Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (10)

Search Parameters:
Keywords = Weissella cibaria CMU

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6751 KiB  
Article
In Vitro Effects of Weissella cibaria CMU and CMS1 on Receptor Activator of NF-κB Ligand (RANKL)-Induced Osteoclast Differentiation
by Geun-Yeong Park, Jeong-Ae Park and Mi-Sun Kang
J. Funct. Biomater. 2024, 15(3), 65; https://doi.org/10.3390/jfb15030065 - 8 Mar 2024
Cited by 1 | Viewed by 2207
Abstract
Excessive osteoclast activity can promote periodontitis-associated bone destruction. The inhibitory mechanisms of Weissella cibaria strains CMU and CMS1 against periodontitis have not yet been fully elucidated. In this study, we aimed to investigate whether heat-killed (HK) W. cibaria CMU and CMS1 or their [...] Read more.
Excessive osteoclast activity can promote periodontitis-associated bone destruction. The inhibitory mechanisms of Weissella cibaria strains CMU and CMS1 against periodontitis have not yet been fully elucidated. In this study, we aimed to investigate whether heat-killed (HK) W. cibaria CMU and CMS1 or their respective cell-free supernatants (CFSs) inhibit osteoclast differentiation and bone resorption in response to receptor activator of nuclear factor kappa-B ligand (RANKL)-treated RAW 264.7 cells. TRAP (tartrate-resistant acid phosphatase) staining and bone resorption assays revealed that both HK bacteria and CFSs significantly suppressed the number of TRAP-positive cells, TRAP activity, and bone pit formation compared to the RANKL-treated control (p < 0.05). HK bacteria dose-dependently inhibited osteoclastogenesis while selectively regulating certain genes in CFSs (p < 0.05). We found that disrupting the direct interaction between HK bacteria and RAW 264.7 cells abolished the inhibitory effect of HK bacteria on the expression of osteoclastogenesis-associated proteins (c-Fos, nuclear factor of activated T cells c1 (NFATc1), and cathepsin K). These results suggest that dead bacteria suppress osteoclast differentiation more effectively than the metabolites and may serve as beneficial agents in preventing periodontitis by inhibiting osteoclast differentiation via direct interaction with cells. Full article
(This article belongs to the Special Issue Functional Biomaterials for Regenerative Dentistry)
Show Figures

Graphical abstract

18 pages, 2304 KiB  
Article
In Vitro Preventive Effect and Mechanism of Action of Weissella cibaria CMU against Streptococcus mutans Biofilm Formation and Periodontal Pathogens
by Mi-Sun Kang, Geun-Yeong Park and A-Reum Lee
Microorganisms 2023, 11(4), 962; https://doi.org/10.3390/microorganisms11040962 - 7 Apr 2023
Cited by 9 | Viewed by 3096
Abstract
In this study, we evaluated the in vitro anti-biofilm, antibacterial, and anti-inflammatory activity of Weissella cibaria CMU (CMU), an oral probiotic, against periodontopathogens. Compared to other oral probiotics, CMU showed a superior inhibitory effect on the biofilm formation and growth of Streptococcus mutans [...] Read more.
In this study, we evaluated the in vitro anti-biofilm, antibacterial, and anti-inflammatory activity of Weissella cibaria CMU (CMU), an oral probiotic, against periodontopathogens. Compared to other oral probiotics, CMU showed a superior inhibitory effect on the biofilm formation and growth of Streptococcus mutans on orthodontic wires and artificial teeth (p < 0.05). CMU exerted potent antibacterial effects against S. mutans and Porphyromonas gingivalis according to a line test. In human gingival fibroblasts (HGFs) stimulated by P. gingivalis, Fusobacterium nucleatum, or Prevotella intermedia, CMU suppressed the gene expression of pro-inflammatory cytokines [interleukin (IL)-6, IL-1β, IL-8, and tumor necrosis factor-α] in a dose-dependent manner (p < 0.05). CMU restored the production of the tissue inhibitor of metalloproteinase-1 following its inhibition by P. gingivalis, and it suppressed the expression of matrix metalloproteinase (MMP)-1 and -3 induced by periodontopathogens (p < 0.05). Moreover, CMU needed direct contact with HGFs to exert their anti-inflammatory function, indicating that they act directly on gingival cells to modulate local inflammation. Our preclinical study provides evidence for the potential benefits of topical CMU treatments in preventing the development of caries and periodontitis caused by the dysbiosis of the dental plaque microbiome. Full article
(This article belongs to the Special Issue Oral Biofilms and Human Health)
Show Figures

Figure 1

12 pages, 7457 KiB  
Article
Therapeutic Efficacy of Weissella cibaria CMU and CMS1 on Allergic Inflammation Exacerbated by Diesel Exhaust Particulate Matter in a Murine Asthma Model
by Kyung-Hyo Do, Kwangwon Seo, Sanggu Kim, Soochong Kim, Geun-Yeong Park, Mi-Sun Kang and Wan-Kyu Lee
Medicina 2022, 58(9), 1310; https://doi.org/10.3390/medicina58091310 - 19 Sep 2022
Cited by 5 | Viewed by 2880
Abstract
Background and Objectives: Diesel exhaust particulate matter (DEPM) is an air pollutant that is associated with asthma. In this study, the therapeutic efficacy of Weissella cibaria strains CMU (Chonnam Medical University) and CMS (Chonnam Medical School) 1, together with the drug Synatura, [...] Read more.
Background and Objectives: Diesel exhaust particulate matter (DEPM) is an air pollutant that is associated with asthma. In this study, the therapeutic efficacy of Weissella cibaria strains CMU (Chonnam Medical University) and CMS (Chonnam Medical School) 1, together with the drug Synatura, an anti-tussive expectorant, was investigated in a murine asthma model exacerbated by DEPM. Materials and Methods: BALB/c mice were sensitized with ovalbumin (OVA) before intranasal challenge with OVA and DEPM. W. cibaria CMU, CMS1, and Synatura were administered orally for 21 days. Results: Neither Synatura nor W. cibaria strains affected spleen, liver, or lung weights. W. cibaria strains CMU and CMS1 significantly reduced the levels of interleukin (IL)-4, OVA-specific immunoglobulin E (IgE), and total lung collagen in bronchoalveolar lavage fluid (BALF), similar to those with Synatura, regardless of the oral dose concentration (p < 0.05). In addition, the W. cibaria CMU strain significantly alleviated IL-1β, IL-6, IL-12, monocyte chemotactic protein-1, and tumor necrosis factor-α in BALF, whereas the CMS1 strain significantly alleviated IL-10 and IL-12 in BALF (p < 0.05); however, Synatura did not show any statistical efficacy against them (p > 0.05). All concentrations of W. cibaria CMU and low concentrations of W. cibaria CMS1 significantly reduced lung bronchiolar changes and inflammatory cell infiltration. Conclusions: In conclusion, W. cibaria CMU in asthmatic mice showed better efficacy than W. cibaria CMS1 in improving asthma exacerbated by DEPM exposure, as well as better results than pharmaceuticals. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

12 pages, 3689 KiB  
Article
In Vitro Evaluation of the Effect of Oral Probiotic Weissella cibaria on the Formation of Multi-Species Oral Biofilms on Dental Implant Surfaces
by Mi-Sun Kang and Geun-Yeong Park
Microorganisms 2021, 9(12), 2482; https://doi.org/10.3390/microorganisms9122482 - 30 Nov 2021
Cited by 11 | Viewed by 3278
Abstract
Oral probiotics are beneficial bacteria that can help prevent periodontal disease. However, little is known about the effects of oral probiotics on the formation of implant biofilms. This study aimed to evaluate the effects of oral probiotics Weissella cibaria CMU and CMS1 in [...] Read more.
Oral probiotics are beneficial bacteria that can help prevent periodontal disease. However, little is known about the effects of oral probiotics on the formation of implant biofilms. This study aimed to evaluate the effects of oral probiotics Weissella cibaria CMU and CMS1 in an in vitro complex biofilm model on titanium implant surfaces. First, it was identified through colony biofilm assay that W. cibaria CMU and CMS1 inhibit the formation of multi-species biofilms formed by eight types of bacteria. Two types of saliva-coated titanium discs inoculated with early (Streptococcus gordonii, Streptococcus oralis, Streptococcus sanguinis, Actinomyces naeslundii, and Veillonella parvula), secondary (Fusobacterium nucleatum and Prevotella intermedia), and late (Porphyromonas gingivalis) colonizers were treated with the oral probiotics and then incubated anaerobically for three days. The effects of oral probiotics on titanium disc biofilm formation were analyzed using culture methods, quantitative polymerase chain reaction (qPCR), and microscopic analysis. Both probiotics significantly inhibited the formation of biofilm, and all eight bacterial species were significantly reduced. The effectiveness of both probiotic strains was confirmed by all the methods used. Oral probiotics may have dramatically reduced the biofilm formation of secondary colonizers that act as bridges, thus inhibiting biofilm formation on the titanium surface. Our results suggest that the probiotic W. cibaria offers new possibilities for the prevention of peri-implant mucositis. Full article
(This article belongs to the Special Issue Effect of Bacterial Biofilms Colonization on Oral Health and Therapy)
Show Figures

Figure 1

13 pages, 2921 KiB  
Article
Antimicrobial and Antibiofilm Activities of Weissella cibaria against Pathogens of Upper Respiratory Tract Infections
by Ji-Eun Yeu, Hyeon-Gyu Lee, Geun-Yeong Park, Jisun Lee and Mi-Sun Kang
Microorganisms 2021, 9(6), 1181; https://doi.org/10.3390/microorganisms9061181 - 30 May 2021
Cited by 22 | Viewed by 4819
Abstract
Recently discovered preventive effects of probiotics on oral health have attracted interest to their use for the prevention and treatment of various diseases. This study aimed to evaluate the antimicrobial and antibiofilm properties of Weissella cibaria against Streptococcus pyogenes, Staphylococcus aureus, [...] Read more.
Recently discovered preventive effects of probiotics on oral health have attracted interest to their use for the prevention and treatment of various diseases. This study aimed to evaluate the antimicrobial and antibiofilm properties of Weissella cibaria against Streptococcus pyogenes, Staphylococcus aureus, S. pneumoniae, and Moraxella catarrhalis, the major pathogens of upper respiratory tract infections (URTIs). The antimicrobial activities of W. cibaria were compared with those of other oral probiotics using a competitive inhibition assay and the determination of the minimum inhibitory concentrations (MICs). In addition, a time-kill assay, spectrophotometry, and confocal laser scanning microscopy were used to confirm the antimicrobial and antibiofilm abilities of W. cibaria CMU (oraCMU) and CMS1 (oraCMS1). Both live cells and cell-free supernatants of all tested probiotics, except Streptococcus salivarius, showed excellent antimicrobial activities. All target pathogens were killed within 4 to 24 h at twice the MIC of oraCMU and oraCMS1, which showed the highest antimicrobial activities against M. catarrhalis. The antimicrobial substances that affected different target pathogens were different. Both oraCMU and oraCMS1 showed excellent abilities to inhibit biofilm formation and remove preformed biofilms. Our results suggest that the W. cibaria probiotics offer new possibilities for the prevention and treatment of bacterial URTIs. Full article
(This article belongs to the Special Issue Probiotics for Next Generations)
Show Figures

Figure 1

10 pages, 1265 KiB  
Article
A Randomized, Double-Blind, Placebo-Controlled Trial to Assess the Acidogenic Potential of Dental Biofilms through a Tablet Containing Weissella cibaria CMU
by Mi-Sun Kang, Dong-Suk Lee, Myoungsuk Kim, Seung-Ah Lee and Seoul-Hee Nam
Int. J. Environ. Res. Public Health 2021, 18(9), 4674; https://doi.org/10.3390/ijerph18094674 - 28 Apr 2021
Cited by 6 | Viewed by 3092
Abstract
The possibility of preventing dental caries by taking probiotic bacterium Weissella cibaria (W. cibaria) CMU tablets to alter the pH of the dental plaque in the oral cavity was evaluated. A randomized, double-blind, placebo-controlled trial was performed on adults aged 20 [...] Read more.
The possibility of preventing dental caries by taking probiotic bacterium Weissella cibaria (W. cibaria) CMU tablets to alter the pH of the dental plaque in the oral cavity was evaluated. A randomized, double-blind, placebo-controlled trial was performed on adults aged 20 years or older with 20 or more natural teeth. Ninety-two people underwent dental scaling before being randomly assigned to the experimental group (n = 49) or the control group (n = 43). Depending on the group they belonged to, W. cibaria CMU or the placebo was administered to them once daily for 8 weeks before bedtime. Twenty-four subjects were later excluded from the study because the week 8 dosing was not smoothly performed, for a final subject count of 68. The Cariview test was used to evaluate the amount of acid produced by the dental plaque to assess the risk of caries. The results showed that although there was no significant difference between the results of the two groups, the intake of the W. cibaria CMU tablets eliminated the risk of developing dental caries from acid production in the oral flora because the W. cibaria colonizes and lives in the dental plaque and the oral cavity and suppresses acids. Full article
Show Figures

Figure 1

10 pages, 473 KiB  
Article
Effects of Oral Probiotics on Subjective Halitosis, Oral Health, and Psychosocial Health of College Students: A Randomized, Double-Blind, Placebo-Controlled Study
by Dong-Suk Lee, Myoungsuk Kim, Seoul-Hee Nam, Mi-Sun Kang and Seung-Ah Lee
Int. J. Environ. Res. Public Health 2021, 18(3), 1143; https://doi.org/10.3390/ijerph18031143 - 28 Jan 2021
Cited by 24 | Viewed by 5732
Abstract
Altogether, 81% of Korean college students experience halitosis and concomitant psychosocial problems such as depression and lowered self-esteem, as well as poor oral-health-related quality of life. Although halitosis causes many social and psychological problems among college students, there have been no reports of [...] Read more.
Altogether, 81% of Korean college students experience halitosis and concomitant psychosocial problems such as depression and lowered self-esteem, as well as poor oral-health-related quality of life. Although halitosis causes many social and psychological problems among college students, there have been no reports of improvement interventions. This study aimed to identify the effects of ingesting tablets of the oral probiotic Weissella cibaria CMU (Chonnam Medical University, Gwangju, Korea) on halitosis and examine its effects on psychosocial indicators. This was a randomized, double-blind, placebo-controlled trial. The participants were randomly assigned to the experimental group or the control group. They ingested W. cibaria CMU or the placebo, depending on which group they belonged to, before going to bed daily for eight weeks. The measured indicators were subjective halitosis, subjective oral-health status, depression, self-esteem, and oral-health-related quality of life. Measurements were at baseline and eight weeks later. The participants showed statistically significant differences in subjective halitosis and oral-health-related quality of life. For college students with halitosis, intake of the oral probiotic for eight weeks could be a useful nursing intervention for reducing halitosis and improving oral-health-related quality of life. Full article
(This article belongs to the Special Issue Oral and Dental Health)
Show Figures

Figure 1

22 pages, 8601 KiB  
Article
Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic and Genotypic Analysis
by Mi-Sun Kang, Ji-Eun Yeu and Sang-Phil Hong
Int. J. Mol. Sci. 2019, 20(11), 2693; https://doi.org/10.3390/ijms20112693 - 31 May 2019
Cited by 55 | Viewed by 6871
Abstract
Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety [...] Read more.
Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

13 pages, 1194 KiB  
Article
Characterization of Antibacterial Cell-Free Supernatant from Oral Care Probiotic Weissella cibaria, CMU
by Hae-Soon Lim, Ji-Eun Yeu, Sang-Phil Hong and Mi-Sun Kang
Molecules 2018, 23(8), 1984; https://doi.org/10.3390/molecules23081984 - 9 Aug 2018
Cited by 55 | Viewed by 7561
Abstract
Recently, studies have explored the use of probiotics like the Weissella cibaria strain, CMU (oraCMU), for use as preventive dental medicine instead of chemical oral care methods. The present study was conducted to investigate the antibacterial properties of the cell-free supernatant (CFS) from [...] Read more.
Recently, studies have explored the use of probiotics like the Weissella cibaria strain, CMU (oraCMU), for use as preventive dental medicine instead of chemical oral care methods. The present study was conducted to investigate the antibacterial properties of the cell-free supernatant (CFS) from this bacterium. Cell morphology using the scanning electron microscope, and the antibacterial effect of CFS under various growth conditions were evaluated. The production of hydrogen peroxide, organic acids, fatty acids, and secretory proteins was also studied. Most of the antibacterial effects of oraCMU against periodontal pathogens were found to be acid- and hydrogen peroxide-dose-dependent effects. Lactic acid, acetic acid, and citric acid were the most common organic acids. Among the 37 fatty acids, only 0.02% of oleic acid (C18:1n-9, cis) was detected. Proteomic analysis of the oraCMU secretome identified a total of 19 secreted proteins, including N-acetylmuramidase. This protein may be a potential anti-microbial agent effective against Porphyromonas gingivalis. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings 2018)
Show Figures

Graphical abstract

11 pages, 562 KiB  
Article
Comparative Study on the Characteristics of Weissella cibaria CMU and Probiotic Strains for Oral Care
by Hye-Jin Jang, Mi-Sun Kang, Sung-Hun Yi, Ji-Young Hong and Sang-Pil Hong
Molecules 2016, 21(12), 1752; https://doi.org/10.3390/molecules21121752 - 20 Dec 2016
Cited by 56 | Viewed by 8708
Abstract
Probiotics have been demonstrated as a new paradigm to substitute antibiotic treatment for dental caries, gingivitis, and chronic periodontitis. The present work was conducted to compare the characteristics of oral care probiotics: Weissella cibaria CMU (Chonnam Medical University) and four commercial probiotic strains. [...] Read more.
Probiotics have been demonstrated as a new paradigm to substitute antibiotic treatment for dental caries, gingivitis, and chronic periodontitis. The present work was conducted to compare the characteristics of oral care probiotics: Weissella cibaria CMU (Chonnam Medical University) and four commercial probiotic strains. Survival rates under poor oral conditions, acid production, hydrogen peroxide production, as well as inhibition of biofilm formation, coaggregation, antibacterial activity, and inhibition of volatile sulfur compounds were evaluated. The viability of W. cibaria CMU was not affected by treatment of 100 mg/L lysozyme for 90 min and 1 mM hydrogen peroxide for 6 h. Interestingly, W. cibaria produced less acid and more hydrogen peroxide than the other four probiotics. W. cibaria inhibited biofilm formation by Streptococcus mutans at lower concentrations (S. mutans/CMU = 8) and efficiently coaggregated with Fusobacterium nucleatum. W. cibaria CMU and two commercial probiotics, including Lactobacillus salivarius and Lactobacillus reuteri, showed high antibacterial activities (>97%) against cariogens (S. mutans and Streptococcus sobrinus), and against periodontopathogens (F. nucleatum and Porphyromonas gingivalis). All of the lactic acid bacterial strains in this study significantly reduced levels of hydrogen sulfide and methyl mercaptan produced by F. nucleatum and P. gingivalis (p < 0.05). These results suggest that W. cibaria CMU is applicable as an oral care probiotic. Full article
(This article belongs to the Special Issue Antibacterial Materials and Coatings)
Show Figures

Figure 1

Back to TopTop