Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = WLTC 3b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4741 KiB  
Article
An Efficient Regenerative Braking System for Electric Vehicles Based on a Fuzzy Control Strategy
by Nguyen Thi Anh, Chih-Keng Chen and Xuhui Liu
Vehicles 2024, 6(3), 1496-1512; https://doi.org/10.3390/vehicles6030071 - 30 Aug 2024
Cited by 6 | Viewed by 9913
Abstract
Regenerative braking technology is essential for reducing energy consumption in electric vehicles (EVs). This study introduces a method for optimizing the distribution of deceleration forces in front-wheel-drive electric vehicles that complies with the distribution range outlined by ECE-R13 braking regulations and aligns with [...] Read more.
Regenerative braking technology is essential for reducing energy consumption in electric vehicles (EVs). This study introduces a method for optimizing the distribution of deceleration forces in front-wheel-drive electric vehicles that complies with the distribution range outlined by ECE-R13 braking regulations and aligns with an ideal braking distribution curve. In addition, using a fuzzy control strategy to manage the complex variables of the regenerative braking process, a robust and adaptable system is developed on the Simulink platform. Tested across various driving cycles are NEDC (New European Driving Cycle), WLTC (World Light Duty Vehicle Test Cycle), FTP-72 (Federal Test Procedure 72), and FTP-75 (Federal Test Procedure 75). The method significantly improves energy efficiency: 13% for WLTC, 16% for NEDC, and 30% for both FTP-72 and FTP-75. The simulation results were compared to regenerative braking control techniques A and B, showing that the proposed control method achieves a higher brake energy recovery rate. This leads to a considerable improvement in the vehicle’s energy recovery efficiency. These findings confirm the efficacy of the proposed regenerative brake control system, highlighting its potential to significantly enhance the energy efficiency of electric vehicles. Full article
Show Figures

Figure 1

13 pages, 3265 KiB  
Article
Evaluating the Measurement Uncertainty of On-Road NOx Using a Portable Emission Measurement System (PEMS) Based on Real Testing Data in China
by Sheng Su, Pan Hou, Xin Wang, Liqun Lyu, Yang Ge, Tao Lyu, Yitu Lai, Wanyou Luo and Yachao Wang
Atmosphere 2023, 14(4), 702; https://doi.org/10.3390/atmos14040702 - 11 Apr 2023
Cited by 7 | Viewed by 2625
Abstract
An evaluation of the measurement uncertainty of on-road NOx emissions using portable emission measurement system (PEMS) based on real local testing data collected in China was carried out as per the type B method defined in the EN 17507 standard. The aim of [...] Read more.
An evaluation of the measurement uncertainty of on-road NOx emissions using portable emission measurement system (PEMS) based on real local testing data collected in China was carried out as per the type B method defined in the EN 17507 standard. The aim of this work was to quantify the “absolute” measurement uncertainty of PEMSs, which excluded “PEMS relative to laboratory constant volume sampler (CVS)” uncertainty from the calculation of on-road NOx measurement uncertainty using PEMSs. PEMS instruments from three mainstream manufacturers were employed. The zero drift of the NOx analyzers was evaluated periodically during the real driving emissions (RDE) test, and it was noticed that there was neither a linear nor step model of zero drift, with no correlation with the boundary conditions or measurement principle. Additionally, from the 256 valid RDE tests, the zero drift always ranged from 3.8 ppm to −3.8 ppm, and more than 95% of the span drifts were within a range of 1.5%. Based on the laboratory testing of ten vehicles using the worldwide harmonized light-duty vehicle test cycle (WLTC), the type B uncertainty of PEMS NOx measurements corresponding to China-6a and China-6b limits was assessed. An uncertainty of 26.5% for China-6a was found (NOx limit = 60 mg/km over the WLTC), which is very close to the 22.5% from the EU evaluation results (NOx limit = 80 mg/km over the WLTC); the uncertainty with respect to China-6b was found to be 42.8% because the type-I limit was tuned down to 35 mg/km. This result indicates that, with the ever-tightening regulatory limits of vehicle NOx emissions, big challenges will be posed in terms of the reliability of PEMS measurements, which requires PEMS manufacturers to improve the performance of the instruments and policymakers to refine the test procedures and/or result calculation method to minimize the impacts. Full article
(This article belongs to the Special Issue Traffic Related Emission)
Show Figures

Figure 1

18 pages, 6300 KiB  
Article
Airborne Brake Wear Emissions from a Battery Electric Vehicle
by Linda Bondorf, Lennart Köhler, Tobias Grein, Fabius Epple, Franz Philipps, Manfred Aigner and Tobias Schripp
Atmosphere 2023, 14(3), 488; https://doi.org/10.3390/atmos14030488 - 1 Mar 2023
Cited by 30 | Viewed by 6610
Abstract
Although traffic exhaust emissions in Europe have been drastically reduced, airborne particle emissions caused by brakes and tires are still increasing with the number of vehicles. The measurement of non-exhaust emissions is an emerging technological challenge. We present a custom measurement setup to [...] Read more.
Although traffic exhaust emissions in Europe have been drastically reduced, airborne particle emissions caused by brakes and tires are still increasing with the number of vehicles. The measurement of non-exhaust emissions is an emerging technological challenge. We present a custom measurement setup to investigate the brake- and tire-wear emissions of an in-use battery electric vehicle. A separate brake housing and HEPA ventilation enabled airborne brake wear emissions to be measured under realistic conditions without external influences. The emission tests on a chassis dynamometer included particle number concentrations and particle size distribution for diameters of 4 nm to 10 μm. Emission indices were determined for three driving cycles: WLTC Class 3b, WLTC Brake Part 10, and a real driving cycle. Further investigations focused on emission control through regenerative braking and brake coating. Driving with regenerative braking reduced emissions by up to 89.9%, which related to the concentration of particles in the ultrafine/fine size range. Hard-metal brake coating led to a further significant reduction in emissions of up to 78.9%. The results point the way to future RDE measurement of non-exhaust emissions and show the potential of regenerative braking and brake coating to reduce airborne brake wear emissions. Full article
(This article belongs to the Special Issue Brake Wear Particulate Matter and Mitigation Strategies)
Show Figures

Figure 1

29 pages, 2161 KiB  
Article
Comparison of Capacity Fade for the Constant Current and WLTC Drive Cycle Discharge Modes for Commercial LiFeYPO4 Cells Used in xEV Vehicles
by Jindřich Sadil, František Kekula, Juraj Majera and Vivek Pisharodi
Batteries 2022, 8(12), 282; https://doi.org/10.3390/batteries8120282 - 12 Dec 2022
Cited by 1 | Viewed by 3681
Abstract
In this paper, capacity fade of LiFeYPO4/graphite commercial cells during 116 cycles under different temperatures is studied. The cells were discharged in two modes, during Drive Cycle (DrC) discharge cycles the cell was discharged with current waveform calculated for example battery [...] Read more.
In this paper, capacity fade of LiFeYPO4/graphite commercial cells during 116 cycles under different temperatures is studied. The cells were discharged in two modes, during Drive Cycle (DrC) discharge cycles the cell was discharged with current waveform calculated for example battery electric vehicle (BEV) under WLTC 3b drive cycle conditions, whereas during Constant Current (CC) discharge cycles the cell was discharged with a constant current of the same root mean square of the current, as the WLTC 3b current waveform and with the same depth of discharge. All the cells were charged in constant current/constant voltage mode. Two fresh cells were used for each discharge mode at 25 °C and as the results were similar, only one cell per discharge mode was used at the other temperatures 5 °C and 45 °C. Furthermore, simulation P2D model of calendar and cycle life was calibrated based on experimental data. SoC floating was observed during cycling for both discharge modes, accompanied with slight increase in end discharge voltage and growth of energy efficiency. Concluding the results for 25 °C, not waveform character, but the amount of electric charge in combination with calendar aging has the most effect on the cycle life, which is also proved by the simulation. For 5 °C, the capacity fade is milder for DrC discharge cycles, but simulation results do not prove that, which would demand further investigation. The results for 45 °C are apparently dependent on a higher amount of discharged and charged electric charge and influenced by calendar life, simulated capacity fade corresponds quite well to the experiment. The best State of Health (SoH) simulation results are for temperature 45 °C, RMSE is 0.10% SoH, for the other temperatures RMSE is 0.20 and 0.93% SoH for 25 and 5 °C, respectively. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

17 pages, 1953 KiB  
Article
Emissions of Euro 6 Mono- and Bi-Fuel Gas Vehicles
by Barouch Giechaskiel, Tero Lähde, Michaël Clairotte, Ricardo Suarez-Bertoa, Victor Valverde, Anastasios D. Melas, Tommaso Selleri and Pierre Bonnel
Catalysts 2022, 12(6), 651; https://doi.org/10.3390/catal12060651 - 14 Jun 2022
Cited by 7 | Viewed by 4170
Abstract
Compressed natural gas (CNG) and liquefied petroleum gas (LPG) are included in the group of promoted transport fuel alternatives in Europe. Most studies on emissions factors are based on old technology CNG and LPG fueled vehicles. Furthermore, there are not many data at [...] Read more.
Compressed natural gas (CNG) and liquefied petroleum gas (LPG) are included in the group of promoted transport fuel alternatives in Europe. Most studies on emissions factors are based on old technology CNG and LPG fueled vehicles. Furthermore, there are not many data at low ambient temperatures, on-road driving, or unregulated pollutants, such as ammonia (NH3). In this study we measured the emissions of one Euro 6b CNG light commercial vehicle, one Euro 6b and one Euro 6d-Temp bi-fuel LPG passenger car, one Euro 6d-Temp bi-fuel CNG passenger car, and four Euro 6d-Temp CNG passenger cars. Tests included on-road testing and worldwide harmonized light vehicles test cycles (WLTC) in the laboratory with cold and hot engine, at 23 °C and −7 °C. The results showed 10–23% CO2 savings in gas modality compared to gasoline, lower CO and particle number emissions, and relatively similar total and non-methane hydrocarbons and NOx emissions. The ammonia emissions were high for all vehicles and fuels; higher than gasoline and diesel vehicles. The results also showed that, following the introduction of the real-driving emissions regulation, even though not applicable to the examined vehicles, Euro 6d-Temp vehicles had lower emissions compared to the Euro 6b vehicles. Full article
(This article belongs to the Special Issue Frontiers in Catalytic Emission Control)
Show Figures

Figure 1

41 pages, 11256 KiB  
Article
Modeling and Simulation of Extended-Range Electric Vehicle with Control Strategy to Assess Fuel Consumption and CO2 Emission for the Expected Driving Range
by Paweł Krawczyk, Artur Kopczyński and Jakub Lasocki
Energies 2022, 15(12), 4187; https://doi.org/10.3390/en15124187 - 7 Jun 2022
Cited by 9 | Viewed by 5935
Abstract
Extended-Range Electric Vehicles (EREVs) are intended to improve the range of battery electric vehicles and thus eliminate drivers’ concerns about running out of energy before reaching the desired destination. This paper gives an insight into EREV’s performance operating according to the proposed control [...] Read more.
Extended-Range Electric Vehicles (EREVs) are intended to improve the range of battery electric vehicles and thus eliminate drivers’ concerns about running out of energy before reaching the desired destination. This paper gives an insight into EREV’s performance operating according to the proposed control strategy over various driving cycles, including the Worldwide Harmonized Light-duty Test Cycle Class 3b (WLTC 3b), Federal Test Procedure (FTP-75), and China Light-Duty Vehicle Test Cycle (CLTC-P). Simulation runs were performed in Matlab-Simulink® for different cases of drive range, electricity mix, and vehicle mass. The control strategy goal was to aim at a specified value of battery state of charge at the targeted range value. The obtained test results included: pure electric drive range, acceleration times, EREV range tests, control strategy range errors, Range Extender (REX) utilization metric and distribution of its engagement instances, fuel consumption, total equivalent CO2 emission, powertrain efficiency, and specific energy consumption. The control strategy operated on average with a range error of −1.04% and a range mean square error of 2.13%. Fuel consumption (in range extension mode) varied between 1.37 dm3/100 km (FTP-75) and 6.85 dm3/100 km (WLTC 3b Extra-High 3). CO2eq emission was 95.3–244.2 g/km for Poland, 31.0–160.5 g/km for EU-27, and 1.2–147.6 g/km for Sweden. This paper is a valuable source of information for scientists and engineers seeking to learn the advantages and shortcomings of EREV drives with a proposed control strategy, based on various sets of results. Full article
(This article belongs to the Special Issue Frontiers in Hybrid Vehicles)
Show Figures

Figure 1

12 pages, 2615 KiB  
Article
NH3 and CO Emissions from Fifteen Euro 6d and Euro 6d-TEMP Gasoline-Fuelled Vehicles
by Tommaso Selleri, Anastasios Melas, Pierre Bonnel and Ricardo Suarez-Bertoa
Catalysts 2022, 12(3), 245; https://doi.org/10.3390/catal12030245 - 22 Feb 2022
Cited by 16 | Viewed by 3255
Abstract
Ammonia (NH3) plays a key role in atmospheric chemistry and largely contributes to the PM2.5 measured in urban areas around the globe. For that reason, the National Emission Ceilings directive, Gothenburg Protocol under the United Nations Convention on Long-Range Transboundary [...] Read more.
Ammonia (NH3) plays a key role in atmospheric chemistry and largely contributes to the PM2.5 measured in urban areas around the globe. For that reason, the National Emission Ceilings directive, Gothenburg Protocol under the United Nations Convention on Long-Range Transboundary Air Pollution, and International Panel for Climate Change (IPCC) directive required a reduction of the emissions of NH3. Nonetheless, the European Environment Agency (EEA) indicated that road transport emissions of NH3 have increased. Moreover, recent studies reported that, not only vehicle NH3 emissions are greater than agricultural emissions in areas that gather > 40% of the U.S. population, but urban emissions of NH3 for passenger cars are underestimated by a factor of 17 in UK. In this study, fifteen gasoline-fuelled vehicles, meeting the most recent European emission standards, Euro 6d or Euro 6d-TEMP, were investigated in laboratory tests over the type-approval worldwide-harmonized light-duty vehicles test cycle (WLTC), at 23 °C and −7 °C, as well as over the motorway cycle Bundesautobahn (BAB). Results show that all the vehicles tested emitted NH3 over the different duty cycles, and presented emissions level that are comparable to those previously reported for Euro 4–Euro 6b vehicles. Finally, good agreement between the CO and the NH3 emissions was registered during the acceleration events, and, in general, a fair correlation, with R2 > 0.75, was obtained, when comparing the CO and NH3 emissions of the studied vehicles. Full article
Show Figures

Figure 1

19 pages, 6178 KiB  
Article
Simulation Research on Regenerative Braking Control Strategy of Hybrid Electric Vehicle
by Cong Geng, Dawen Ning, Linfu Guo, Qicheng Xue and Shujian Mei
Energies 2021, 14(8), 2202; https://doi.org/10.3390/en14082202 - 15 Apr 2021
Cited by 32 | Viewed by 8035
Abstract
This paper proposes a double layered multi parameters braking energy recovery control strategy for Hybrid Electric Vehicle, which can combine the mechanical brake system with the motor brake system in the braking process to achieve higher energy utilization efficiency and at the same [...] Read more.
This paper proposes a double layered multi parameters braking energy recovery control strategy for Hybrid Electric Vehicle, which can combine the mechanical brake system with the motor brake system in the braking process to achieve higher energy utilization efficiency and at the same time ensure that the vehicle has sufficient braking performance and safety performance. The first layer of the control strategy proposed in this paper aims to improve the braking force distribution coefficient of the front axle. On the basis of following the principle of braking force distribution, the braking force of the front axle and the rear axle is reasonably distributed according to the braking strength. The second layer is to obtain the proportional coefficient of regenerative braking, considering the influence of vehicle speed, braking strength, and power battery state of charge (SOC) on the front axle mechanical braking force and motor braking force distribution, and a three-input single-output fuzzy controller is designed to realize the coordinated control of mechanical braking force and motor braking force of the front axle. Finally, the AMESim and Matlab/Simulink co-simulation model was built; the braking energy recovery control strategy proposed in this paper was simulated and analyzed based on standard cycle conditions (the NEDC and WLTC), and the simulation results were compared with regenerative braking control strategies A and B. The research results show that the braking energy recovery rate of the proposed control strategy is respectively 2.42%, 18.08% and 2.56%, 16.91% higher than that of the control strategies A and B, which significantly improves the energy recovery efficiency of the vehicle. Full article
(This article belongs to the Special Issue Advanced Power Electronics in Hybrid Vehicles)
Show Figures

Figure 1

29 pages, 3868 KiB  
Article
Emission Factors Derived from 13 Euro 6b Light-Duty Vehicles Based on Laboratory and On-Road Measurements
by Victor Valverde, Bernat Adrià Mora, Michaël Clairotte, Jelica Pavlovic, Ricardo Suarez-Bertoa, Barouch Giechaskiel, Covadonga Astorga-LLorens and Georgios Fontaras
Atmosphere 2019, 10(5), 243; https://doi.org/10.3390/atmos10050243 - 2 May 2019
Cited by 66 | Viewed by 7948
Abstract
Tailpipe emissions of a pool of 13 Euro 6b light-duty vehicles (eight diesel and five gasoline-powered) were measured over an extensive experimental campaign that included laboratory (chassis dynamometer), and on-road tests (using a portable emissions measurement system). The New European Driving Cycle (NEDC) [...] Read more.
Tailpipe emissions of a pool of 13 Euro 6b light-duty vehicles (eight diesel and five gasoline-powered) were measured over an extensive experimental campaign that included laboratory (chassis dynamometer), and on-road tests (using a portable emissions measurement system). The New European Driving Cycle (NEDC) and the Worldwide harmonised Light-duty vehicles Test Cycle (WLTC) were driven in the laboratory following standard and extended testing procedures (such as low temperatures, use of auxiliaries, modified speed trace). On-road tests were conducted in real traffic conditions, within and outside the boundary conditions of the regulated European Real-Driving Emissions (RDE) test. Nitrogen oxides (NOX), particle number (PN), carbon monoxide (CO), total hydrocarbons (HC), and carbon dioxide (CO2) emission factors were developed considering the whole cycles, their sub-cycles, and the first 300 s of each test to assess the cold start effect. Despite complying with the NEDC type approval NOX limit, diesel vehicles emitted, on average, over the WLTC and the RDE 2.1 and 6.7 times more than the standard limit, respectively. Diesel vehicles equipped with only a Lean NOX trap (LNT) averaged six and two times more emissions over the WLTC and the RDE, respectively, than diesel vehicles equipped with a selective catalytic reduction (SCR) catalyst. Gasoline vehicles with direct injection (GDI) emitted eight times more NOX than those with port fuel injection (PFI) on RDE tests. Large NOX emissions on the urban section were also recorded for GDIs (122 mg/km). Diesel particle filters were mounted on all diesel vehicles, resulting in low particle number emission (~1010 #/km) over all testing conditions including low temperature and high dynamicity. GDIs (~1012 #/km) and PFIs (~1011 #/km) had PN emissions that were, on average, two and one order of magnitude higher than for diesel vehicles, respectively, with significant contribution from the cold start. PFIs yielded high CO emission factors under high load operation reaching on average 2.2 g/km and 3.8 g/km on WLTC extra-high and RDE motorway, respectively. The average on-road CO2 emissions were ~33% and 41% higher than the declared CO2 emissions at type-approval for diesel and gasoline vehicles, respectively. The use of auxiliaries (AC and lights on) over the NEDC led to an increase of ~20% of CO2 emissions for both diesel and gasoline vehicles. Results for NOX, CO and CO2 were used to derive average on-road emission factors that are in good agreement with the emission factors proposed by the EMEP/EEA guidebook. Full article
(This article belongs to the Special Issue Traffic-Related Emissions)
Show Figures

Figure 1

14 pages, 3366 KiB  
Article
Evaluation of the Effects of Biodiesel on Emissions and Performance by Comparing the Results of the New European Drive Cycle and Worldwide Harmonized Light Vehicles Test Cycle
by Tolgahan Kaya, Osman Akın Kutlar and Ozgur Oguz Taskiran
Energies 2018, 11(10), 2814; https://doi.org/10.3390/en11102814 - 18 Oct 2018
Cited by 23 | Viewed by 4673
Abstract
In this paper, the effects of biodiesel on performance and emission of the current and new-coming regulation cycles, namely the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), were investigated by conducting tests on a passenger car, [...] Read more.
In this paper, the effects of biodiesel on performance and emission of the current and new-coming regulation cycles, namely the New European Driving Cycle (NEDC) and the Worldwide Harmonized Light Vehicles Test Cycle (WLTC), were investigated by conducting tests on a passenger car, a Euro-5 Ford Fiesta, equipped with a 1.5-L diesel engine. In a two-axle chassis dynamometer test bed, NEDC and WLTC were performed with pure diesel and biodiesel-to-diesel blend (30% biodiesel, 70% diesel in volume). A substantial reduction in CO (34%, 55%), HC (33%, 40%), and particulate number (PN) (22%, 31%) emissions was observed respectively for both the NEDC and WLTC when biodiesel was used. Besides, it was found that the WLTC has higher load and velocity profile compared to the NEDC. Moreover, lower CO, HC, and PN emissions were observed with B30 fuel under WLTC compared to the NEDC. Nevertheless, slightly higher CO2 and substantially higher NOx emissions were observed for the WLTC compared to the NEDC. Full article
Show Figures

Figure 1

Back to TopTop