Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = Valerianaceae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1067 KiB  
Article
Chemical Constituents, Enantiomer Content, Antioxidant and Anticholinesterase Activities of Valeriana microphylla Kunth Essential Oil
by Gabriela Aguilar, James Calva, Luis Cartuche, Melissa Salinas and Chabaco Armijos
Plants 2023, 12(11), 2155; https://doi.org/10.3390/plants12112155 - 30 May 2023
Cited by 3 | Viewed by 2356
Abstract
The study of the essential oil (EO) from aerial parts (stems and leaves) of Valeriana microphylla Kunth (Valerianaceae), collected from the Saraguro community in the southern region of Ecuador, was analyzed for the first time. A total of 62 compounds were identified in [...] Read more.
The study of the essential oil (EO) from aerial parts (stems and leaves) of Valeriana microphylla Kunth (Valerianaceae), collected from the Saraguro community in the southern region of Ecuador, was analyzed for the first time. A total of 62 compounds were identified in V. microphylla EO by GC-FID and GC-MS on nonpolar DB-5ms and polar HP-INNOWax columns. The most abundant components (>5%) detected on DB-5ms and polar HP-INNOWax columns were α-gurjunene (11.98, 12.74%), germacrene D (11.47, 14.93%), E-caryophyllene (7.05, 7.78%), and α-copaene (6.76, 6.91%), respectively. In addition, the enantioselective analysis, carried out on a chiral column, showed (+)-α-pinene and (R)-(+)-germacrene as enantiomerically pure compounds (enantiomeric excess = 100%). The antioxidant activity was high for the radicals ABTS (SC50 = 41.82 µg/mL) and DPPH (SC50 = 89.60 µg/mL), and finally, the EO was shown to be inactive to the enzyme acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as both values were >250 µg/mL. Full article
Show Figures

Figure 1

12 pages, 4188 KiB  
Article
Complete Chloroplast Genome Sequence of Triosteum sinuatum, Insights into Comparative Chloroplast Genomics, Divergence Time Estimation and Phylogenetic Relationships among Dipsacales
by HaiRui Liu, WenHui Liu, Israr Ahmad, QingMeng Xiao, XuMin Li, DeJun Zhang, Jie Fang, GuoFan Zhang, Bin Xu, QingBo Gao and ShiLong Chen
Genes 2022, 13(5), 933; https://doi.org/10.3390/genes13050933 - 23 May 2022
Cited by 4 | Viewed by 3057
Abstract
Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of [...] Read more.
Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of Triosteum and analyzed 18 chloroplast genomes, trying to explore the sequence variations and phylogeny of genus Triosteum in the order Dipsacales. The chloroplast genomes of the genus Triosteum ranged from 154,579 bp to 157,178 bp, consisting of 132 genes (86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Comparative analyses and phylogenetic analysis supported the division of Dipsacales into two clades, Adoxaceae and six other families. Among the six families, a clade of Valerianaceae+Dipsacaceae was recovered as a sister to a clade of Morinaceae+Linnaeaceae. A closer relationship of T. himalayanum and T. pinnatifidum among three species was revealed. Our research supported that Loniceraferdinandi and Triosteum was closely related. Zabelia had a closer relationship with Linnaea borealis and Dipelta than Morinaceae. The divergence between T. sinuatum and two other species in Triosteum was dated to 13.4 mya. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

22 pages, 57509 KiB  
Article
Molecular Systematics of Valerianella Mill. (Caprifoliaceae): Challenging the Taxonomic Value of Genetically Controlled Carpological Traits
by Itziar Arnelas, Ernesto Pérez-Collazos, Josefa López-Martínez, Juan Antonio Devesa and Pilar Catalán
Plants 2022, 11(10), 1276; https://doi.org/10.3390/plants11101276 - 10 May 2022
Cited by 3 | Viewed by 2769
Abstract
Valerianella (cornsalad) is a taxonomically complex genus formed by 50–65 annual Holarctic species classified into at least four main sections. Carpological traits (sizes and shapes of achenes and calyx teeth) have been used to characterize its sections and species. However, the potential systematic [...] Read more.
Valerianella (cornsalad) is a taxonomically complex genus formed by 50–65 annual Holarctic species classified into at least four main sections. Carpological traits (sizes and shapes of achenes and calyx teeth) have been used to characterize its sections and species. However, the potential systematic value of these traits at different taxonomic ranks (from sections to species (and infraspecific taxa)) has not been tested phylogenetically yet. Here, we have assessed the evolutionary systematic value of Valerianella diagnostic carpological traits at different hierarchical ranks and have demonstrated their ability to separate taxa at the sectional level but not at species level for species of several species pairs. A total of 426 individuals (17 species, 4 sections) of Valerianella were analyzed using AFLP and plastid data. Genetic clusters, phylogenetic trees, and haplotype networks support the taxonomic classification of Valerianella at the four studied sectional levels (V. sects. Valerianella, Cornigerae, Coronatae, Platycoelae) but show admixture for ten taxa from five species pairs (V. locusta—V. carinata, V. coronata—V. pumila, V. multidentata—V. discoidea, V. dentata—V. rimosa, V. eriocarpa—V. microcarpa), which are not reciprocally monophyletic. Dating analyses indicate that the Valerianella sections are relatively old (mid-Miocene), while most species diverged in the Pliocene–Pleistocene. A new section Valerianella sect. Stipitae is described to accommodate the highly divergent and taxonomically distinct V. fusiformis type species. Taxonomic treatments that recognize the sectional ranks and that subsume the separate species of each species pair into single species represent a natural classification for Valerianella. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

29 pages, 1317 KiB  
Review
Plant Species of Sub-Family Valerianaceae—A Review on Its Effect on the Central Nervous System
by Gitishree Das, Han-Seung Shin, Rosa Tundis, Sandra Gonçalves, Ourlad Alzeus G. Tantengco, Maria G. Campos, Rosaria Acquaviva, Giuseppe Antonio Malfa, Anabela Romano, Joyce Ann H. Robles, Mariel Q. Clores and Jayanta-Kumar Patra
Plants 2021, 10(5), 846; https://doi.org/10.3390/plants10050846 - 22 Apr 2021
Cited by 34 | Viewed by 8392
Abstract
Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, [...] Read more.
Valerianaceae, the sub-family of Caprifoliaceae, contains more than 300 species of annual and perennial herbs, worldwide distributed. Several species are used for their biological properties while some are used as food. Species from the genus Valeriana have been used for their antispasmodic, relaxing, and sedative properties, which have been mainly attributed to the presence of valepotriates, borneol derivatives, and isovalerenic acid. Among this genus, the most common and employed species is Valerianaofficinalis. Although valerian has been traditionally used as a mild sedative, research results are still controversial regarding the role of the different active compounds, the herbal preparations, and the dosage used. The present review is designed to summarize and critically describe the current knowledge on the different plant species belonging to Valerianaceae, their phytochemicals, their uses in the treatment of different diseases with particular emphasis on the effects on the central nervous system. The available information on this sub-family was collected from scientific databases up until year 2020. The following electronic databases were used: PubMed, Scopus, Sci Finder, Web of Science, Science Direct, NCBI, and Google Scholar. The search terms used for this review included Valerianaceae, Valeriana, Centranthus, Fedia, Patrinia, Nardostachys, Plectritis, and Valerianella, phytochemical composition, in vivo studies, Central Nervous System, neuroprotective, antidepressant, antinociceptive, anxiolytic, anxiety, preclinical and clinical studies. Full article
(This article belongs to the Special Issue Advances in Functional Food Products Derived from Plant)
Show Figures

Figure 1

39 pages, 10783 KiB  
Review
Potential Protective Role Exerted by Secoiridoids from Olea europaea L. in Cancer, Cardiovascular, Neurodegenerative, Aging-Related, and Immunoinflammatory Diseases
by María Luisa Castejón, Tatiana Montoya, Catalina Alarcón-de-la-Lastra and Marina Sánchez-Hidalgo
Antioxidants 2020, 9(2), 149; https://doi.org/10.3390/antiox9020149 - 10 Feb 2020
Cited by 110 | Viewed by 10850
Abstract
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, [...] Read more.
Iridoids, which have beneficial health properties, include a wide group of cyclopentane [c] pyran monoterpenoids present in plants and insects. The cleavage of the cyclopentane ring leads to secoiridoids. Mainly, secoiridoids have shown a variety of pharmacological effects including anti-diabetic, antioxidant, anti-inflammatory, immunosuppressive, neuroprotective, anti-cancer, and anti-obesity, which increase the interest of studying these types of bioactive compounds in depth. Secoiridoids are thoroughly distributed in several families of plants such as Oleaceae, Valerianaceae, Gentianaceae and Pedialaceae, among others. Specifically, Olea europaea L. (Oleaceae) is rich in oleuropein (OL), dimethyl-OL, and ligstroside secoiridoids, and their hydrolysis derivatives are mostly OL-aglycone, oleocanthal (OLE), oleacein (OLA), elenolate, oleoside-11-methyl ester, elenoic acid, hydroxytyrosol (HTy), and tyrosol (Ty). These compounds have proved their efficacy in the management of diabetes, cardiovascular and neurodegenerative disorders, cancer, and viral and microbial infections. Particularly, the antioxidant, anti-inflammatory, and immunomodulatory properties of secoiridoids from the olive tree (Olea europaea L. (Oleaceae)) have been suggested as a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. Thus, the purpose of this review is to summarize recent advances in the protective role of secoiridoids derived from the olive tree (preclinical studies and clinical trials) in diseases with an important pathogenic contribution of oxidative and peroxidative stress and damage, focusing on their plausible mechanisms of the action involved. Full article
(This article belongs to the Special Issue Modulators of Oxidative Stress: Chemical and Pharmacological Aspects)
Show Figures

Figure 1

20 pages, 3143 KiB  
Article
Physiological, Biochemical and Reproductive Studies on Valeriana wallichii, a Critically Endangered Medicinal Plant of the Himalayan Region Grown under In-Situ and Ex-Situ Conditions
by Mohd Asgher, Susheel Verma, Nafees A. Khan, Dhiraj Vyas, Priyanka Kumari, Shaista Rashid, Sajid Khan, Shaista Qadir, Mohammad Ajmal Ali and Parvaiz Ahmad
Plants 2020, 9(2), 131; https://doi.org/10.3390/plants9020131 - 21 Jan 2020
Cited by 12 | Viewed by 4702
Abstract
Valeriana wallichii, a perennial herb belonging to family Valerianaceae, is an important medicinal herb of the Himalayan region. The incessant exploitation of nature for meeting the demands of the pharmaceutical industry has put unbearable pressure on its natural habitats. A study on [...] Read more.
Valeriana wallichii, a perennial herb belonging to family Valerianaceae, is an important medicinal herb of the Himalayan region. The incessant exploitation of nature for meeting the demands of the pharmaceutical industry has put unbearable pressure on its natural habitats. A study on its physiological, biochemical, growth and reproductive attributes was planned. Physiological study revealed that ex-situ (outside their natural habitat) populations faced severe stress as compared to in-situ (natural habitat) plants. The difference in the performance of these habitat plants was related to superoxide and H2O2 in the leaves. Photosynthetic attributes were increased in in-situ populations. Proline content and its biosynthetic enzymes ornithine aminotransferase, and pyrroline-5-carboxylate reductase showed an increase in ex-situ plants; proline oxidase decreased. Glucose-6-phosphate dehydrogenase, shikimic acid dehydrogenese, phenylalanine lyase, and flavonoids content showed an increment in ex-situ plants. Antioxidants enzyme superoxide dismutase, catalase, ascorbate peroxidase and reduced glutathione showed an increment in ex-situ conditions. Growth and reproductive attributes were more in ex-situ plants. The observations made are suggestive that a comprehensive conservation programme involving in-situ as well as ex-situ strategies will be effective for the conservation and long term survival of the species. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development)
Show Figures

Figure 1

14 pages, 254 KiB  
Article
Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization
by Loreana GALLO, María Veronica RAMÍREZ-RIGO, Juliana PIÑA, Santiago PALMA, Daniel ALLEMANDI and Verónica BUCALÁ
Sci. Pharm. 2012, 80(4), 1013-1026; https://doi.org/10.3797/scipharm.1206-05 - 12 Jul 2012
Cited by 20 | Viewed by 2308
Abstract
Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry [...] Read more.
Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder’s physical stability. The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds. Full article
12 pages, 180 KiB  
Article
Chemical Analysis and Biological Activity of the Essential Oils of Two Valerianaceous Species from China: Nardostachys chinensis and Valeriana officinalis
by Jihua Wang, Jianglin Zhao, Hao Liu, Ligang Zhou, Zhilong Liu, Jingguo Wang, Jianguo Han, Zhu Yu and Fuyu Yang
Molecules 2010, 15(9), 6411-6422; https://doi.org/10.3390/molecules15096411 - 14 Sep 2010
Cited by 100 | Viewed by 13238
Abstract
In order to investigate essential oils with biological activity from local wild plants, two valerianaceous species, Nardostachys chinensis and Valeriana officinalis, were screened for their antimicrobial and antioxidant activity. The essential oils were obtained from the roots and rhizomes of the two [...] Read more.
In order to investigate essential oils with biological activity from local wild plants, two valerianaceous species, Nardostachys chinensis and Valeriana officinalis, were screened for their antimicrobial and antioxidant activity. The essential oils were obtained from the roots and rhizomes of the two plants by hydro-distillation, and were analyzed for their chemical composition by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Calarene (25.31%), aristolone (13.35%), α-selinene (7.32%) and β-maaliene (6.70%) were the major compounds of the 23 identified components which accounted for 92.76% of the total oil of N. chinensis. Patchoulol (16.75%), α-pinene (14.81%), and β-humulene (8.19%) were the major compounds among the 20 identified components, which accounted for 88.11% of the total oil of V. officinalis. Both oils were rich in sesquiterpene hydrocarbons as well as their oxygenated derivatives. Essential oils were shown to have broad spectrum antibacterial activity with MIC values that ranged from 62.5 μg/mL to 400 μg/mL, and IC50 values from 36.93 μg/mL to 374.72 μg/mL. The oils were also shown to have moderate antifungal activity to Candida albicans growth as well as inhibition of spore germination of Magnaporthe oryzae. Two essential oils were assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, β-carotene bleaching and ferrozine-ferrous ions assays, respectively, to show moderate antioxidant activity. Results suggest that the isolated essential oils could be used for future development of antimicrobial and antioxidant agents. Full article
Back to TopTop