Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Wilms’ tumor suppressor gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 241 KiB  
Article
WT1 Gene Pathogenic Variants: Clinical Challenges and Treatment Strategies in Pediatric Nephrology—One Center Practice
by Artur Janek, Andrzej Badeński, Marta Badeńska, Martyna Szuster, Karolina Szymańska-Kurek, Elżbieta Trembecka-Dubel and Maria Szczepańska
Int. J. Mol. Sci. 2025, 26(8), 3642; https://doi.org/10.3390/ijms26083642 - 11 Apr 2025
Viewed by 711
Abstract
Pathogenic variants in the Wilms’ tumor suppressor gene 1 (WT1 gene) can lead to serious disorders within the kidney and urogenital system, including chronic kidney disease. There is still much uncertainty regarding the optimal management of diseases caused by WT1 dysfunction, posing [...] Read more.
Pathogenic variants in the Wilms’ tumor suppressor gene 1 (WT1 gene) can lead to serious disorders within the kidney and urogenital system, including chronic kidney disease. There is still much uncertainty regarding the optimal management of diseases caused by WT1 dysfunction, posing a challenge for physicians caring for these patients. The aim of our study is to present experiences related to the course and treatment of patients with confirmed WT1 pathogenic variants. Data from seven patients (five girls, two boys), who were at the age of 4.8 ± 5.1 years (0.3–14 years) at their first admission and were treated between 1997–2022, were analyzed. The analysis included each patient’s age at the day of diagnosis, anthropometric measurements, comorbidities, and laboratory and genetic test results, as well as their treatment, oncological procedures, and performed surgeries. Wilms’ tumor was the first manifestation of the disease in three patients. Arterial hypertension was diagnosed in three patients, and anemia in four. Treatment of patients with nephrotic syndrome included glucocorticosteroid therapy (GCS), calcineurin inhibitors (CNIs), and mycophenolate mofetil (MMF). Nephrectomy was performed in five children, while kidney transplantation was carried out in two patients. An interdisciplinary approach to WT1 gene pathogenic variants, including early diagnosis, individualization, regular monitoring of treatment, and oncological vigilance, is crucial for improving prognosis and ensuring proper care for patients with nephrological manifestations of WT1 gene region disorders. Furthermore, for a comprehensive understanding of the scope of this disease and the development of effective therapy methods, continued research on the clinical manifestations of WT1 pathogenic variants is essential. Full article
(This article belongs to the Special Issue Chronic Kidney Disease: The State of the Art and Future Perspectives)
18 pages, 1780 KiB  
Review
The Wilms’ Tumor Suppressor WT1 in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair
by Sandra Díaz del Moral, Nicole Wagner and Kay-Dietrich Wagner
Cells 2024, 13(24), 2078; https://doi.org/10.3390/cells13242078 - 17 Dec 2024
Cited by 1 | Viewed by 1470
Abstract
The Wilms’ tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved [...] Read more.
The Wilms’ tumor suppressor WT1 is essential for the development of the heart, among other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those observed through development, and WT1 expression is restricted to a few cell types. However, its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little is known about the roles it plays in cardiomyocytes, which are the main cell type affected after myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis and heart regeneration. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

19 pages, 2522 KiB  
Article
Cardiomyocyte-Specific Wt1 Is Involved in Cardiac Metabolism and Response to Damage
by Sandra Díaz del Moral, Maha Benaouicha, Cristina Villa del Campo, Miguel Torres, Nicole Wagner, Kay-Dietrich Wagner, Ramón Muñoz-Chápuli and Rita Carmona
J. Cardiovasc. Dev. Dis. 2023, 10(5), 211; https://doi.org/10.3390/jcdd10050211 - 12 May 2023
Cited by 4 | Viewed by 3461 | Correction
Abstract
The Wilms tumor suppressor gene (Wt1) encodes a C2H2-type zinc-finger transcription factor that participates in transcriptional regulation, RNA metabolism, and protein–protein interactions. WT1 is involved in the development of several organs, including the kidneys and gonads, heart, spleen, adrenal glands, liver, diaphragm, and [...] Read more.
The Wilms tumor suppressor gene (Wt1) encodes a C2H2-type zinc-finger transcription factor that participates in transcriptional regulation, RNA metabolism, and protein–protein interactions. WT1 is involved in the development of several organs, including the kidneys and gonads, heart, spleen, adrenal glands, liver, diaphragm, and neuronal system. We previously provided evidence of transient WT1 expression in about 25% of cardiomyocytes of mouse embryos. Conditional deletion of Wt1 in the cardiac troponin T lineage caused abnormal cardiac development. A low expression of WT1 has also been reported in adult cardiomyocytes. Therefore, we aimed to explore its function in cardiac homeostasis and in the response to pharmacologically induced damage. Silencing of Wt1 in cultured neonatal murine cardiomyocytes provoked alterations in mitochondrial membrane potential and changes in the expression of genes related to calcium homeostasis. Ablation of WT1 in adult cardiomyocytes by crossing αMHCMerCreMer mice with homozygous WT1-floxed mice induced hypertrophy, interstitial fibrosis, altered metabolism, and mitochondrial dysfunction. In addition, conditional deletion of WT1 in adult cardiomyocytes increased doxorubicin-induced damage. These findings suggest a novel role of WT1 in myocardial physiology and protection against damage. Full article
(This article belongs to the Special Issue Cardiac Development, Regeneration and Repair)
Show Figures

Graphical abstract

15 pages, 2372 KiB  
Article
Loss of S1P Lyase Expression in Human Podocytes Causes a Reduction in Nephrin Expression That Involves PKCδ Activation
by Faik Imeri, Bisera Stepanovska Tanturovska, Roxana Manaila, Hermann Pavenstädt, Josef Pfeilschifter and Andrea Huwiler
Int. J. Mol. Sci. 2023, 24(4), 3267; https://doi.org/10.3390/ijms24043267 - 7 Feb 2023
Cited by 6 | Viewed by 2250
Abstract
Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant [...] Read more.
Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant nephrotic syndrome, suggesting that the SPL is critically involved in maintaining the glomerular ultrafiltration barrier, which is mainly built by glomerular podocytes. In this study, we have investigated the molecular effects of SPL knockdown (kd) in human podocytes to better understand the mechanism underlying nephrotic syndrome in patients. A stable SPL-kd cell line of human podocytes was generated by the lentiviral shRNA transduction method and was characterized for reduced SPL mRNA and protein levels and increased S1P levels. This cell line was further studied for changes in those podocyte-specific proteins that are known to regulate the ultrafiltration barrier. We show here that SPL-kd leads to the downregulation of the nephrin protein and mRNA expression, as well as the Wilms tumor suppressor gene 1 (WT1), which is a key transcription factor regulating nephrin expression. Mechanistically, SPL-kd resulted in increased total cellular protein kinase C (PKC) activity, while the stable downregulation of PKCδ revealed increased nephrin expression. Furthermore, the pro-inflammatory cytokine, interleukin 6 (IL-6), also reduced WT1 and nephrin expression. In addition, IL-6 caused increased PKCδ Thr505 phosphorylation, suggesting enzyme activation. Altogether, these data demonstrate that nephrin is a critical factor downregulated by the loss of SPL, which may directly cause podocyte foot process effacement as observed in mice and humans, leading to albuminuria, a hallmark of nephrotic syndrome. Furthermore, our in vitro data suggest that PKCδ could represent a new possible pharmacological target for the treatment of a nephrotic syndrome induced by SPL mutations. Full article
Show Figures

Figure 1

11 pages, 4505 KiB  
Communication
Appropriate Amounts and Activity of the Wilms’ Tumor Suppressor Gene, wt1, Are Required for Normal Pronephros Development of Xenopus Embryos
by Taisei Shiraki, Takuma Hayashi, Jotaro Ozue and Minoru Watanabe
J. Dev. Biol. 2022, 10(4), 46; https://doi.org/10.3390/jdb10040046 - 29 Oct 2022
Cited by 1 | Viewed by 2343
Abstract
The Wilms’ tumor suppressor gene, wt1, encodes a zinc finger-containing transcription factor that binds to a GC-rich motif and regulates the transcription of target genes. wt1 was first identified as a tumor suppressor gene in Wilms’ tumor, a pediatric kidney tumor, and [...] Read more.
The Wilms’ tumor suppressor gene, wt1, encodes a zinc finger-containing transcription factor that binds to a GC-rich motif and regulates the transcription of target genes. wt1 was first identified as a tumor suppressor gene in Wilms’ tumor, a pediatric kidney tumor, and has been implicated in normal kidney development. The WT1 protein has transcriptional activation and repression domains and acts as a transcriptional activator or repressor, depending on the target gene and context. In Xenopus, an ortholog of wt1 has been isolated and shown to be expressed in the developing embryonic pronephros. To investigate the role of wt1 in pronephros development in Xenopus embryos, we mutated wt1 by CRISPR/Cas9 and found that the expression of pronephros marker genes was reduced. In reporter assays in which known WT1 binding sequences were placed upstream of the luciferase gene, WT1 activated transcription of the luciferase gene. The injection of wild-type or artificially altered transcriptional activity of wt1 mRNA disrupted the expression of pronephros marker genes in the embryos. These results suggest that the appropriate amounts and activity of WT1 protein are required for normal pronephros development in Xenopus embryos. Full article
(This article belongs to the Special Issue Scientific Papers by Developmental Biologists in Japan)
Show Figures

Graphical abstract

13 pages, 625 KiB  
Review
Regulation of Mesothelial Cell Fate during Development and Human Diseases
by Toshiaki Taniguchi, Hiroyuki Tomita, Tomohiro Kanayama, Kazumasa Mogi, Yoshihiro Koya, Yoshihiko Yamakita, Masato Yoshihara, Hiroaki Kajiyama and Akira Hara
Int. J. Mol. Sci. 2022, 23(19), 11960; https://doi.org/10.3390/ijms231911960 - 8 Oct 2022
Cited by 5 | Viewed by 3728
Abstract
Mesothelial cells (MCs) play a classic role in maintaining homeostasis in pleural, peritoneal, and pericardial cavities. MCs work as lubricants to reduce friction between organs, as regulators of fluid transport, and as regulators of defense mechanisms in inflammation. MCs can differentiate into various [...] Read more.
Mesothelial cells (MCs) play a classic role in maintaining homeostasis in pleural, peritoneal, and pericardial cavities. MCs work as lubricants to reduce friction between organs, as regulators of fluid transport, and as regulators of defense mechanisms in inflammation. MCs can differentiate into various cells, exhibiting epithelial and mesenchymal characteristics. MCs have a high potential for differentiation during the embryonic period when tissue development is active, and this potential decreases through adulthood. The expression of the Wilms’ tumor suppressor gene (Wt1), one of the MC markers, decreased uniformly and significantly from the embryonic period to adulthood, suggesting that it plays a major role in the differentiation potential of MCs. Wt1 deletion from the embryonic period results in embryonic lethality in mice, and even Wt1 knockout in adulthood leads to death with rapid organ atrophy. These findings suggest that MCs expressing Wt1 have high differentiation potential and contribute to the formation and maintenance of various tissues from the embryonic period to adulthood. Because of these properties, MCs dynamically transform their characteristics in the tumor microenvironment as cancer-associated MCs. This review focuses on the relationship between the differentiation potential of MCs and Wt1, including recent reports using lineage tracing using the Cre-loxP system. Full article
Show Figures

Figure 1

21 pages, 6080 KiB  
Article
Implications of the Wilms’ Tumor Suppressor Wt1 in Cardiomyocyte Differentiation
by Nicole Wagner, Marina Ninkov, Ana Vukolic, Günseli Cubukcuoglu Deniz, Minoo Rassoulzadegan, Jean-François Michiels and Kay-Dietrich Wagner
Int. J. Mol. Sci. 2021, 22(9), 4346; https://doi.org/10.3390/ijms22094346 - 21 Apr 2021
Cited by 15 | Viewed by 4427
Abstract
The Wilms’ tumor suppressor Wt1 is involved in multiple developmental processes and adult tissue homeostasis. The first phenotypes recognized in Wt1 knockout mice were developmental cardiac and kidney defects. Wt1 expression in the heart has been described in epicardial, endothelial, smooth muscle cells, [...] Read more.
The Wilms’ tumor suppressor Wt1 is involved in multiple developmental processes and adult tissue homeostasis. The first phenotypes recognized in Wt1 knockout mice were developmental cardiac and kidney defects. Wt1 expression in the heart has been described in epicardial, endothelial, smooth muscle cells, and fibroblasts. Expression of Wt1 in cardiomyocytes has been suggested but remained a controversial issue, as well as the role of Wt1 in cardiomyocyte development and regeneration after injury. We determined cardiac Wt1 expression during embryonic development, in the adult, and after cardiac injury by quantitative RT-PCR and immunohistochemistry. As in vitro model, phenotypic cardiomyocyte differentiation, i.e., the appearance of rhythmically beating clones from mouse embryonic stem cells (mESCs) and associated changes in gene expression were analyzed. We detected Wt1 in cardiomyocytes from embryonic day (E10.5), the first time point investigated, until adult age. Cardiac Wt1 mRNA levels decreased during embryonic development. In the adult, Wt1 was reactivated in cardiomyocytes 48 h and 3 weeks following myocardial infarction. Wt1 mRNA levels were increased in differentiating mESCs. Overexpression of Wt1(-KTS) and Wt1(+KTS) isoforms in ES cells reduced the fraction of phenotypically cardiomyocyte differentiated clones, which was preceded by a temporary increase in c-kit expression in Wt1(-KTS) transfected ES cell clones and induction of some cardiomyocyte markers. Taken together, Wt1 shows a dynamic expression pattern during cardiomyocyte differentiation and overexpression in ES cells reduces their phenotypical cardiomyocyte differentiation. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Cardiac Development and Disease)
Show Figures

Figure 1

19 pages, 2408 KiB  
Article
Crohn’s Disease Increases the Mesothelial Properties of Adipocyte Progenitors in the Creeping Fat
by Ana Madeira, Carolina Serena, Miriam Ejarque, Elsa Maymó-Masip, Monica Millan, M. Carmen Navarro-Ruiz, Rocío Guzmán-Ruiz, María M. Malagón, Eloy Espin, Marc Martí, Margarita Menacho, Ana Megía, Joan Vendrell and Sonia Fernández-Veledo
Int. J. Mol. Sci. 2021, 22(8), 4292; https://doi.org/10.3390/ijms22084292 - 20 Apr 2021
Cited by 7 | Viewed by 3881
Abstract
Our understanding of the interplay between human adipose tissue and the immune system is limited. The mesothelium, an immunologically active structure, emerged as a source of visceral adipose tissue. After investigating the mesothelial properties of human visceral and subcutaneous adipose tissue and their [...] Read more.
Our understanding of the interplay between human adipose tissue and the immune system is limited. The mesothelium, an immunologically active structure, emerged as a source of visceral adipose tissue. After investigating the mesothelial properties of human visceral and subcutaneous adipose tissue and their progenitors, we explored whether the dysfunctional obese and Crohn’s disease environments influence the mesothelial/mesenchymal properties of their adipocyte precursors, as well as their ability to mount an immune response. Using a tandem transcriptomic/proteomic approach, we evaluated the mesothelial and mesenchymal expression profiles in adipose tissue, both in subjects covering a wide range of body-mass indexes and in Crohn’s disease patients. We also isolated adipose tissue precursors (adipose-derived stem cells, ASCs) to assess their mesothelial/mesenchymal properties, as well as their antigen-presenting features. Human visceral tissue presented a mesothelial phenotype not detected in the subcutaneous fat. Only ASCs from mesenteric adipose tissue, named creeping fat, had a significantly higher expression of the hallmark mesothelial genes mesothelin (MSLN) and Wilms’ tumor suppressor gene 1 (WT1), supporting a mesothelial nature of these cells. Both lean and Crohn’s disease visceral ASCs expressed equivalent surface percentages of the antigen-presenting molecules human leucocyte antigen—DR isotype (HLA-DR) and CD86. However, lean-derived ASCs were predominantly HLA-DR dim, whereas in Crohn’s disease, the HLA-DR bright subpopulation was increased 3.2-fold. Importantly, the mesothelial-enriched Crohn’s disease precursors activated CD4+ T-lymphocytes. Our study evidences a mesothelial signature in the creeping fat of Crohn’s disease patients and its progenitor cells, the latter being able to present antigens and orchestrate an immune response. Full article
Show Figures

Figure 1

12 pages, 9436 KiB  
Article
Wilms’ Tumor 1 (WT1): A Novel Immunomarker of Dermatofibrosarcoma Protuberans—An Immunohistochemical Study on a Series of 114 Cases of Bland-Looking Mesenchymal Spindle Cell Lesions of the Dermis/Subcutaneous Tissues
by Eliana Piombino, Giuseppe Broggi, Mattia Barbareschi, Sergio Castorina, Rosalba Parenti, Giovanni Bartoloni, Lucia Salvatorelli and Gaetano Magro
Cancers 2021, 13(2), 252; https://doi.org/10.3390/cancers13020252 - 12 Jan 2021
Cited by 14 | Viewed by 2978
Abstract
Purpose: to investigate the immunohistochemical expression and distribution of Wilms’ tumor 1 (WT1) (transcription factor produced by the tumor suppressor gene of the same name) in a series of 114 cases of bland-looking mesenchymal spindle cell lesions of the dermis/subcutaneous tissues to establish [...] Read more.
Purpose: to investigate the immunohistochemical expression and distribution of Wilms’ tumor 1 (WT1) (transcription factor produced by the tumor suppressor gene of the same name) in a series of 114 cases of bland-looking mesenchymal spindle cell lesions of the dermis/subcutaneous tissues to establish whether this immunomarker is differentially expressed in dermatofibrosarcoma protuberans (DFSP) versus its potential morphological mimickers. Methods: This retrospective multi-centric immunohistochemical study included 57 DFSP cases, 15 dermatofibromas, 5 deep fibrous histiocytomas, 8 neurofibromas, 5 spindle cell lipomas, 8 dermal scars, 6 nodular fasciitis, 5 cutaneous leiomyomas and 5 solitary fibrous tumors. Among the 57 DFSP cases, 11 were recurrent lesions; 2 non-recurrent cases exhibited an additional “fibrosarcomatous” overgrowth and 1 recurrent and 2 primary tumors contained a minority of “giant cell fibroblastoma” components. Results: Most DFSP (95% of cases) exhibited cytoplasmic staining for WT1; 11/11 residual/recurrent tumors showed diffuse and strong WT1 cytoplasmic immunoreactivity; apart from neurofibromas, WT1 expression was lacking in all the other cases studied. Conclusions: The cytoplasmic expression of WT1 may be exploitable as a complementary diagnostic immunomarker to CD34 in confirming the diagnosis of DFSP and to better evaluate the residual/recurrent tumor component. Full article
(This article belongs to the Special Issue Bio-Pathological Markers in the Diagnosis and Therapy of Cancer)
Show Figures

Figure 1

27 pages, 10276 KiB  
Review
Immunohistochemical Expression of Wilms’ Tumor 1 Protein in Human Tissues: From Ontogenesis to Neoplastic Tissues
by Lucia Salvatorelli, Giovanna Calabrese, Rosalba Parenti, Giada Maria Vecchio, Lidia Puzzo, Rosario Caltabiano, Giuseppe Musumeci and Gaetano Magro
Appl. Sci. 2020, 10(1), 40; https://doi.org/10.3390/app10010040 - 19 Dec 2019
Cited by 10 | Viewed by 9446
Abstract
The human Wilms’ tumor gene (WT1) was originally isolated in a Wilms’ tumor of the kidney as a tumor suppressor gene. Numerous isoforms of WT1, by combination of alternative translational start sites, alternative RNA splicing and RNA editing, have been well documented. During [...] Read more.
The human Wilms’ tumor gene (WT1) was originally isolated in a Wilms’ tumor of the kidney as a tumor suppressor gene. Numerous isoforms of WT1, by combination of alternative translational start sites, alternative RNA splicing and RNA editing, have been well documented. During human ontogenesis, according to the antibodies used, anti-C or N-terminus WT1 protein, nuclear expression can be frequently obtained in numerous tissues, including metanephric and mesonephric glomeruli, and mesothelial and sub-mesothelial cells, while cytoplasmic staining is usually found in developing smooth and skeletal cells, myocardium, glial cells, neuroblasts, adrenal cortical cells and the endothelial cells of blood vessels. WT1 has been originally described as a tumor suppressor gene in renal Wilms’ tumor, but more recent studies emphasized its potential oncogenic role in several neoplasia with a variable immunostaining pattern that can be exclusively nuclear, cytoplasmic or both, according to the antibodies used (anti-C or N-terminus WT1 protein). With the present review we focus on the immunohistochemical expression of WT1 in some tumors, emphasizing its potential diagnostic role and usefulness in differential diagnosis. In addition, we analyze the WT1 protein expression profile in human embryonal/fetal tissues in order to suggest a possible role in the development of organs and tissues and to establish whether expression in some tumors replicates that observed during the development of tissues from which these tumors arise. Full article
(This article belongs to the Special Issue Immunohistochemical Expression)
Show Figures

Figure 1

Back to TopTop