Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = W skeleton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3341 KiB  
Article
Strength Enhancement of Clay Through Lime–Sand Stabilization at Various Remolding Water Contents
by Shuai Qi, Jinhui Liu, Wei Ma and Jing Wang
Materials 2025, 18(14), 3282; https://doi.org/10.3390/ma18143282 - 11 Jul 2025
Viewed by 379
Abstract
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic [...] Read more.
During the construction of subgrade, the remolding water content w of lime–sand-stabilized clay usually varies in a wide range, leading to inconsistent effectiveness in strength enhancement. Until now, this aspect has not been investigated. In this study, an unconfined compression test and microscopic observation were carried out on clay and stabilized clay (adding 4% lime by mass and 50% sand by volume). The results show the following: (1) remolding water content w had a strong effect on the soil fabrics of pure clay and lime-stabilized clay. An increase in the w from the dry to wet side of optimum reduced matric suction, which diminished the aggregation effect among fine-grained particles in both clay and lime-stabilized clay. Correspondingly, fine-grained aggregate progressively disintegrated, and dispersed fine-grained particles increased. As a result, the w increment at wwcha made the dispersed fine-grained particles successively fill the large pores between aggregates, densifying the soil fabric. In contrast, at w > wcha, the ongoing disintegration of aggregate resulted in progressive structural weakening. Herein, wcha was defined as the characteristic water content at which the soil fabric transitioned from structural densification to weakening. (2) The UCS of both pure clay and lime–sand-stabilized clay followed a bell-shaped pattern as the w increased, with wcha acting as the turning point. For pure clay soils, the UCS increased with increasing w up to wcha because of structural densification, but decreased beyond wcha due to structural weakening. In lime–sand-stabilized clay, where a sand grain skeleton developed, the compression of lime-stabilized clay induced by the movement of sand grains during shearing activated its contribution to the overall strength. The compressive capacity of the lime-stabilized clay varied in a bell-shaped manner with w, and this trend was mirrored in the UCS of lime–sand-stabilized clay. (3) At a low w, the fact that the clay aggregate exhibited sand-like mechanical behavior reduced the effectiveness of incorporating sand and lime for enhancing the UCS. As the w increased at wwcha, the breakdown of aggregates enlarged the distinction between pure clay and sand, resulting in a more pronounced improvement in the UCS with the addition of sand and lime. At w > wcha, the lubrication effect occurring at the contact between sand grains diminished the interlocking between the sand grains. Consequently, the effectiveness of the UCS enhancement decreased. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

39 pages, 3629 KiB  
Review
Radiative Heat Transfer Properties of Fiber–Aerogel Composites for Thermal Insulation
by Mohanapriya Venkataraman, Sebnem Sözcü and Jiří Militký
Gels 2025, 11(7), 538; https://doi.org/10.3390/gels11070538 - 11 Jul 2025
Viewed by 533
Abstract
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times [...] Read more.
Fiber–aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber–aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber–aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber–aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials’ affordability and scalability for industrial applications. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel (2nd Edition))
Show Figures

Figure 1

16 pages, 8657 KiB  
Article
Tailoring Microstructure and Properties of W-Mo-Cu Composites Fabricated via Infiltration Sintering: Effects of Graphene Addition and Skeleton Relative Density
by Jinwen Cai, Qiaoling Jiang, Keqin Feng and Hongling Zhou
Materials 2025, 18(11), 2539; https://doi.org/10.3390/ma18112539 - 28 May 2025
Viewed by 391
Abstract
W-Mo-Cu composites show promise for advanced applications, but their properties require optimization. In this study, a novel approach utilizing Cu-coated graphene (Cu@Gr) reinforcement with skeleton relative density adjustment was employed to tailor the microstructure and properties of W-Mo-Cu composites fabricated via infiltration sintering [...] Read more.
W-Mo-Cu composites show promise for advanced applications, but their properties require optimization. In this study, a novel approach utilizing Cu-coated graphene (Cu@Gr) reinforcement with skeleton relative density adjustment was employed to tailor the microstructure and properties of W-Mo-Cu composites fabricated via infiltration sintering (1300 °C, 1.5 h). The results revealed that Cu@Gr significantly promoted sintering densification, modified the phase composition, and enhanced the properties of the composite. Specifically, the addition of 0.4 wt.% Cu@Gr resulted in a relative density of 98% for the composite, representing an 8% increase compared to the material without Cu@Gr. Furthermore, when higher amounts of Cu@Gr were incorporated, the composite consistently exhibited a high degree of densification. In addition to the primary W, Mo, and Cu phases, molybdenum carbide, Mo2C, was formed at 0.4 wt.% Cu@Gr, with its content rising proportionally to graphene dosage. Notably, the composite containing 0.6 wt.% Cu@Gr exhibits the highest thermal conductivity and electrical conductivity, showing 64% and 73% increases, respectively, versus Cu@Gr-free samples. Additionally, although W-Mo green compact density variations (73–85%) did not compromise graphene-induced densification, a higher green compact density reduced the thermal/electrical conductivities but increased the hardness. These findings demonstrate that controlled Cu@Gr incorporation and green compact optimization synergistically improve the properties of W-Mo-Cu composites, providing insights into high-performance material design. Full article
Show Figures

Figure 1

10 pages, 4047 KiB  
Article
Super-Hydrophobic Photothermal Copper Foam for Multi-Scenario Solar Desalination: Integrating Anti-Icing, Self-Cleaning, and Mechanical Durability
by Chen Shao, Guojian Yang, Kang Yuan and Liming Liu
Coatings 2025, 15(5), 578; https://doi.org/10.3390/coatings15050578 - 13 May 2025
Viewed by 659
Abstract
Solar desalination is widely regarded as an effective way to solve freshwater scarcity. However, the balance between the costs of micro-nanostructures, thermal regulation, and the durability of interface evaporators must all be considered. In this study, a super-hydrophobic copper foam with hierarchical micro-nanostructures [...] Read more.
Solar desalination is widely regarded as an effective way to solve freshwater scarcity. However, the balance between the costs of micro-nanostructures, thermal regulation, and the durability of interface evaporators must all be considered. In this study, a super-hydrophobic copper foam with hierarchical micro-nanostructures exhibited temperatures greater than 66 °C under solar illumination of 1 kW·m−2. Significantly, the modified copper foam acting as a solar interface evaporator had a water harvesting efficiency of 1.76 kg·m−2·h−1, resulting from its good photothermal conversion and porous skeleton. Further, the anti-deicing, self-cleaning, and anti-abrasion tests were carried out to demonstrate its durability. The whole fabrication of the as-prepared CF was only involved in mechanical extrusion and spray-coating, which is suitable for large-scale production. This work endows the interface evaporator with super-hydrophobicity, photo-thermal conversion, anti-icing, and mechanical stability, all of which are highly demanded in multi-scenario solar desalination. Full article
(This article belongs to the Special Issue Self-Cleaning and Anti-Fouling Coatings)
Show Figures

Figure 1

29 pages, 4527 KiB  
Article
Fast Kinetic Response and Efficient Removal of Methyl Blue and Methyl Green Dyes by Functionalized Multiwall Carbon Nanotubes Powered with Iron Oxide Nanoparticles and Citrus reticulata Peel Extract
by Erich V. Manrique-Castillo, Mercedes del Pilar Marcos-Carrillo, Noemi-Raquel Checca-Huaman, Bruno L. D. Santos, Waldemar A. A. Macedo, César A. Barrero Meneses, Edson C. Passamani, Jean-Marc Greneche and Juan A. Ramos-Guivar
Nanomaterials 2025, 15(8), 603; https://doi.org/10.3390/nano15080603 - 14 Apr 2025
Cited by 1 | Viewed by 669
Abstract
Maghemite nanoparticles (NPs) were successfully developed using phenolic-rich extracts (cyanidin) from Citrus reticulata peel residues. The 11 nm maghemite NPs, obtained at 3% w/v and at 353 K, presented the optimal synthesis conditions. To improve dye adsorption performance, the synergetic adsorption [...] Read more.
Maghemite nanoparticles (NPs) were successfully developed using phenolic-rich extracts (cyanidin) from Citrus reticulata peel residues. The 11 nm maghemite NPs, obtained at 3% w/v and at 353 K, presented the optimal synthesis conditions. To improve dye adsorption performance, the synergetic adsorption behavior between these 11 nm NPs and multiwall carbon nanotubes was demonstrated. Prior to the adsorption tests, the aging effect on NPs was carefully assessed using various analytical techniques, which clearly showed the magnetite–maghemite phase transition. However, this had no impact on the cyanidin coating or adsorption properties. A remarkable percentage removal of (93 ± 3)% for methylene blue and (84 ± 3)% for methylene green was achieved in short equilibrium times of 10 and 25 min, respectively, with an optimum pH value of 5.5. Reuse experiments revealed that 90% removal for both dyes was achieved between the second to seventh regeneration cycles. Organic loading during these cycles was effectively confirmed by X-ray photoelectron spectroscopy and magnetic measurements. Dye adsorption involves a two-step mechanism: (i) electrostatic adsorption by the negative surface groups of the adsorbent (isoelectric point of 5.2) and the dye cationic groups and (ii) π–π stacking interactions between the aromatic benzene rings of the dyes, the hexagonal skeleton of the multiwall carbon nanotubes, and the phenolic ring groups of the biosynthesized sample. These results suggest that the low-cost modified phenolic adsorbent can be successfully applied to dye removal from water with promising recycling properties. Full article
Show Figures

Figure 1

16 pages, 4165 KiB  
Article
Integrated Management of Bacterial Wilt and Root-Knot Nematode Diseases in Pepper: Discovery of Phenazine-1-Carboxamide from Pseudomonas aeruginosa W-126
by Shuai Wang, Yifan Wang, Youzhi Yao, Wenzhuo Li, Zhan Hu, Dong Li and Ranfeng Sun
Int. J. Mol. Sci. 2025, 26(7), 3335; https://doi.org/10.3390/ijms26073335 - 3 Apr 2025
Viewed by 655
Abstract
Ralstonia solanacearum is an important pathogen causing bacterial wilt in pepper (Capsicum annuum L.). The concurrent infection of R. solanacearum and root-knot nematodes (Meloidogyne spp.) exacerbates the severity of bacterial wilt in pepper. Utilizing plant endophytic bacteria to control these mixed diseases [...] Read more.
Ralstonia solanacearum is an important pathogen causing bacterial wilt in pepper (Capsicum annuum L.). The concurrent infection of R. solanacearum and root-knot nematodes (Meloidogyne spp.) exacerbates the severity of bacterial wilt in pepper. Utilizing plant endophytic bacteria to control these mixed diseases is a viable strategy. Waltheria indica L. (Sterculiaceae) is a traditional medicine plant. A total of 209 endophytic bacteria were isolated from W. indica, and Pseudomonas aeruginosa W-126 showed an efficient antagonistic effect against R. solanacearum. Based on active compound tracking principles, a compound was isolated through silica gel column chromatography and preparative HPLC combined with TLC analysis. It was identified as phenazine-1-carboxamide (PCN) by spectral techniques (ESI-MS, 1H-NMR, 13C-NMR). PCN displayed excellent inhibitory activity against R. solanacearum, with an EC50 of 64.16 μg/mL in vitro. In addition, it showed certain nematocide activity, with an LC50 value of 118.63 μg/mL at 72 h. PCN also showed certain inhibitory activity against five other phytopathogenic bacteria. The structure−activity relationship indicated that the phenazine skeleton and acylamide groups were the key pharmacophores for the activity of phenazine-related compounds against R. solanacearum. PCN controlled the complex diseases of R. solanacearum and M. incognita in a pot experiment, with respective 51.41 and 39.80% inhibitory rates. The exploration of secondary metabolites of biocontrol bacteria can provide reference for the development of novel and efficient pesticides. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 14198 KiB  
Article
Mechanical Properties of Dispersion-Strengthened Iron-Based W+WC(Ni) Composite Produced by Combined Wire Electron-Beam Manufacturing with Powder Addition
by Andrey Vorontsov, Anna Zykova, Denis Gurianov, Nikolay Shamarin, Aleksandr Panfilov, Andrey Chumaevskii, Kirill Kalashnikov, Evgeny Kolubaev and Nikolai Savchenko
J. Compos. Sci. 2025, 9(4), 144; https://doi.org/10.3390/jcs9040144 - 21 Mar 2025
Cited by 1 | Viewed by 559
Abstract
The paper investigates the microstructure and mechanical properties of a steel matrix composite reinforced with tungsten (W) particles and a mixture of tungsten carbide and nickel (WC(Ni)) obtained by a hybrid additive manufacturing method using wire electron beam additive manufacturing with powder addition. [...] Read more.
The paper investigates the microstructure and mechanical properties of a steel matrix composite reinforced with tungsten (W) particles and a mixture of tungsten carbide and nickel (WC(Ni)) obtained by a hybrid additive manufacturing method using wire electron beam additive manufacturing with powder addition. The composite exhibits a gradient structure including three zones: a matrix of high alloy steel 401S45, a transition layer with a low concentration of W/WC(Ni) and a surface layer enriched with particles of reinforcing phases. SEM, TEM and XRD methods revealed a heterogeneous microstructure consisting of α-Fe (80 vol.%), γ-Fe (10 vol.%) and carbide phases, as well as suppression of the formation of brittle Me3C intermetallides due to the controlled diffusion of W, C and alloying elements. The microhardness of the composite increases from 350 HV (matrix) to 650 HV (reinforced layer) due to dispersion hardening and formation of the carbide skeleton. Compression tests showed record strength of the reinforced layer (1720 ± 60 MPa) due to effective load distribution by W/WC(Ni) particles, but brittle failure is observed in tensile tests due to stress concentration at the interfaces. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Figure 1

13 pages, 4056 KiB  
Article
Engineering Hierarchical Porous Electrodes Integrated with Conformal Ultrathin Nanosheets for Achieving Rapid Kinetics in High-Power Microbatteries
by Xin Chen, Minjian Gong, Jiantao Li, Wei Yang and Xu Xu
Batteries 2025, 11(2), 81; https://doi.org/10.3390/batteries11020081 - 18 Feb 2025
Viewed by 834
Abstract
With the rapid development of the Internet of Things (IoT), there is an increasing demand for batteries with high energy and power densities. Three-dimensional microstructures present a promising approach for achieving high areal mass loading and an expanded electrochemical reaction surface. However, their [...] Read more.
With the rapid development of the Internet of Things (IoT), there is an increasing demand for batteries with high energy and power densities. Three-dimensional microstructures present a promising approach for achieving high areal mass loading and an expanded electrochemical reaction surface. However, their high cost and complexity have hindered their widespread adoption. In this study, hierarchical porous electrodes integrated with conformal ultrathin nanosheets were fabricated to enhance reaction kinetics. The hierarchical porous skeleton provides a continuous pathway for electron transport and electrolyte diffusion, while the amorphous vanadium oxide (α-VOx) nanosheets offer short ion diffusion channels and a large electrochemical surface area. Additionally, the internal space of the hierarchical structure accommodates substantial growth of the α-VOx nanosheets, thereby supporting high mass loading and preserving areal capacity. The resulting hierarchical electrode structure demonstrates a high energy density of 0.49 mAh cm−2 at 1 mA cm−2 and an ultrahigh power density of 410 mW cm−2 at 250 mA cm−2. The assembled microbattery, using lithium metal as the anode, is encapsulated with a novel packaging process. This microbattery can power an electronic clock for up to 18 h on a single charge, retaining 75% of its initial capacity after 180 cycles. Full article
Show Figures

Graphical abstract

20 pages, 7169 KiB  
Article
Optimization of Coarse Aggregate Size Distribution for Preplaced Aggregate Cement Paste Coating Concrete
by Denghui Duan, Jiajian Chen and Wenxue Wang
Coatings 2025, 15(2), 200; https://doi.org/10.3390/coatings15020200 - 7 Feb 2025
Viewed by 914
Abstract
The novel casting method of preplaced aggregate cement paste coating (PACPC) concrete is helpful in solving engineering problems. The effects of aggregate particle size distribution and W/C on groutability, mechanical properties, and cement efficiency were investigated through experimental and theoretical analysis. The results [...] Read more.
The novel casting method of preplaced aggregate cement paste coating (PACPC) concrete is helpful in solving engineering problems. The effects of aggregate particle size distribution and W/C on groutability, mechanical properties, and cement efficiency were investigated through experimental and theoretical analysis. The results showed that, with the increase in the proportion of aggregate with finer size, the groutability first decreased and then increased, while the compressive strength and cement efficiency first increased and then decreased. Widening the particle size distribution increased the aggregate packing density by 12.3%, the compressive strength by 12.7%, and the cement efficiency by 30.3% but decreased the groutability by 3.5%. The packing density of the aggregate skeleton was found to be a governing parameter of the performances of PACPC. As the groutability of grouted preplaced aggregate is generally contradictory to the strength, a proper balance should be struck between the fresh and hardened performance. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

14 pages, 6740 KiB  
Article
Facile Preparation of Flexible Phenolic-Silicone Aerogels with Good Thermal Stability and Fire Resistance
by Zengyue Su, Zhenrong Zheng, Xiaobiao Zuo, Lijuan Luo and Yaxin Guo
Molecules 2025, 30(3), 464; https://doi.org/10.3390/molecules30030464 - 21 Jan 2025
Viewed by 1015
Abstract
A huge challenge is how to prepare flexible silicone aerogel materials with good flame retardancy, thermal stability, and hydrophobic properties. In this paper, resorcinol–formaldehyde was introduced into the silicone network composed of methyltrimethoxysilane (MTMS), phenyltriethoxysilane (PTES), and dimethyldimethoxysilane (DMDMS). Flexible hybrid aerogels with [...] Read more.
A huge challenge is how to prepare flexible silicone aerogel materials with good flame retardancy, thermal stability, and hydrophobic properties. In this paper, resorcinol–formaldehyde was introduced into the silicone network composed of methyltrimethoxysilane (MTMS), phenyltriethoxysilane (PTES), and dimethyldimethoxysilane (DMDMS). Flexible hybrid aerogels with excellent thermal insulation, flame retardant, and hydrophobic properties were prepared by the sol–gel method and ambient pressure drying (APD), and the preparation process does not require long-term solvent exchange, only about 3 h of soaking and washing of the wet gel. The results show that the prepared phenolic-silicone aerogel has low density (0.093 g/cm3), low thermal conductivity (0.041 W/m·K), high flexibility, and compression fatigue resistance. The phenolic microspheres are bonded to the silicone skeleton to maintain the original flexibility. After 50% compression deformation, it returns to the original size normally, and there is no significant change in the stress of the sample after 50 compression cycles. Compared with pure silicone aerogels, the hybrid aerogels doped with phenolic have better char yield (65.28%) and higher decomposition temperature (609 °C). The hybrid aerogel sample has good flame-retardant properties, which can withstand alcohol lamp burning without being ignited. The micron-sized phenolic beads give the hybrid aerogels better hydrophobic properties, showing a higher static water contact angle (152°). The excellent thermal and mechanical properties mean that the hybrid aerogels prepared in this paper have good application prospects for aerospace, outdoor equipment, and other fields. Full article
Show Figures

Figure 1

22 pages, 6292 KiB  
Review
Review of Bioinspired Composites for Thermal Energy Storage: Preparation, Microstructures and Properties
by Min Yu, Mengyuan Wang, Changhao Xu, Wei Zhong, Haoqi Wu, Peng Lei, Zeya Huang, Renli Fu, Francesco Gucci and Dou Zhang
J. Compos. Sci. 2025, 9(1), 41; https://doi.org/10.3390/jcs9010041 - 15 Jan 2025
Cited by 1 | Viewed by 1484
Abstract
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role [...] Read more.
Bioinspired composites for thermal energy storage have gained much attention all over the world. Bioinspired structures have several advantages as the skeleton for preparing thermal energy storage materials, including preventing leakage and improving thermal conductivity. Phase change materials (PCMs) play an important role in the development of energy storage materials because of their stable chemical/thermal properties and high latent heat storage capacity. However, their applications have been compromised, owing to low thermal conductivity and leakage. The plant-derived scaffolds (i.e., wood-derived SiC/Carbon) in the composites can not only provide higher thermal conductivity but also prevent leakage. In this paper, we review recent progress in the preparation, microstructures, properties and applications of bioinspired composites for thermal energy storage. Two methods are generally used for producing bioinspired composites, including the direct introduction of biomass-derived templates and the imitation of biological structures templates. Some of the key technologies for introducing PCMs into templates involves melting, vacuum impregnation, physical mixing, etc. Continuous and orderly channels inside the skeleton can improve the overall thermal conductivity, and the thermal conductivity of composites with biomass-derived, porous, silicon carbide skeleton can reach as high as 116 W/m*K. In addition, the tightly aligned microporous structure can cover the PCM well, resulting in good leakage resistance after up to 2500 hot and cold cycles. Currently, bioinspired composites for thermal energy storage hold the greatest promise for large-scale applications in the fields of building energy conservation and solar energy conversion/storage. This review provides guidance on the preparation methods, performance improvements and applications for the future research strategies of bioinspired composites for thermal energy storage. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

15 pages, 2713 KiB  
Article
Thermally Conductive Shape-Stabilized Phase Change Materials Enabled by Paraffin Wax and Nanoporous Structural Expanded Graphite
by Yilin Zhao, Shuhui Huang, Zhaoguo Jin, Zhongnan Xie, Hong Guo and Haofeng Xie
Nanomaterials 2025, 15(2), 110; https://doi.org/10.3390/nano15020110 - 12 Jan 2025
Cited by 3 | Viewed by 1600
Abstract
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate [...] Read more.
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem. Two preparations of thermally conductive shape-stabilized PW/EG composites, using the pressure-induced method and prefabricated skeleton method, were designed in this paper. The expanded graphite formed a nanoscale porous structure by different methods, which enhanced the capillary action between the graphite flake layers, improved the adsorption and encapsulation of EG, and alleviated the leakage problem. The thermal conductivity and the latent heat of the phase-change materials (PCM) prepared by the two methods mentioned above are 9.99 W/(m·K), 10.70 W/(m·K) and 240.06 J/g, 231.67 J/g, respectively, at EG loading by 10 wt.%, and the residual mass fraction was greater than 99% after 50 cycles of high and low temperature. In addition, due to the excellent thermal management capability of PW/EG, the operating temperature of electronic components can be stably maintained at 68–71 °C for about 15 min and the peak temperature can be reduced by at least 23 °C when the heating power of the electronic components is 10 w. These provide novel and cost-effective methods to further improve the management capability of spacecraft thermal control systems. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

13 pages, 9730 KiB  
Article
Facile Construction of Flame-Resistant and Thermal-Insulating Sodium Alginate Aerogel Incorporating N- and P-Elements
by Ju Liu, Huanhui Zhan, Jianan Song, Chenfei Wang, Tong Zhao and Bo Fu
Polymers 2024, 16(19), 2814; https://doi.org/10.3390/polym16192814 - 4 Oct 2024
Cited by 2 | Viewed by 1949
Abstract
In this study, sodium alginate (SA) aerogel cross-linked with Ca2+ was selected as the basic skeleton to construct a lightweight, flame retardant, and thermal insulating composite aerogel via modification with melamine and phytic acid. The resulting aerogel, SA-1.0 MP, achieved a thermal [...] Read more.
In this study, sodium alginate (SA) aerogel cross-linked with Ca2+ was selected as the basic skeleton to construct a lightweight, flame retardant, and thermal insulating composite aerogel via modification with melamine and phytic acid. The resulting aerogel, SA-1.0 MP, achieved a thermal conductivity as low as 0.0379 W/(m·K). Compared to pristine SA aerogel, SA-1.0 MP demonstrated improved fire resistance, evidenced by a substantial increase in the limiting oxygen index (LOI) from 21.5% to 48.8% and a V-0 rating in the UL-94 test. Furthermore, a synergistic mechanism was proposed to explain its remarkable flame-retardant capability. Full article
(This article belongs to the Special Issue Polymers for Environmental Remediation and Energy Regeneration)
Show Figures

Figure 1

12 pages, 7875 KiB  
Article
Metal–Organic Skeleton-Derived W-Doped Ga2O3-NC Catalysts for Aerobic Oxidative Dehydrogenation of N-Heterocycles
by Fan Zhang, Qiwen Zhang, Feng Zhang, Xiaolin Luo and Wei Wang
Materials 2024, 17(19), 4804; https://doi.org/10.3390/ma17194804 - 29 Sep 2024
Viewed by 1370
Abstract
N-heterocycles with quinoline structures hold significant importance within the chemical and pharmaceutical industries. However, achieving their efficient transformations remains a vital yet challenging endeavor. Herein, a series of W-doped Ga2O3-NC catalysts were synthesized using a Ga-MOF-derived strategy through [...] Read more.
N-heterocycles with quinoline structures hold significant importance within the chemical and pharmaceutical industries. However, achieving their efficient transformations remains a vital yet challenging endeavor. Herein, a series of W-doped Ga2O3-NC catalysts were synthesized using a Ga-MOF-derived strategy through a simple solvothermal method, with a remarkably high activity and selectivity towards the oxidative dehydrogenation of N-heterocycles. Furthermore, the MOF-derived W-doped Ga2O3-NC catalysts exhibit remarkable substrate tolerance and recyclability. The outstanding catalytic activity was attributed to the robust synergistic interaction between the W species and the Ga2O3-NC carrier, which facilitates the activation of hydrogen atoms in the C-H and C=N bonds on both the oxygen molecule and the substrate to produce H2O2. Additionally, the solvent effect of methanol can significantly enhance dehydrogenation due to its strong ability to donate and accept protons of hydrogen bonding. The present work provides a new approach to MOF-derived non-precious metal catalysts for achieving the efficient oxidation dehydrogenation of N-heterocycles. Full article
Show Figures

Figure 1

19 pages, 9739 KiB  
Article
Lateral Performance of Composite Wall with Cold-Formed Thin-Walled Steel–Concrete Sandwich Panel
by Jian Zou, Baozhu Cao, Xiang Zeng and Yuchuan Zhang
Buildings 2024, 14(9), 2928; https://doi.org/10.3390/buildings14092928 - 16 Sep 2024
Cited by 1 | Viewed by 1363
Abstract
To study the lateral performance of a cold-formed steel–concrete insulation sandwich panel composite wall, two full-scale specimens with different arrangements were designed. The specimens underwent cyclic loading tests to examine the failure characteristics of the composite wall, and lateral performance aspects such as [...] Read more.
To study the lateral performance of a cold-formed steel–concrete insulation sandwich panel composite wall, two full-scale specimens with different arrangements were designed. The specimens underwent cyclic loading tests to examine the failure characteristics of the composite wall, and lateral performance aspects such as the experimental hysteresis curve, skeleton curve, and characteristic value of the whole loading process were acquired. The experimental results indicate that the failure of the composite wall system was primarily caused by the failure of the connection; the overall lateral performance of composite walls with one wall panel at the bottom and two wall panels at the top (W1) was superior to that of composite walls with two wall panels at the bottom and one wall panel at the top (W2). When loaded to an inter-story drift ratio of 1/300, the composite wall did not exhibit any significant damage. A finite element (FE) model was developed and validated by the experiments. Factors affecting the shear bearing capacity were analyzed based on the FE model, including the yield strength of diagonal braces, the thickness of the diagonal braces, the arrangement pattern of the wall panels, the dimensions of the wall panels, and the strength of the connection of the L-shaped connector and the flat connector. The FE results show that all these factors can influence the lateral performance of the composite wall. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop