No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Leaf-Miner Collection and Rearing
2.2. Temperature Preference Measurement
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Wolbachia Infection Has No Effect on Tp in the Yunnan Leaf-Miner Population
3.3. Wolbachia Infection Does Not Alter Tp in the Xinjiang Leaf-Miner Population
4. Discussion
4.1. Divergent Influences of Wolbachia on Host Tp in Various Insect Species
4.2. The Ecological Significance of Wolbachia-Mediated Host Tp
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Shropshire, J.D.; Cross, K.L.; Leigh, B.; Mansueto, A.J.; Stewart, V.; Bordenstein, S.R.; Bordenstein, S.R. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021, 29, 879–893. [Google Scholar] [CrossRef]
- Porter, J.; Sullivan, W. The cellular lives of Wolbachia. Nat. Rev. Microbiol. 2023, 21, 750–766. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Song, Y.L.; Zhang, Y.K.; Hoffmann, A.A.; Zhou, J.C.; Sun, J.T.; Hong, X.Y. Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl. Environ. Microb. 2018, 84, e02546-17. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.L.; Abernathy, D.G.; Willett, B.C.; Selland, E.K.; Itoe, M.A.; Catteruccia, F. Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat. Microbiol. 2021, 6, 1575–1582. [Google Scholar] [CrossRef]
- Stouthamer, R.; Breeuwer, J.A.; Hurst, G.D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 1999, 53, 71–102. [Google Scholar] [CrossRef]
- Douglas, A.E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 2009, 23, 38–47. [Google Scholar] [CrossRef]
- Hosokawa, T.; Koga, R.; Kikuchi, Y.; Meng, X.Y.; Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. USA 2010, 107, 769–774. [Google Scholar] [CrossRef]
- Ju, J.F.; Bing, X.L.; Zhao, D.S.; Guo, Y.; Xi, Z.; Hoffmann, A.A.; Zhang, K.J.; Huang, H.J.; Gong, J.T.; Zhang, X.; et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2020, 14, 676–687. [Google Scholar] [CrossRef]
- Hague, M.T.; Shropshire, J.D.; Caldwell, C.N.; Statz, J.P.; Stanek, K.A.; Conner, W.R.; Cooper, B.S. Temperature effects on cellular host-microbe interactions explain continent-wide endosymbiont prevalence. Curr. Biol. 2022, 32, 878–888. [Google Scholar] [CrossRef]
- Ferguson, L.F.; Ross, P.A.; van Heerwaarden, B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain-and trait-specific manner. Environ. Microbiol. 2024, 26, e16609. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.M.; Brownlie, J.C.; O’Neill, S.L.; Johnson, K.N. Wolbachia and virus protection in insects. Science 2008, 322, 702. [Google Scholar] [CrossRef]
- Teixeira, L.; Ferreira, Á.; Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008, 6, e1000002. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.T.; Li, Y.; Li, T.P.; Liang, Y.; Hu, L.; Zhang, D.; Zhou, C.Y.; Yang, C.; Zhang, X.; Zha, S.S.; et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr. Biol. 2020, 30, 4837–4845. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.T.; Li, T.P.; Wang, M.K.; Hong, X.Y. Wolbachia-based strategies for control of agricultural pests. Curr. Opin. Insect Sci. 2023, 57, 101039. [Google Scholar] [CrossRef]
- Strunov, A.; Schönherr, C.; Kapun, M. Wolbachia effects on thermal preference of natural Drosophila melanogaster are influenced by host genetic background, Wolbachia type, and bacterial titer. Environ. Microbiol. 2024, 26, e16579. [Google Scholar] [CrossRef]
- Hague, M.T.J.; Caldwell, C.N.; Cooper, B.S. Pervasive effects of Wolbachia on host temperature preference. mBio 2020, 11, e01768-20. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Song, Z.R.; Zhang, Y.Y.; Hoffmann, A.A.; Hong, X.Y. Spider mites singly infected with either Wolbachia or Spiroplasma have reduced thermal tolerance. Front. Microbiol. 2021, 12, 706321. [Google Scholar] [CrossRef]
- Arnold, P.A.; Levin, S.C.; Stevanovic, A.L.; Johnson, K.N. Wolbachia-infected Drosophila prefer cooler temperatures. Ecol. Entomol. 2019, 44, 287–290. [Google Scholar] [CrossRef]
- Truitt, A.M.; Kapun, M.; Kaur, R.; Miller, W.J. Wolbachia modifies thermal preference in Drosophila melanogaster. Environ. Microbiol. 2019, 21, 3259–3268. [Google Scholar] [CrossRef]
- Strunov, A.; Schoenherr, C.; Kapun, M. Wolbachia has subtle effects on thermal preference in highly inbred Drosophila melanogaster which vary with life stage and environmental conditions. Sci. Rep. 2023, 13, 13792. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, P.G.; Scheffer, S.J.; Visser, D.; Valladares, G.; Soares Correa, A.; Shepard, B.M.; Rauf, A.; Murphy, S.T.; Mujica, N.; MacVean, C.; et al. The invasive Liriomyza huidobrensis (Diptera: Agromyzidae): Understanding its pest status and management globally. J. Insect Sci. 2017, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Diagne, C.; Leroy, B.; Vaissière, A.C.; Gozlan, R.E.; Roiz, D.; Jarić, I.; Salles, J.M.; Bradshaw, C.J.A.; Courchamp, F. High and rising economic costs of biological invasions worldwide. Nature 2021, 592, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Kang, L. Variation in cold hardiness of Liriomyza huidobrensis (Diptera: Agromyzidae) along latitudinal gradients. Environ. Entomol. 2004, 33, 155–164. [Google Scholar] [CrossRef]
- Gao, Y.L.; Reitz, S.R.; Xing, Z.L.; Ferguson, S.; Lei, Z.R. A decade of a leafminer invasion in China: Lessons learned. Pest Manag. Sci. 2017, 73, 1775–1779. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Chang, Y.W.; Wen, T.; Yang, R.; Wang, Y.C.; Wang, X.Y.; Lu, M.M.; Du, Y.Z. Species identity dominates over environment in driving bacterial community assembly in wild invasive leaf miners. Microbiol. Spectr. 2022, 10, e00266-22. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Wang, X.Y.; Yang, T.Y.; Zhang, H.H.; Li, T.P.; Du, Y.Z. Mechanisms of bacterial and fungal community assembly in leaf miners during transition from natural to laboratory environments. Front. Microbiol. 2024, 15, 1424568. [Google Scholar] [CrossRef]
- Lu, M.; Hulcr, J.; Sun, J. The role of symbiotic microbes in insect invasions. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 487–505. [Google Scholar] [CrossRef]
- Matute, D.R.; Novak, C.J.; Coyne, J.A. Temperature-based extrinsic reproductive isolation in two species of Drosophila. Evolution 2009, 63, 595–612. [Google Scholar] [CrossRef]
- Rajpurohit, S.; Schmidt, P.S. Measuring thermal behavior in smaller insects: A case study in Drosophila melanogaster demonstrates effects of sex, geographic origin, and rearing temperature on adult behavior. Fly 2016, 10, 149–161. [Google Scholar] [CrossRef]
- Corbin, C.; Heyworth, E.R.; Ferrari, J.; Hurst, G.D. Heritable symbionts in a world of varying temperature. Heredity 2017, 118, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Iltis, C.; Tougeron, K.; Hance, T.; Louâpre, P.; Foray, V. A perspective on insect–microbe holobionts facing thermal fluctuations in a climate-change context. Environ. Microbiol. 2022, 24, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, M.M.; Engl, T.; Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 2020, 39, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Zhang, Y.Y.; Wang, X.Y.; Yin, Y.; Du, Y.Z. Wolbachia modify host cell metabolite profiles in response to short-term temperature stress. Environ. Microbiol. Rep. 2024, 16, e70013. [Google Scholar] [CrossRef]
- Ross, P.A.; Turelli, M.; Hoffmann, A.A. Evolutionary ecology of Wolbachia releases for disease control. Annu. Rev. Genet. 2019, 53, 93–116. [Google Scholar] [CrossRef]
- Tagami, Y.; Doi, M.; Sugiyama, K.; Tatara, A.; Saito, T. Survey of leafminers and their parasitoids to find endosymbionts for improvement of biological control. Biol. Control 2006, 38, 210–216. [Google Scholar] [CrossRef]
- Pramono, A.K.; Hidayanti, A.K.; Tagami, Y.; Ando, H. Bacterial community and genome analysis of cytoplasmic incompatibility-inducing Wolbachia in American serpentine leafminer, Liriomyza trifolii. Front. Microbiol. 2024, 15, 1304401. [Google Scholar] [CrossRef]
- Xu, X.; Ridland, P.M.; Umina, P.A.; Gill, A.; Ross, P.A.; Pirtle, E.; Hoffmann, A.A. High incidence of related Wolbachia across unrelated leaf-mining Diptera. Insects 2021, 12, 788. [Google Scholar] [CrossRef]
Population | Factor | χ2 | df | p-Value |
---|---|---|---|---|
Yunnan | Age | 0.444 | 1 | 0.505 |
Sex | 1.918 | 1 | 0.166 | |
Wolbachia | 1.037 | 1 | 0.308 | |
Age × Sex | 1.117 | 1 | 0.291 | |
Age × Wolbachia | 1.032 | 1 | 0.310 | |
Sex × Wolbachia | 2.499 | 1 | 0.114 | |
Age × Sex × Wolbachia | 0.481 | 1 | 0.488 | |
Xinjiang | Age | 17.277 | 1 | 0.000 |
Sex | 0.012 | 1 | 0.911 | |
Wolbachia | 0.242 | 1 | 0.622 | |
Age × Sex | 3.299 | 1 | 0.069 | |
Age × Wolbachia | 0.125 | 1 | 0.724 | |
Sex × Wolbachia | 3.841 | 1 | 0.050 | |
Age × Sex × Wolbachia | 0.177 | 1 | 0.674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Wang, X.; Wang, S.; Song, Z.; Du, Y. No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. Insects 2024, 15, 784. https://doi.org/10.3390/insects15100784
Zhu Y, Wang X, Wang S, Song Z, Du Y. No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. Insects. 2024; 15(10):784. https://doi.org/10.3390/insects15100784
Chicago/Turabian StyleZhu, Yuxi, Xinyu Wang, Sibo Wang, Zhangrong Song, and Yuzhou Du. 2024. "No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis" Insects 15, no. 10: 784. https://doi.org/10.3390/insects15100784
APA StyleZhu, Y., Wang, X., Wang, S., Song, Z., & Du, Y. (2024). No Evidence for Wolbachia Effects on the Thermal Preference of the Invasive Pest Liriomyza huidobrensis. Insects, 15(10), 784. https://doi.org/10.3390/insects15100784