Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (141)

Search Parameters:
Keywords = Wolbachia infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Viewed by 319
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

10 pages, 6593 KiB  
Article
First Molecular Evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus and Haemaphysalis concinna (Acari: Ixodida) Ticks from Inland and Coastal Areas of the Balkan Peninsula
by Veronika Blažeková, Michal Stanko, Dana Zubriková, Lucia Vargová, Klaudia Mária Švirlochová and Bronislava Víchová
Pathogens 2025, 14(7), 652; https://doi.org/10.3390/pathogens14070652 - 1 Jul 2025
Viewed by 522
Abstract
Ixodiphagus hookeri (Howard, 1907) (Hymenoptera: Encyrtidae), a hyperparasitic wasp that parasitizes hard ticks, has been documented in various parts of Europe; however, data on its presence in southeastern regions has been lacking. This study provides the first molecular evidence of I. hookeri in [...] Read more.
Ixodiphagus hookeri (Howard, 1907) (Hymenoptera: Encyrtidae), a hyperparasitic wasp that parasitizes hard ticks, has been documented in various parts of Europe; however, data on its presence in southeastern regions has been lacking. This study provides the first molecular evidence of I. hookeri in ticks from the coastal areas of the Balkan Peninsula, specifically Croatia and Bulgaria. A total of 1043 questing ticks were collected between 2011 and 2013 across 15 locations. Molecular screening revealed I. hookeri DNA in Ixodes ricinus (Linnaeus, 1758) (Acari: Ixodidae) nymphs from inland Croatia (overall prevalence: 18.72%) and in Haemaphysalis concinna (Koch, 1844) (Acari: Ixodidae) nymphs and larvae from coastal Bulgaria (prevalence: 17.2%). All I. hookeri-positive samples were co-infected with Wolbachia spp. (Rickettsiales: Anaplasmataceae). This detection marks the southernmost record of I. hookeri in Central Europe, expanding its known range to the Balkan Peninsula and supporting its relevance as a potential natural enemy in integrated tick management strategies. Full article
(This article belongs to the Special Issue Ticks and Tick-Borne Pathogens in the Balkans)
Show Figures

Figure 1

22 pages, 3253 KiB  
Article
Infections of Aedes Mosquito Cells by Wolbachia Strains wAu and wMelpop Modulate Host Cellular Transcriptomes Differently and Suppress Dengue Viral Replication
by Amber R. Mickelson, Julia Felton, Olivia Cheschi, Emily Spacone, Kaitlyn Connors, Jacob Thornsberry and Tadahisa Teramoto
Viruses 2025, 17(7), 922; https://doi.org/10.3390/v17070922 - 28 Jun 2025
Viewed by 1826
Abstract
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, [...] Read more.
Dengue virus serotypes 1-4 (DENV1-4) have spread through tropical and subtropical countries, causing endemic and epidemic diseases. Recently, a novel field approach using the Wolbachia symbiont was proposed to suppress DENV transmission via the mosquito vectors Aedes aegypti and Aedes albopictus. Previously, we showed that a Wolbachia strain, wMelPop, suppresses DENV2 replication in the C6/36 albopictus cell line, with the mutant DENV2 appearing and replacing the wild type DENV2. In this study, we expanded the analysis to include replications of all DENV serotypes 1-4, effects of wAu Wolbachia in C6/36 cells, and wMelPop-influences on the Aag2 aegypti cell line. It was revealed that both wAu and wMelPop reduce all DENV infectious titers without dominant appearances of the mutant viruses, despite varied effects on the viral copy numbers. The host transcriptomic profiles by RNA-seq were also variously altered by wAu and wMelPop (ranging from 10 to 30%, Log2FC > 2 or <−2, p < 0.05). Those transcripts were not further altered by DENV infection. In contrast, abundant transcriptomic alterations by DENV infection in naïve C6/36 and Aag2 cells were blocked by either wAu or wMelPop. These results indicate that Wolbachia prevents host cellular transcriptomic alterations which are induced by DENV infection, affecting the cellular homeostasis necessary for DENV replication. Full article
(This article belongs to the Special Issue The Impact of Wolbachia on Virus Infection)
Show Figures

Figure 1

12 pages, 1061 KiB  
Article
Wolbachia Screening in Aedes aegypti and Culex pipiens Mosquitoes from Madeira Island, Portugal
by Rita Fernandes, Tiago Melo, Líbia Zé-Zé, Inês C. Freitas, Manuel Silva, Eva Dias, Nuno C. Santos, Bruna R. Gouveia, Gonçalo Seixas and Hugo Costa Osório
Insects 2025, 16(4), 418; https://doi.org/10.3390/insects16040418 - 15 Apr 2025
Viewed by 1488
Abstract
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 [...] Read more.
Mosquito-borne diseases such as dengue and West Nile virus pose serious public health risks. On Madeira Island, the presence of the mosquito species Aedes aegypti (Linnaeus, 1762) and Culex pipiens (Linnaeus, 1758) raises concerns about local transmission. In this study, we tested 100 Ae. aegypti and 40 Cx. pipiens mosquitoes collected exclusively in the municipality of Funchal, Madeira Island, to assess the presence and diversity of Wolbachia, a naturally occurring bacterium known to reduce mosquitos’ ability to transmit viruses. Molecular identification confirmed that all Cx. pipiens specimens belonged to the molestus biotype, with three individuals identified as hybrids between molestus and pipiens biotypes. This is the first evidence of such hybrids in Madeira. Wolbachia was not detected in any of the Ae. aegypti samples. In contrast, all Cx. pipiens mosquitoes were positive, showing a 100% prevalence. Genetic characterization placed these infections within the wPip clade, supergroup B, sequence type 9. These findings provide key baseline data to inform future mosquito control strategies on the island. As Ae. aegypti showed no natural Wolbachia infection, introducing Wolbachia-infected mosquitoes may be necessary to implement such biocontrol approaches in Madeira. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

18 pages, 1120 KiB  
Article
Raising Awareness of Canine, Feline and Human Dirofilariosis in Aveiro, Portugal: A One Health Perspective
by Joana Esteves-Guimarães, José Alberto Montoya-Alonso, Jorge Isidoro Matos, Elmano Ramalheira, Elena Carretón, Ivan Rodríguez-Escolar, Alfonso Balmori-de la Puente, Manuel Collado-Cuadrado, Rodrigo Morchón and Ana Patrícia Fontes-Sousa
Animals 2025, 15(7), 952; https://doi.org/10.3390/ani15070952 - 26 Mar 2025
Viewed by 936
Abstract
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. [...] Read more.
Climatic and various socio-geographical variables have significantly influenced the global spread of Dirofilaria immitis. The coastal district of Aveiro, Portugal, marked by its unique hydrographic structure, Ria de Aveiro, and a concerning rise in heartworm disease, was the focus of our study. We aimed to update the prevalence of D. immitis in dogs and the seroprevalence in cats and humans, correlating these data with epidemiological information. A total of 430 dogs were sampled for D. immitis antigens, and 426 cats and 398 humans for D. immitis and Wolbachia sp. antibodies. In addition, we developed and validated an infection risk map for D. immitis with the geolocation of positive samples. Our results indicate a canine prevalence of 4.7%, peaking at 16.7% in Vagos. Feline and human seroprevalences were 8.9% (26.7% in Espinho) and 3.0% (Vagos presented the most alarming results), respectively. Positive samples were found in both high- and low-risk areas highlighting the need for chemoprophylaxis in all municipalities. Risk factors identified included lack of vaccination and internal deworming in cats, while dogs faced risks from inadequate vaccination and outdoor exposure. Our study identifies Aveiro as an endemic area, with a need for control measures to address this public health threat. Full article
(This article belongs to the Topic Zoonotic Vector-Borne Diseases of Companion Animals)
Show Figures

Figure 1

65 pages, 2112 KiB  
Review
Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability
by Riccardo Moretti, Jue Tao Lim, Alvaro Gil Araujo Ferreira, Luigi Ponti, Marta Giovanetti, Chow Jo Yi, Pranav Tewari, Maria Cholvi, Jacob Crawford, Andrew Paul Gutierrez, Stephen L. Dobson and Perran A. Ross
Pathogens 2025, 14(3), 285; https://doi.org/10.3390/pathogens14030285 - 14 Mar 2025
Cited by 1 | Viewed by 3206
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several [...] Read more.
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise—ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens—becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change. Full article
(This article belongs to the Special Issue Surveillance and Control Strategies to Fight Mosquito-Borne Diseases)
Show Figures

Figure 1

18 pages, 5537 KiB  
Article
Interactions Between Endosymbionts Wolbachia and Rickettsia in the Spider Mite Tetranychus turkestani: Cooperation or Antagonism?
by Sha Wang, Xinlei Wang, Ali Basit, Qiancheng Wei, Kedi Zhao and Yiying Zhao
Microorganisms 2025, 13(3), 642; https://doi.org/10.3390/microorganisms13030642 - 12 Mar 2025
Viewed by 801
Abstract
Maternally inherited endosymbionts are widespread in arthropods, with multiple symbionts commonly co-existing within a single host, potentially competing for or sharing limited host resources and space. Wolbachia and Rickettsia, two maternally-inherited symbionts in arthropods, can co-infect hosts, yet research on their combined [...] Read more.
Maternally inherited endosymbionts are widespread in arthropods, with multiple symbionts commonly co-existing within a single host, potentially competing for or sharing limited host resources and space. Wolbachia and Rickettsia, two maternally-inherited symbionts in arthropods, can co-infect hosts, yet research on their combined impacts on host reproduction and interaction remains scarce. Tetranychus turkestani (Acari: Tetranychidae) is an important agricultural pest mite, characterized by rapid reproduction, a short life cycle, and being difficult to control. Wolbachia and Rickettsia are two major endosymbiotic bacteria present in T. turkestani. This study used diverse parthenogenetic backcross and antibiotic screening to explore the reproductive effects of these two symbionts on T. turkestani. The results show that single Rickettsia infection induced male killing in the amphigenesis of T. turkestani, leading to arrhenotokous embryo death and fewer offspring. Single Wolbachia infection induced strong cytoplasmic incompatibility (CI). During dual infection, CI intensity decreased because Rickettsia’s male-killing effect antagonized the Wolbachia-induced CI. Dual-infected mites had increased oviposition, lower mortality, a higher female-to-male ratio, and more offspring, thus enhancing T. turkestani’s fitness. These findings will be helpful for understanding the nature of host–endosymbiont interactions and the potential for evolutionary conflicts, offering insights into their co-evolutionary relationship. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 5317 KiB  
Article
Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites
by Xinlei Wang, Sha Wang, Ali Basit, Qianchen Wei, Kedi Zhao, Feng Liu and Yiying Zhao
Microorganisms 2025, 13(3), 608; https://doi.org/10.3390/microorganisms13030608 - 6 Mar 2025
Viewed by 700
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider [...] Read more.
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect–plant co-evolution. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction State-of-the-Art Research in China)
Show Figures

Figure 1

23 pages, 3093 KiB  
Article
Conservation Genetics of the Endangered Danube Clouded Yellow Butterfly Colias myrmidone (Esper, 1780) in the Last Central European Stronghold: Diversity, Wolbachia Infection and Balkan Connections
by Aleksandra Gwiazdowska, Robert Rutkowski and Marcin Sielezniew
Insects 2025, 16(2), 220; https://doi.org/10.3390/insects16020220 - 17 Feb 2025
Viewed by 984
Abstract
The Danube Clouded Yellow (Colias myrmidone) has experienced one of the most dramatic declines among European butterflies. To estimate genetic diversity in the last population in Poland that has survived in the Knyszyn Forest (KF), we analyzed mitochondrial (COI) [...] Read more.
The Danube Clouded Yellow (Colias myrmidone) has experienced one of the most dramatic declines among European butterflies. To estimate genetic diversity in the last population in Poland that has survived in the Knyszyn Forest (KF), we analyzed mitochondrial (COI) and nuclear (EF-1α) polymorphisms in individuals sampled in 2014 and 2022. The results were compared with genetic data obtained in 2014 from a recently extirpated nearby population (Czerwony Bór, CB). Because mtDNA polymorphisms in insects can be modulated by endosymbionts, the samples were screened for Wolbachia. The polymorphism of EF-1α indicated that diversity was gradually decreasing. The KF experienced rapid demographic processes, manifested by a significant change in allele frequency. The small differentiation in nuclear markers between the KF and CB in 2014 suggests that the regional population used to be genetically uniform. Four COI haplotypes that were identified in this study probably belong to two different haplogroups. Wolbachia was detected only in individuals with one specific haplotype, and the prevalence was female-biased, suggesting the induction of two reproductive manipulations. The most common COI haplotype found in Poland was the same as that reported from other parts of Europe, not only for C. myrmidone but also C. caucasica. These results allow us to question the distinctiveness of each taxa. Full article
(This article belongs to the Collection Butterfly Diversity and Conservation)
Show Figures

Figure 1

13 pages, 2038 KiB  
Article
Wolbachia Infection Alters the Microbiota of the Invasive Leaf-Miner Liriomyza huidobrensis (Diptera: Agromyzidae)
by Ya-Xin Duan, Ying-Hua Zhuang, Yu-Xin Wu, Tian-Wei Huang, Zhang-Rong Song, Yu-Zhou Du and Yu-Xi Zhu
Microorganisms 2025, 13(2), 302; https://doi.org/10.3390/microorganisms13020302 - 30 Jan 2025
Cited by 5 | Viewed by 1003
Abstract
Microbe–microbe interactions within a host drive shifts in the host’s microbiota composition, profoundly influencing host physiology, ecology, and evolution. Among these microbes, the maternally inherited endosymbiont Wolbachia is widespread in the invasive pest Liriomyza huidorbrensis (Diptera: Agromyzidae). However, its influence on the host [...] Read more.
Microbe–microbe interactions within a host drive shifts in the host’s microbiota composition, profoundly influencing host physiology, ecology, and evolution. Among these microbes, the maternally inherited endosymbiont Wolbachia is widespread in the invasive pest Liriomyza huidorbrensis (Diptera: Agromyzidae). However, its influence on the host microbiota remains largely unexplored. In the study presented herein, we investigated the bacterial communities of Wolbachia wLhui-infected (wLhui+) and -uninfected lines (wLhui−) of L. huidorbrensis using 16S rRNA gene high-throughput sequencing. For both leaf-miner lines, Bacteroidota was the dominant phylum (relative abundance: 59.18%), followed by Pseudomonadota (36.63%), Actinomycetota (2.42%), and Bacillota (0.93%). We found no significant differences in alpha-diversity indices between the wLhui+ and wLhui− lines (p > 0.05). However, principal coordinates analysis revealed significant differences in microbiota composition between the wLhui+ and wLhui− lines (PERMANOVA: p < 0.001), explaining 76.70% of the variance in microbiota composition. Correlation network analysis identified robust negative and positive associations between Wolbachia and several genera, suggesting that Wolbachia shapes microbial composition through competitive or cooperative interactions with specific taxa. Overall, our study suggests that Wolbachia plays a key role in shaping the leaf-miner microbiome, potentially affecting host fitness. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 2177 KiB  
Article
First Detection of Wolbachia in Namibian Bird Ectoparasites (Acariformes: Syringophilidae) with a Description of New Quill Mite Species
by Eliza Glowska-Patyniak, Katarzyna Kaszewska-Gilas, Izabella Laniecka, Julia Olechnowicz, Kamila Ostrowska, Wiktoria Dmuchowska, Brian K. Schmidt, Jan Hubert and Artur Trzebny
Animals 2025, 15(1), 52; https://doi.org/10.3390/ani15010052 - 28 Dec 2024
Viewed by 907
Abstract
Wolbachia is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group [...] Read more.
Wolbachia is a common intracellular bacterial genus that infects numerous arthropods and filarial nematodes. In arthropods, it typically acts as a reproductive parasite, leading to various phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization, or male-killing. Quill mites (Acariformes: Syringophilidae) are a group of bird parasites that have recently attracted increasing interest due to the detection of unique phylogenetic lineages of endosymbiotic bacteria and potentially pathogenic taxa. Our study used an unbiased 16S rRNA gene amplicon sequencing approach to examine several populations of Namibian quill mites for the presence of bacteria that could affect their biology. We detected Wolbachia in two mite populations collected from two species of larks. However, we did not find any other endosymbiotic bacteria or any that could be of epidemiological importance. Since the mite taxa we tested were previously unknown to science, we conducted comprehensive morphological and molecular systematic analyses on them. Our research revealed two new quill mite species of the genus Syringophilopsis Kethley, 1970 which parasitize three sub-Saharan alaudids, i.e., Syringophilopsis erythrochlamys sp. n. from the dune lark Calendulauda erythrochlamys (Strickland, HE) and S. christinae sp. n. from the Karoo long-billed lark Certhilauda subcoronata (Smith) and spike-heeled lark Chersomanes albofasciata (de Lafresnaye, NFAA). In addition, we provided the African reed warbler Acrocephalus baeticatus (Vieillot, LJP) as a new host for S. acrocephali Skoracki, 1999. Our study expands the knowledge on parasite diversity and provides new insights into Wolbachia infection among quill mites in Africa. Full article
(This article belongs to the Special Issue Diversity and Interactions Between Mites and Vertebrates)
Show Figures

Figure 1

12 pages, 3090 KiB  
Article
Resistance of Wolbachia to Trimethoprim: Insights into Genes Encoding Dihydrofolate Reductase, Thymidylate Synthase and Serine Hydroxymethyltransferase in the Rickettsiales
by Ann M. Fallon
Insects 2025, 16(1), 18; https://doi.org/10.3390/insects16010018 - 28 Dec 2024
Viewed by 827
Abstract
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim [...] Read more.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in E. coli. A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments. In contrast, DHFR is not encoded by wFol (supergroup E) and wBm (supergroup D) or by genomes of the closely related genera Anaplasma, Ehrlichia, Neorickettsia, and possibly Orientia. In E. coli and humans, DHFR participates in a coupled reactions with the conventional thymidylate synthase (TS) encoded by thyA to produce the dTMP required for DNA synthesis. In contrast, Wolbachia and other Rickettsiales express the unconventional FAD-TS enzyme encoded by thyX, even when folA is present. The exclusive use of FAD-TS suggests that Wolbachia DHFR provides a supplementary rather than an essential function for de novo synthesis of dTMP, possibly reflecting the relative availability of, and competing demands for, FAD and NAD coenzymes in the diverse intracellular environments of its hosts. Whether encoded by thyA or thyX, TS produces dTMP by transferring a methyl group from methylene tetrahydrofolate to dUMP. In the Rickettsiales, serine hydroxymethyltransferase (SMHT), encoded by a conserved glyA gene, regenerates methylene tetrahydrofolate. Unlike thyA, thyX lacks a human counterpart and thus provides a potential target for the treatment of infections caused by pathogenic members of the Rickettsiales. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

18 pages, 4273 KiB  
Article
Sequencing and Analysis of Wolbachia Strains from A and B Supergroups Detected in Sylvatic Mosquitoes from Brazil
by Luísa Maria Inácio da Silva, José Irnaldo da Silva, Alexandre Freitas da Silva, Filipe Zimmer Dezordi, Lais Ceschini Machado, Si Qin, Hang Fan, Yigang Tong, Túlio de Lima Campos, Marcelo Henrique Santos Paiva and Gabriel Luz Wallau
Microorganisms 2024, 12(11), 2206; https://doi.org/10.3390/microorganisms12112206 - 31 Oct 2024
Viewed by 2092
Abstract
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to [...] Read more.
Wolbachia are endosymbiotic bacteria that infect a wide range of arthropods and filarial nematodes, often manipulating host reproduction. The efficacy of Wolbachia-based interventions for dengue and chikungunya control has been validated through numerous field studies in recent years. This study aimed to investigate the diversity and prevalence of Wolbachia infections in sylvatic mosquitoes from two locations in Recife, Brazil. Multiple mosquito species were screened for Wolbachia using both target marker gene amplification coupled with Sanger sequencing and whole-genome sequencing (WGS) approaches. Phylogenetic analyses were conducted to classify Wolbachia strains into supergroups and assess their evolutionary relationships. Results revealed the presence of Wolbachia in eleven mosquito species examined, with different infection rates. Both supergroups A and B of Wolbachia strains were identified, with Aedes albopictus showing co-infection by both supergroups through the WGS approach. We also detected indirect evidence of Wolbachia horizontal transmission among mosquitoes and other distant host orders. This study provides valuable insights into the distribution and diversity of Wolbachia in sylvatic mosquitoes from Brazil and adds new important data about Wolbachia detection through target marker gene amplicon coupled with Sanger sequencing and WGS methods, highlighting its complementarity to ascertain the presence of Wolbachia in mosquito samples. Full article
Show Figures

Figure 1

9 pages, 952 KiB  
Article
No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis
by Yuxi Zhu, Xinyu Wang, Sibo Wang, Zhangrong Song and Yuzhou Du
Insects 2024, 15(10), 784; https://doi.org/10.3390/insects15100784 - 9 Oct 2024
Cited by 1 | Viewed by 1045
Abstract
Heritable endosymbiont Wolbachia is prevalent among arthropods, serving multiple functions for their hosts. However, the role of Wolbachia in mediating thermal preference selection remains largely unexplored. In this study, we utilized a custom-built thermal gradient to evaluate the thermal preference (Tp) of 1367 [...] Read more.
Heritable endosymbiont Wolbachia is prevalent among arthropods, serving multiple functions for their hosts. However, the role of Wolbachia in mediating thermal preference selection remains largely unexplored. In this study, we utilized a custom-built thermal gradient to evaluate the thermal preference (Tp) of 1367 individuals of the invasive leaf-miner Liriomyza huidobrensis with or without Wolbachia wLhui from Yunnan and Xinjiang populations. Under meticulously controlled conditions and with a vast sample size, we found no significant difference in the mean Tp between wLhui-infected and uninfected leaf miners from either population when host age and sex were not considered. Furthermore, generalized linear model (GLM) analysis revealed no significant correlation between average Tp and age, sex, or Wolbachia infection, nor interactions among these factors, except in the Xinjiang population, where Tp was strongly associated with host age. Finally, we discuss the ecological implications of these findings and propose future research directions on Wolbachia-mediated host Tp in the leaf miner. Overall, our findings do not provide evidence that Wolbachia significantly affects the thermal preference of L. huidobrensis. Further studies across different systems are needed to investigate the complex interactions between Wolbachia and insect thermal behavior. Full article
(This article belongs to the Special Issue Ecologically Important Symbioses in Insects)
Show Figures

Figure 1

17 pages, 2460 KiB  
Article
Wolbachia Natural Infection of Mosquitoes in French Guiana: Prevalence, Distribution, and Genotyping
by Emmanuelle Clervil, Amandine Guidez, Stanislas Talaga, Romuald Carinci, Pascal Gaborit, Anne Lavergne, Sourakhata Tirera and Jean-Bernard Duchemin
Microorganisms 2024, 12(10), 1994; https://doi.org/10.3390/microorganisms12101994 - 30 Sep 2024
Viewed by 1481
Abstract
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around [...] Read more.
Wolbachia are the most spread bacterial endosymbionts in the world. These bacteria can manipulate host reproduction or block virus transmission in mosquitoes. For this reason, Wolbachia-based strategies for vector control are seriously considered or have already been applied in several countries around the world. In South America, Wolbachia have been studied in human pathogen vectors such as sand flies and mosquitoes. In French Guiana, the diversity and distribution of Wolbachia are not well known in mosquitoes. In this study, we screened for Wolbachia natural infection in mosquitoes in French Guiana by using 16S rRNA, Wolbachia surface protein (WSP), and multi-locus sequence typing (MLST) molecular assays. A total of 29 out of 44 (65.9%) mosquito species were positive for natural Wolbachia infection according to the PCR results, and two Wolbachia strains co-infected three specimens of Mansonia titillans. Then, we analyzed the phylogenetic relationships among the Wolbachia detected. All of the tested specimens of Aedes aegypti, the major dengue vector of French Guiana, were negative. These results regarding Wolbachia strain, distribution, and prevalence in mosquitoes from French Guiana highlight Wolbachia–mosquito associations and pave the way for a future Wolbachia-based strategy for vector control in this Amazonian territory. Full article
(This article belongs to the Special Issue Microbiota of Insect Vectors)
Show Figures

Figure 1

Back to TopTop