyuan He and Johan De Grave
Minerals 2022, 12(10), 1199; https://doi.org/10.3390/min12101199 - 23 Sep 2022
Cited by 3 | Viewed by 2571
Abstract
The South China Craton comprises the Yangtze and Cathaysia blocks and is one of the largest Precambrian continental blocks in East Asia. However, the early geological and geographical evolution of the Cathaysia block is relatively poorly understood, due to the sparse exposure of [...] Read more.
The South China Craton comprises the Yangtze and Cathaysia blocks and is one of the largest Precambrian continental blocks in East Asia. However, the early geological and geographical evolution of the Cathaysia block is relatively poorly understood, due to the sparse exposure of pre-Neoproterozoic rocks and reworking during Phanerozoic polyphase magmatism and metamorphism. In this contribution, we carried out detrital zircon U-Pb geochronology and sedimentary analyses on five Proterozoic meta-sedimentary rocks collected from the northeastern Cathaysia block, which belong to the previously defined Chencai, Mayuan, and Mamianshan Groups (strata). LA-ICP-MS U-Pb dating results of the detrital zircons show various ~1.85–1.35 Ga maximum depositional ages. They are significantly older than the previously constrained Neoproterozoic formation ages of these Proterozoic strata of northeastern Cathaysia, suggesting that their deposition and formation were probably initiated as early as the late Paleoproterozoic. Provenance analyses reveal that the late Paleoproterozoic to early Mesoproterozoic detrital zircons with igneous-origin were derived from in situ contemporary crystalline basements in eastern Cathaysia. In addition, by implication, the easternmost part of Cathaysia was probably an emerged area (i.e., the “proto-Cathaysia Land”) under active erosion. It had a ~NWW orientation and provided detrital sediments to the neighboring marine basin (i.e., the Cathaysia Sea) during the late Paleoproterozoic to early Mesoproterozoic. Finally, the Paleoproterozoic evolution of Cathaysia was involved in the assembly of the Nuna supercontinent. Our results, together with the published data, reveal a distinct late Paleoproterozoic (~1.8 Ga) detrital zircon age peak, which seems to support the view that eastern Cathaysia had close tectonic affinities with terranes such as the Precambrian terranes of current northern India, in the framework of the Nuna supercontinent reconstruction. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop