Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = Xoc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2323 KiB  
Review
Recent Progress in Rice–Xanthomonas oryzae Interactions
by Yuting Qi, Qiong Rao, Chenglong Lu, Junyi Gong and Yuxuan Hou
Biology 2025, 14(5), 471; https://doi.org/10.3390/biology14050471 - 25 Apr 2025
Cited by 1 | Viewed by 933 | Correction
Abstract
Rice bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are among the most devastating bacterial diseases threatening global rice production. The interactions between rice and [...] Read more.
Rice bacterial blight (BB) and bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are among the most devastating bacterial diseases threatening global rice production. The interactions between rice and Xanthomonas oryzae are complex and dynamic, involving recognition, attack, defense, and adaptation mechanisms enacted by both the rice host and the pathogens. This review summarizes recent advances in understanding rice–Xanthomonas oryzae interactions, focusing on infection models, pathogenic mechanisms, and immune responses elicited by Xanthomonas oryzae. Special attention is devoted to the roles of transcription activator-like effectors (TALEs) and non-TALE effectors in pathogenicity, the functions of resistance (R) genes in defense, and the interconnected molecular networks of interactions derived from multi-omics approaches. Understanding these interactions is essential for developing effective disease-resistance strategies and creating elite disease-resistant rice varieties. Full article
(This article belongs to the Special Issue Regulatory Mechanisms of Plant Stress Response)
Show Figures

Figure 1

15 pages, 4504 KiB  
Article
Dissection of Resistance Loci to Bacterial Leaf Streak in Rice by a Genome-Wide Association Study
by Jianju Liu, Yunyu Wu, Ning Xiao, Yue Cai, Tian Wei, Ling Yu, Zichun Chen, Wei Shi, Peng Gao, Shuhao Zhu, Cunhong Pan, Zhiping Wang, Niansheng Huang, Yuhong Li, Xiaoxiang Zhang, Hongjuan Ji and Aihong Li
Agronomy 2025, 15(3), 591; https://doi.org/10.3390/agronomy15030591 - 27 Feb 2025
Viewed by 590
Abstract
Rice (Oryza sativa L.) bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) seriously threatens rice production. This disease can be controlled by cultivating lines with appropriate resistance genes. To discover new resistance loci, a natural population of [...] Read more.
Rice (Oryza sativa L.) bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) seriously threatens rice production. This disease can be controlled by cultivating lines with appropriate resistance genes. To discover new resistance loci, a natural population of 246 sequenced backbone varieties of indica rice was inoculated with Xoc in the field, and their disease level was evaluated. The population structure, distribution of resistance phenotypes, and effect of combinations of resistance genes were analyzed in a genome-wide association study. On the basis of single nucleotide polymorphism data and disease phenotypes at the seedling stage, seven resistance loci (qBls1.1, qBls4.1, qBls5.1, qBls7.1, qBls8.1, qBls9.1, and qBls12.1) were identified to determine the superior haplotype of the corresponding loci, which showed stronger BLS resistance. The effects of combining loci were analyzed. As the number of superior haplotypes increased, BLS resistance tended to increase, indicating that BLS resistance can be significantly improved by pyramiding multiple resistance loci in ideal germplasm. This study provides new resistance loci and genetic resources for breeding BLS-resistant rice varieties. These genetic resources will be useful for the fine mapping of resistance loci, gene cloning, and the breeding of BLS-resistant varieties in follow-up research. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

14 pages, 2167 KiB  
Review
Type III Secretion Effectors of Xanthomonas oryzae pv. oryzicola: The Arsenal to Attack Equivalent Rice Defense for Invasion
by Nawei Tan, Yechao Huang, Weiguo Miao, Qingxia Zhang and Tao Wu
Agronomy 2024, 14(9), 1881; https://doi.org/10.3390/agronomy14091881 - 23 Aug 2024
Viewed by 1975
Abstract
Rice–Xanthomonas oryzae pv. oryzicola (Xoc) is one of the commonly used rice models of host–pathogen interactions. Xoc causes bacterial leaf streak (BLS) and has quarantine status. As a Gram-negative pathogen, Xoc usually employs type III secretion effectors (T3SEs), including transcription activator-like [...] Read more.
Rice–Xanthomonas oryzae pv. oryzicola (Xoc) is one of the commonly used rice models of host–pathogen interactions. Xoc causes bacterial leaf streak (BLS) and has quarantine status. As a Gram-negative pathogen, Xoc usually employs type III secretion effectors (T3SEs), including transcription activator-like effectors (TALEs) and non-TALEs, to interfere with the innate immunity of rice. However, few major resistance genes corresponding to Xoc are found in rice cultivations; only Rxo1-AvrRxo1 and Xo1-TALEs interactions have been discovered in rice–Xoc. In this review, we focus on the role of the T3S system (T3SS) in Xoc virulence and consider the reported non-TALEs, including AvrRxo1, AvrBs2, XopN, XopC2, XopAP, and XopAK, as well as TALEs including Tal2g/Tal5d, Tal2h, Tal2a, Tal7, Tal10a, TalI, Tal2b, and Tal2c. Interestingly, AvrRxo1, XopC2, and XopAP disturb stomatal opening to promote infection through targeting diverse signaling pathways in rice. Otherwise, Tal2b and Tal2c, respectively, activate two rice salicylic acid (SA) hydroxylation genes to redundantly suppress the SA-mediated basal defense, and TalI, which has unknown targets, suppresses the SA signaling pathway in rice. In addition, other Xoc virulence factors are discussed. In conclusion, several T3SEs from Xoc interfere with similar defense pathways in rice to achieve invasion, providing an outlook for the control of this disease through manipulating the conserved pathways. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

19 pages, 2941 KiB  
Article
VmsR, a LuxR-Type Regulator, Contributes to Virulence, Cell Motility, Extracellular Polysaccharide Production and Biofilm Formation in Xanthomonas oryzae pv. oryzicola
by Yaqi Zhang, Xiyao Zhao, Jiuxiang Wang, Lindong Liao, Huajun Qin, Rongbo Zhang, Changyu Li, Yongqiang He and Sheng Huang
Int. J. Mol. Sci. 2024, 25(14), 7595; https://doi.org/10.3390/ijms25147595 - 11 Jul 2024
Cited by 1 | Viewed by 1584
Abstract
LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which [...] Read more.
LuxR-type regulators play pivotal roles in regulating numerous bacterial processes, including bacterial motility and virulence, thereby exerting a significant influence on bacterial behavior and pathogenicity. Xanthomonas oryzae pv. oryzicola, a rice pathogen, causes bacterial leaf streak. Our research has identified VmsR, which is a response regulator of the two-component system (TCS) that belongs to the LuxR family. These findings of the experiment reveal that VmsR plays a crucial role in regulating pathogenicity, motility, biofilm formation, and the production of extracellular polysaccharides (EPSs) in Xoc GX01. Notably, our study shows that the vmsR mutant exhibits a reduced swimming motility but an enhanced swarming motility. Furthermore, this mutant displays decreased virulence while significantly increasing EPS production and biofilm formation. We have uncovered that VmsR directly interacts with the promoter regions of fliC and fliS, promoting their expression. In contrast, VmsR specifically binds to the promoter of gumB, resulting in its downregulation. These findings indicate that the knockout of vmsR has profound effects on virulence, motility, biofilm formation, and EPS production in Xoc GX01, providing insights into the intricate regulatory network of Xoc. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 4126 KiB  
Article
The Transcriptional Regulator TfmR Directly Regulates Two Pathogenic Pathways in Xanthomonas oryzae pv. oryzicola
by Zheng Chang, Zengfeng Ma, Qian Su, Xinqi Xia, Wenxin Ye, Ruifang Li and Guangtao Lu
Int. J. Mol. Sci. 2024, 25(11), 5887; https://doi.org/10.3390/ijms25115887 - 28 May 2024
Cited by 1 | Viewed by 1334
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) is a notorious plant pathogen. Like most bacterial pathogens, Xoc has evolved a complex regulatory network to modulate the expression of various genes related to pathogenicity. Here, we have identified TfmR, a transcriptional regulator belonging to the [...] Read more.
Xanthomonas oryzae pv. oryzicola (Xoc) is a notorious plant pathogen. Like most bacterial pathogens, Xoc has evolved a complex regulatory network to modulate the expression of various genes related to pathogenicity. Here, we have identified TfmR, a transcriptional regulator belonging to the TetR family, as a key player in the virulence mechanisms of this phytopathogenic bacterium. We have demonstrated genetically that tfmR is involved in the hypersensitive response (HR), pathogenicity, motility and extracellular polysaccharide production of this phytopathogenic bacterium. Our investigations extended to exploring TfmR’s interaction with RpfG and HrpX, two prominent virulence regulators in Xanthomonas species. We found that TfmR directly binds to the promoter region of RpfG, thereby positively regulating its expression. Notably, constitutive expression of RpfG partly reinstates the pathogenicity compromised by TfmR-deletion mutants. Furthermore, our studies revealed that TfmR also exerts direct positive regulation on the expression of the T3SS regulator HrpX. Similar to RpfG, sustained expression of HrpX partially restores the pathogenicity of TfmR-deletion mutants. These findings underscore TfmR’s multifaceted role as a central regulator governing key virulence pathways in Xoc. Importantly, our research sheds light on the intricate molecular mechanisms underlying the regulation of pathogenicity in this plant pathogen. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions: 2nd Edition)
Show Figures

Figure 1

18 pages, 5170 KiB  
Article
Activated Expression of Rice DMR6-like Gene OsS3H Partially Explores the Susceptibility to Bacterial Leaf Streak Mediated by Knock-Out OsF3H04g
by Tao Wu, Yunya Bi, Yue Yu, Zhou Zhou, Bin Yuan, Xinhua Ding, Qingxia Zhang, Xiangsong Chen, Hong Yang, Haifeng Liu and Zhaohui Chu
Int. J. Mol. Sci. 2023, 24(17), 13263; https://doi.org/10.3390/ijms241713263 - 26 Aug 2023
Cited by 7 | Viewed by 2199
Abstract
Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. [...] Read more.
Downy Mildew Resistance 6-like (DMR6-like) genes are identified as salicylic acid (SA) hydroxylases and negative regulators of plant immunity. Previously, we identified two rice DMR6-like genes, OsF3H03g, and OsF3H04g, that act as susceptible targets of transcription activator-like effectors (TALEs) from Xanthomonas oryzae pv. oryzicola (Xoc), which causes bacterial leaf streak (BLS) in rice. Furthermore, all four homologs of rice DMR6-like proteins were identified to predominantly carry the enzyme activity of SA 5-hydroxylase (S5H), negatively regulate rice broad-spectrum resistance, and cause the loss of function of these OsDMR6s, leading to increased resistance to rice blast and bacterial blight (BB). Here, we curiously found that an OsF3H04g knock-out mutant created by T-DNA insertion, osf3h04g, was remarkedly susceptible to BLS and BB and showed an extreme reduction in SA content. OsF3H04g knock-out rice lines produced by gene-editing were mildly susceptible to BLS and reduced content of SA. To explore the susceptibility mechanism in OsF3H04g loss-of-function rice lines, transcriptome sequencing revealed that another homolog, OsS3H, had induced expression in the loss-of-function OsF3H04g rice lines. Furthermore, we confirmed that a great induction of OsS3H downstream and genomically adjacent to OsF3H04g in osf3h04g was primarily related to the inserted T-DNA carrying quadruple enhancer elements of 35S, while a slight induction was caused by an unknown mechanism in gene-editing lines. Then, we found that the overexpression of OsS3H increased rice susceptibility to BLS, while gene-editing mediated the loss-of-function OsS3H enhanced rice resistance to BLS. However, the knock-out of both OsF3H04g and OsS3H by gene-editing only neutralized rice resistance to BLS. Thus, we concluded that the knock-out of OsF3H04g activated the expression of the OsS3H, partially participating in the susceptibility to BLS in rice. Full article
(This article belongs to the Special Issue Plant Defense-Related Genes and Their Networks)
Show Figures

Figure 1

16 pages, 3501 KiB  
Article
Isolation, Characterization and Antibacterial Activity of 4-Allylbenzene-1,2-diol from Piper austrosinense
by Mengxuan Gu, Qin Wang, Rui Fan, Shoubai Liu, Fadi Zhu, Gang Feng and Jing Zhang
Molecules 2023, 28(8), 3572; https://doi.org/10.3390/molecules28083572 - 19 Apr 2023
Cited by 3 | Viewed by 2099
Abstract
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral [...] Read more.
Isolation for antibacterial compounds from natural plants is a promising approach to develop new pesticides. In this study, two compounds were obtained from the Chinese endemic plant Piper austrosinense using bioassay-guided fractionation. Based on analyses of 1H-NMR, 13C-NMR, and mass spectral data, the isolated compounds were identified as 4-allylbenzene-1,2-diol and (S)-4-allyl-5-(1-(3,4-dihydroxyphenyl)allyl)benzene-1,2-diol. 4-Allylbenzene-1,2-diol was shown to have strong antibacterial activity against four plant pathogens, including Xanthomonas oryzae pathovar oryzae (Xoo), X. axonopodis pv. citri (Xac), X. oryzae pv. oryzicola (Xoc) and X. campestris pv. mangiferaeindicae (Xcm). Further bioassay results exhibited that 4-allylbenzene-1,2-diol had a broad antibacterial spectrum, including Xoo, Xac, Xoc, Xcm, X. fragariae (Xf), X. campestris pv. campestris (Xcc), Pectobacterium carotovorum subspecies brasiliense (Pcb) and P. carotovorum subsp. carotovorum (Pcc), with minimum inhibitory concentration (MIC) values ranging from 333.75 to 1335 μmol/L. The pot experiment showed that 4-allylbenzene-1,2-diol exerted an excellent protective effect against Xoo, with a controlled efficacy reaching 72.73% at 4 MIC, which was superior to the positive control kasugamycin (53.03%) at 4 MIC. Further results demonstrated that the 4-allylbenzene-1,2-diol damaged the integrity of the cell membrane and increased cell membrane permeability. In addition, 4-allylbenzene-1,2-diol also prevented the pathogenicity-related biofilm formation in Xoo, thus limiting the movement of Xoo and reducing the production of extracellular polysaccharides (EPS) in Xoo. These findings suggest the value of 4-allylbenzene-1,2-diol and P. austrosinense could be as promising resources for developing novel antibacterial agents. Full article
Show Figures

Figure 1

20 pages, 5463 KiB  
Article
Transcriptome Analysis in Response to Infection of Xanthomonas oryzae pv. oryzicola Strains with Different Pathogenicity
by Min Tang, Hui Zhang, Yao Wan, Ziqiu Deng, Xuemei Qin, Rongbai Li and Fang Liu
Int. J. Mol. Sci. 2023, 24(1), 14; https://doi.org/10.3390/ijms24010014 - 20 Dec 2022
Cited by 7 | Viewed by 2604
Abstract
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important quarantine diseases in the world. Breeding disease-resistant varieties can solve the problem of prevention and treatment of BLS from the source. The discovery of [...] Read more.
Bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important quarantine diseases in the world. Breeding disease-resistant varieties can solve the problem of prevention and treatment of BLS from the source. The discovery of the molecular mechanism of resistance is an important driving force for breeding resistant varieties. In this study, a BLS-resistant near isogenic line NIL-bls2 was used as the material. Guangxi Xoc strain gx01 (abbreviated as WT) and its mutant strain (abbreviated as MT) with a knockout type III effectors (T3Es) gene were used to infect rice material NIL-bls2. The molecular interaction mechanism of rice resist near isogenic lines in response to infection by different pathogenic strains was analyzed by transcriptome sequencing. The results showed that there were 415, 134 and 150 differentially expressed genes (DEGs) between the WT group and the MT group at 12, 24 and 48 h of post inoculation (hpi). Through GO and KEGG enrichment analysis, it was found that, compared with non-pathogenic strains, the T3Es secreted by pathogenic strains inhibited the signal transduction pathway mediated by ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), and the MAPKK (MAPK kinase) and MAPKKK (MAPK kinase kinase) in the MAPK (mitogen-activated protein kinase) cascade reaction, which prevented plants from sensing extracellular stimuli in time and starting the intracellular immune defense mechanism; and inhibited the synthesis of lignin and diterpenoid phytochemicals to prevent plants from establishing their own physical barriers to resist the invasion of pathogenic bacteria. The inhibitory effect was the strongest at 12 h, and gradually weakened at 24 h and 48 h. To cope with the invasion of pathogenic bacteria, rice NIL-bls2 material can promote wound healing by promoting the synthesis of traumatic acid at 12 h; at 24 h, hydrogen peroxide was degraded by dioxygenase, which reduced and eliminated the attack of reactive oxygen species on plant membrane lipids; and at 48 h, rice NIL-bls2 material can resist the invasion of pathogenic bacteria by promoting the synthesis of lignin, disease-resistant proteins, monoterpene antibacterial substances, indole alkaloids and other substances. Through transcriptome sequencing analysis, the molecular interaction mechanism of rice resistance near isogenic lines in response to infection by different pathogenic strains was expounded, and 5 genes, Os01g0719300, Os02g0513100, Os03g0122300, Os04g0301500, and Os10g0575100 closely related to BLS, were screened. Our work provides new data resources and a theoretical basis for exploring the infection mechanism of Xoc strain gx01 and the resistance mechanism of resistance gene bls2. Full article
(This article belongs to the Special Issue Function and Mechanism Analysis of Plant Stress Resistance Genes)
Show Figures

Figure 1

20 pages, 4969 KiB  
Article
OsASR6 Alleviates Rice Resistance to Xanthomonas oryzae via Transcriptional Suppression of OsCIPK15
by Weiyi Guo, Songyu Chen, Youping Xu and Xinzhong Cai
Int. J. Mol. Sci. 2022, 23(12), 6622; https://doi.org/10.3390/ijms23126622 - 14 Jun 2022
Cited by 7 | Viewed by 2354
Abstract
The plant-specific ASR (abscisic acid, stress and ripening) transcription factors are pivotal regulators of plant responses to abiotic stresses. However, their functions in plant disease resistance remain largely unknown. In this study, we revealed the role of OsASR6 in rice plants’ resistance to [...] Read more.
The plant-specific ASR (abscisic acid, stress and ripening) transcription factors are pivotal regulators of plant responses to abiotic stresses. However, their functions in plant disease resistance remain largely unknown. In this study, we revealed the role of OsASR6 in rice plants’ resistance to two important bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) and elucidated the mechanisms underlying OsASR6-regulated resistance. The expression of OsASR6 was strongly elevated in response to both Xoo and Xoc challenges. Silencing of OsASR6 in OsASR6-RNAi transgenic plants markedly enhanced rice resistance to the two bacterial pathogens. Moreover, comparative transcriptome analyses for OsASR6-RNAi and wild-type plants inoculated and uninoculated with Xoc demonstrated that OsASR6 suppressed rice resistance to Xoc by comprehensively fine-tuning CIPK15- and WRKY45-1-mediated immunity, SA signaling and redox homeostasis. Further luciferase reporter assays confirmed that OsASR6 negatively regulated CIPK15 but not WRKY45-1 expression in planta. Overexpression of OsCIPK15 strongly enhanced rice resistance to Xoo and Xoc. Collectively, these results reveal that OsASR6 alleviates rice resistance through the transcriptional suppression of OsCIPK15, and thus links calcium signaling to rice resistance against X. oryzae. Our findings provide insight into the mechanisms underlying OsASR6-mediated regulation of rice resistance to X. oryzae. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

11 pages, 2776 KiB  
Article
Ectopic Expression of Executor Gene Xa23 Enhances Resistance to Both Bacterial and Fungal Diseases in Rice
by Zhiyuan Ji, Hongda Sun, Yena Wei, Man Li, Hongjie Wang, Jiangmin Xu, Cailin Lei, Chunlian Wang and Kaijun Zhao
Int. J. Mol. Sci. 2022, 23(12), 6545; https://doi.org/10.3390/ijms23126545 - 11 Jun 2022
Cited by 7 | Viewed by 2953
Abstract
Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae ( [...] Read more.
Bacterial blight (BB) and bacterial leaf streak (BLS), caused by phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively, are the most serious bacterial diseases of rice, while blast, caused by Magnaporthe oryzae (M. oryzae), is the most devastating fungal disease in rice. Generating broad-spectrum resistance to these diseases is one of the key approaches for the sustainable production of rice. Executor (E) genes are a unique type of plant resistance (R) genes, which can specifically trap transcription activator-like effectors (TALEs) of pathogens and trigger an intense defense reaction characterized by a hypersensitive response in the host. This strong resistance is a result of programed cell death induced by the E gene expression that is only activated upon the binding of a TALE to the effector-binding element (EBE) located in the E gene promoter during the pathogen infection. Our previous studies revealed that the E gene Xa23 has the broadest and highest resistance to BB. To investigate whether the Xa23-mediated resistance is efficient against Xanthomonas oryzae pv. oryzicola (Xoc), the causal agent of BLS, we generated a new version of Xa23, designated as Xa23p1.0, to specifically trap the conserved TALEs from multiple Xoc strains. The results showed that the Xa23p1.0 confers broad resistance against both BB and BLS in rice. Moreover, our further experiment on the Xa23p1.0 transgenic plants firstly demonstrated that the E-gene-mediated defensive reaction is also effective against M. oryzae, the causal agent of the most devastating fungal disease in rice. Our current work provides a new strategy to exploit the full potential of the E-gene-mediated disease resistance in rice. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 10850 KiB  
Article
Disease Development and Discovery of Anatomically Resistant Features towards Bacterial Leaf Streak in Rice
by Waheeda Abd Wahab, Noraini Talip, Syazwani Basir, Muhamad Afiq Akbar, Mohd Faiz Mat Saad and Hamidun Bunawan
Agriculture 2022, 12(5), 629; https://doi.org/10.3390/agriculture12050629 - 27 Apr 2022
Cited by 5 | Viewed by 4505
Abstract
Bacterial leaf streak (BLS) caused by bacterium Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most prominent rice diseases. BLS causes a significant reduction in paddy yields. However, there are limited studies and a lack of information regarding the mechanisms [...] Read more.
Bacterial leaf streak (BLS) caused by bacterium Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most prominent rice diseases. BLS causes a significant reduction in paddy yields. However, there are limited studies and a lack of information regarding the mechanisms and cells affected on leaf tissues severed from this disease. Therefore, in this study, sensitive paddy variety IR24 was inoculated against BLS, and the pathogen colonised mesophyll cells and some bundle sheath cells. The infection spreads rapidly towards the base and apex of the leaf, but rather slowly to the left and right sides of the leaf veins. Another experiment was performed to unravel anatomical characteristics in sensitive paddy varieties (TN1, IR24, IR5) and resistant paddy varieties (IR26, Dular, IR36) against BLS. Susceptible paddy varieties have less thick midrib and leaf lamina, a high number of bundle sheath cells at primary vascular tissue (midrib), one layer of sclerenchyma cells at the secondary vein, and more than two metaxylems at the primary vein. Resistant paddy varieties, on the other hand, consist of a relatively thickened midrib and leaf lamina, fewer bundle sheath cells at the primary vascular tissue (midrib), more than one sclerenchyma layers at the secondary vein, and two metaxylems at the primary vein. This study contributes new knowledge in identifying the level of infection in paddy fields, and helps breeders in producing resistant paddies to this disease. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 3875 KiB  
Article
Tal2c Activates the Expression of OsF3H04g to Promote Infection as a Redundant TALE of Tal2b in Xanthomonas oryzae pv. oryzicola
by Tao Wu, Haimiao Zhang, Yunya Bi, Yue Yu, Haifeng Liu, Hong Yang, Bin Yuan, Xinhua Ding and Zhaohui Chu
Int. J. Mol. Sci. 2021, 22(24), 13628; https://doi.org/10.3390/ijms222413628 - 20 Dec 2021
Cited by 10 | Viewed by 3164
Abstract
Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote [...] Read more.
Xanthomonas oryzae delivers transcription activator-like effectors (TALEs) into plant cells to facilitate infection. Following economic principles, the redundant TALEs are rarely identified in Xanthomonas. Previously, we identified the Tal2b, which activates the expression of the rice 2-oxoglutarate-dependent dioxygenase gene OsF3H03g to promote infection in the highly virulent strain of X. oryzae pv. oryzicola HGA4. Here, we reveal that another clustered TALE, Tal2c, also functioned as a virulence factor to target rice OsF3H04g, a homologue of OsF3H03g. Transferring Tal2c into RS105 induced expression of OsF3H04g to coincide with increased susceptibility in rice. Overexpressing OsF3H04g caused higher susceptibility and less salicylic acid (SA) production compared to wild-type plants. Moreover, CRISPR–Cas9 system-mediated editing of the effector-binding element in the promoters of OsF3H03g or OsF3H04g was found to specifically enhance resistance to Tal2b- or Tal2c-transferring strains, but had no effect on resistance to either RS105 or HGA4. Furthermore, transcriptome analysis revealed that several reported SA-related and defense-related genes commonly altered expression in OsF3H04g overexpression line compared with those identified in OsF3H03g overexpression line. Overall, our results reveal a functional redundancy mechanism of pathogenic virulence in Xoc in which tandem Tal2b and Tal2c specifically target homologues of host genes to interfere with rice immunity by reducing SA. Full article
(This article belongs to the Special Issue Molecular Genetics of Rice Disease Resistance)
Show Figures

Graphical abstract

14 pages, 2964 KiB  
Article
Identification and Validation of a QTL for Bacterial Leaf Streak Resistance in Rice (Oryza sativa L.) against Thai Xoc Strains
by Tripop Thianthavon, Wanchana Aesomnuk, Mutiara K. Pitaloka, Wannapa Sattayachiti, Yupin Sonsom, Phakchana Nubankoh, Srihunsa Malichan, Kanamon Riangwong, Vinitchan Ruanjaichon, Theerayut Toojinda, Samart Wanchana and Siwaret Arikit
Genes 2021, 12(10), 1587; https://doi.org/10.3390/genes12101587 - 9 Oct 2021
Cited by 10 | Viewed by 3648
Abstract
Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by [...] Read more.
Rice is one of the most important food crops in the world and is of vital importance to many countries. Various diseases caused by fungi, bacteria and viruses constantly threaten rice plants and cause yield losses. Bacterial leaf streak disease (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most devastating rice diseases. However, most modern rice varieties are susceptible to BLS. In this study, we applied the QTL-seq approach using an F2 population derived from the cross between IR62266 and Homcholasit (HSC) to rapidly identify the quantitative trait loci (QTL) that confers resistance to BLS caused by a Thai Xoc isolate, SP7-5. The results showed that a single genomic region at the beginning of chromosome 5 was highly associated with resistance to BLS. The gene xa5 was considered a potential candidate gene in this region since most associated single nucleotide polymorphisms (SNPs) were within this gene. A Kompetitive Allele-Specific PCR (KASP) marker was developed based on two consecutive functional SNPs in xa5 and validated in six F2 populations inoculated with another Thai Xoc isolate, 2NY2-2. The phenotypic variance explained by this marker (PVE) ranged from 59.04% to 70.84% in the six populations. These findings indicate that xa5 is a viable candidate gene for BLS resistance and may help in breeding programs for BLS resistance. Full article
(This article belongs to the Special Issue Advances in Rice Genetics and Breeding)
Show Figures

Figure 1

12 pages, 1969 KiB  
Article
Genome-Wide Association Study of QTLs Conferring Resistance to Bacterial Leaf Streak in Rice
by Xiaofang Xie, Yan Zheng, Libin Lu, Jiazheng Yuan, Jie Hu, Suhong Bu, Yanyi Lin, Yinsong Liu, Huazhong Guan and Weiren Wu
Plants 2021, 10(10), 2039; https://doi.org/10.3390/plants10102039 - 28 Sep 2021
Cited by 8 | Viewed by 2437
Abstract
Bacterial leaf streak (BLS) is a devastating rice disease caused by the bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), which can result in severe damage to rice production worldwide. Based on a total of 510 rice accessions, trialed in two seasons [...] Read more.
Bacterial leaf streak (BLS) is a devastating rice disease caused by the bacterial pathogen, Xanthomonas oryzae pv. oryzicola (Xoc), which can result in severe damage to rice production worldwide. Based on a total of 510 rice accessions, trialed in two seasons and using six different multi-locus GWAS methods (mrMLM, ISIS EM-BLASSO, pLARmEB, FASTmrMLM, FASTmrEMMA and pKWmEB), 79 quantitative trait nucleotides (QTNs) reflecting 69 QTLs for BLS resistance were identified (LOD > 3). The QTNs were distributed on all chromosomes, with the most distributed on chromosome 11, followed by chromosomes 1 and 5. Each QTN had an additive effect of 0.20 (cm) and explained, on average, 2.44% of the phenotypic variance, varying from 0.00–0.92 (cm) and from 0.00–9.86%, respectively. Twenty-five QTNs were detected by at least two methods. Among them, qnBLS11.17 was detected by as many as five methods. Most of the QTNs showed a significant interaction with their environment, but no QTNs were detected in both seasons. By defining the QTL range for each QTN according to the LD half-decay distance, a total of 848 candidate genes were found for nine top QTNs. Among them, more than 10% were annotated to be related to biotic stress resistance, and five showed a significant response to Xoc infection. Our results could facilitate the in-depth study and marker-assisted improvement of rice resistance to BLS. Full article
Show Figures

Figure 1

14 pages, 6040 KiB  
Article
Design, Synthesis, and Bioactivity Evaluation of New Thiochromanone Derivatives Containing a Carboxamide Moiety
by Lingling Xiao, Lu Yu, Pei Li, Jiyan Chi, Zhangfei Tang, Jie Li, Shuming Tan and Xiaodan Wang
Molecules 2021, 26(15), 4391; https://doi.org/10.3390/molecules26154391 - 21 Jul 2021
Cited by 11 | Viewed by 2987
Abstract
In this study, using the botanical active component thiochromanone as the lead compound, a total of 32 new thiochromanone derivatives containing a carboxamide moiety were designed and synthesized and their in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas [...] Read more.
In this study, using the botanical active component thiochromanone as the lead compound, a total of 32 new thiochromanone derivatives containing a carboxamide moiety were designed and synthesized and their in vitro antibacterial activities against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicolaby (Xoc), and Xanthomonas axonopodis pv. citri (Xac) were determined, as well as their in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phomopsis sp., and Botrytis cinerea (B. cinerea). Bioassay results demonstrated that some of the target compounds exhibited moderate to good in vitro antibacterial and antifungal activities. In particular, compound 4e revealed excellent in vitro antibacterial activity against Xoo, Xoc, and Xac, and its EC50 values of 15, 19, and 23 μg/mL, respectively, were superior to those of Bismerthiazol and Thiodiazole copper. Meanwhile, compound 3b revealed moderate in vitro antifungal activity against B. dothidea at 50 μg/mL, and the inhibition rate reached 88%, which was even better than that of Pyrimethanil, however, lower than that of Carbendazim. To the best of our knowledge, this is the first report on the antibacterial and antifungal activities of this series of novel thiochromanone derivatives containing a carboxamide moiety. Full article
(This article belongs to the Special Issue Amide Bond Activation II)
Show Figures

Figure 1

Back to TopTop