Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Unc-51-like kinase 1(ULK1)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1381 KB  
Review
The Role of the Beclin1 Complex in Rab9-Dependent Alternative Autophagy
by Sohyeon Baek, Yunha Jo and Jihoon Nah
Int. J. Mol. Sci. 2025, 26(18), 9151; https://doi.org/10.3390/ijms26189151 - 19 Sep 2025
Cited by 1 | Viewed by 1641
Abstract
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, [...] Read more.
Autophagy is a conserved catabolic pathway that degrades intracellular cargo through the lysosomal system. Canonically, this process is orchestrated by the autophagy-related (Atg)5-Atg7 conjugation system, which facilitates the formation of microtubule-associated protein 1 light chain 3 (LC3)-decorated double-membrane vesicles known as autophagosomes. However, accumulating evidence has revealed the existence of an Atg5-Atg7-independent, alternative autophagy pathway that still relies on upstream regulators such as the unc-51 like autophagy activating kinase 1 (Ulk1) kinase and the Beclin1 complex. In this review, we provide a comprehensive overview of the role of the Beclin1 complex in canonical autophagy and highlight its emerging importance in alternative autophagy. Notably, the recent identification of transmembrane protein 9 (TMEM9) as a lysosomal protein that interacts with Beclin1 to promote member RAS oncogene family 9 (Rab9)-dependent autophagosome formation has significantly advanced our understanding of alternative autophagy regulation. Furthermore, this Ulk1-Rab9-Beclin1-dependent mitophagy has been shown to mediate to mitochondrial quality control in the heart, thereby contributing to cardioprotection under ischemic and metabolic stress conditions. We further examine how the Beclin1 complex functions as a central scaffold in both canonical and alternative autophagy, with a focus on its modulation by novel factors such as TMEM9 and the potential therapeutic implications of these regulatory mechanisms. Full article
(This article belongs to the Special Issue New Insights of Autophagy and Apoptosis in Cells)
Show Figures

Graphical abstract

24 pages, 4089 KB  
Article
GENI as an AMPK Activator Binds α and γ Subunits and Improves the Memory Dysfunction of Alzheimer’s Disease Mouse Models via Autophagy and Neuroprotection
by Ying Wang, Lanjie Li, Danni Chen, Jiaheng Shan, Meijuan Yi, Hiroyuki Osada, Minoru Yoshida, Lan Xiang and Jianhua Qi
Antioxidants 2025, 14(1), 57; https://doi.org/10.3390/antiox14010057 - 6 Jan 2025
Cited by 1 | Viewed by 2215
Abstract
Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Gardenia jasminoides Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer’s disease (AD) effect, the galactose-induced AD mice and naturally aging mice [...] Read more.
Geniposidic 4-isoamyl ester (GENI) with anti-aging effects is a new iridoid glycoside derivative from Gardenia jasminoides Ellis found in our previous study. In this study, to indicate whether this compound has anti-Alzheimer’s disease (AD) effect, the galactose-induced AD mice and naturally aging mice with AD were used to do drug efficacy evaluation. Furthermore, the Western blot, small interfering RNA (siRNA), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CESTA), liquid chromatography-tandem mass spectrometry (LC/MS-MS), adenosine 5′-monophosphate-activated protein kinase (AMPK) mutants and surface plasmon resonance (SPR) analysis were utilized to clarify the mechanism of action and identify target protein of this molecule. GENI exerts anti-AD efficacy in galactose-induced AD mice and naturally aging mice with AD through neuroprotection and modification of autophagy and neuron inflammation. Moreover, AMPK as the target protein of GENI to produce an anti-AD effect is identified and the ASP148, ASP157, and ASP166 of the AMPK α subunit and lysine (LYS)148, aspartic acid (ASP)156, LYS309, and ASP316 in the AMPK γ subunit as binding sites are confirmed. Meanwhile, the AMPK/unc-51-like autophagy-activating kinase 1 (ULK1)/microtubule-associated protein 1 light chain 3 beta (LC3B) and AMPK/mammalian target of rapamycin (mTOR) signaling pathways involved in anti-AD effects of GENI. The findings provide a new perspective on treating neurodegenerative diseases by activating AMPK for the energy metabolism disorder. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

59 pages, 4829 KB  
Article
FAAH Inhibition Counteracts Neuroinflammation via Autophagy Recovery in AD Models
by Federica Armeli, Roberto Coccurello, Giacomo Giacovazzo, Beatrice Mengoni, Ilaria Paoletti, Sergio Oddi, Mauro Maccarrone and Rita Businaro
Int. J. Mol. Sci. 2024, 25(22), 12044; https://doi.org/10.3390/ijms252212044 - 9 Nov 2024
Cited by 3 | Viewed by 2089
Abstract
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer’s disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, [...] Read more.
Endocannabinoids have attracted great interest for their ability to counteract the neuroinflammation underlying Alzheimer’s disease (AD). Our study aimed at evaluating whether this activity was also due to a rebalance of autophagic mechanisms in cellular and animal models of AD. We supplied URB597, an inhibitor of Fatty-Acid Amide Hydrolase (FAAH), the degradation enzyme of anandamide, to microglial cultures treated with Aβ25-35, and to Tg2576 transgenic mice, thus increasing the endocannabinoid tone. The addition of URB597 did not alter cell viability and induced microglia polarization toward an anti-inflammatory phenotype, as shown by the modulation of pro- and anti-inflammatory cytokines, as well as M1 and M2 markers; moreover microglia, after URB597 treatment released higher levels of Bdnf and Nrf2, confirming the protective role underlying endocannabinoids increase, as shown by RT-PCR and immunofluorescence experiments. We assessed the number and area of amyloid plaques in animals administered with URB597 compared to untreated animals and the expression of autophagy key markers in the hippocampus and prefrontal cortex from both groups of mice, via immunohistochemistry and ELISA. After URB597 supply, we detected a reduction in the number and areas of amyloid plaques, as detected by Congo Red staining and a reshaping of microglia activation as shown by M1 and M2 markers’ modulation. URB597 administration restored autophagy in Tg2576 mice via an increase in BECN1 (Beclin1), ATG7 (Autophagy Related 7), LC3 (light chain 3) and SQSTM1/p62 (sequestrome 1) as well as via the activation of the ULK1 (Unc-51 Like Autophagy Activating Kinase 1) signaling pathway, suggesting that it targets mTOR/ULK1-dependent autophagy pathway. The potential of endocannabinoids to rebalance autophagy machinery may be considered as a new perspective for therapeutic intervention in AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

14 pages, 11156 KB  
Article
Chromium Affects Mitochondrial Function, Leading to Apoptosis and Autophagy in Turtle Primary Hepatocytes
by Shuqin Lin, Yunjuan Xiao, Jing Lin, Yue Yuan, Haitao Shi, Meiling Hong and Li Ding
Animals 2024, 14(16), 2403; https://doi.org/10.3390/ani14162403 - 19 Aug 2024
Cited by 3 | Viewed by 3403
Abstract
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. [...] Read more.
Hexavalent chromium (Cr(VI)), a pervasive industrial contaminant, is highly toxic to both humans and animals. However, its effects on turtles are largely unexplored. Our study aimed to investigate the toxic effects of Cr(VI) on the Reeves’ turtles (Mauremys reevesii) primary hepatocytes. We exposed hepatocytes to two concentrations (25 μM and 50 μM) of Cr(VI) for 24 h. The results showed that compared to controls, Cr(VI)-treated cells showed elevated antioxidant enzyme activity (catalase (CAT) and superoxide dismutase (SOD)) and increased reactive oxygen species (ROS) levels. Adenosine triphosphatae (ATP) levels decreased, indicating mitochondrial dysfunction. Additionally, we found significant changes in mitochondrial dynamics related genes, with downregulation of mitofusin 2 (Mfn2) and silent information regulator 1 (SIRT1) and a decrease in sirtuin 3 (SIRT3) and tumor protein 53 (p53) mRNA levels. Annexin V-FITC fluorescence staining-positive cells increased with higher Cr(VI) concentrations, marked by elevated bcl-2-associated X protein (Bax) and cysteinyl aspartate specific proteinase (Caspase3) mRNA levels and reduced B-cell lymphoma-2 (Bcl2) expression. Autophagy-related genes were also affected, with increased microtubule-associated protein 1 light chain 3 (LC3-I), microtubule-associated protein light chain 3II (LC3-II), unc-51-like autophagy-activating kinase 1 (ULK1), and sequestosome 1 (p62/SQSTM1) mRNA levels and decreased mammalian target of rapamycin (mTOR) and Beclin1 expression. Taken together, Cr(VI) promotes cell apoptosis and autophagy in turtle hepatocytes by inducing oxidative stress and disrupting mitochondrial function. These findings highlight the serious health risks posed by Cr(VI) pollution and emphasize the need for protecting wild turtle populations. Full article
(This article belongs to the Special Issue Aquatic Animal Medicine and Pathology)
Show Figures

Figure 1

15 pages, 15132 KB  
Article
Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells
by Jiyue Wan, Shumiao Zhang, Guiling Li, Shiying Huang, Jian Li, Zhengxiao Zhang and Jingwen Liu
Int. J. Mol. Sci. 2024, 25(15), 8061; https://doi.org/10.3390/ijms25158061 - 24 Jul 2024
Cited by 2 | Viewed by 2426
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the [...] Read more.
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 2487 KB  
Review
Therapeutic Relevance of Inducing Autophagy in β-Thalassemia
by Roberto Gambari and Alessia Finotti
Cells 2024, 13(11), 918; https://doi.org/10.3390/cells13110918 - 25 May 2024
Cited by 1 | Viewed by 2901
Abstract
The β-thalassemias are inherited genetic disorders affecting the hematopoietic system. In β-thalassemias, more than 350 mutations of the adult β-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess [...] Read more.
The β-thalassemias are inherited genetic disorders affecting the hematopoietic system. In β-thalassemias, more than 350 mutations of the adult β-globin gene cause the low or absent production of adult hemoglobin (HbA). A clinical parameter affecting the physiology of erythroid cells is the excess of free α-globin. Possible experimental strategies for a reduction in excess free α-globin chains in β-thalassemia are CRISPR-Cas9-based genome editing of the β-globin gene, forcing “de novo” HbA production and fetal hemoglobin (HbF) induction. In addition, a reduction in excess free α-globin chains in β-thalassemia can be achieved by induction of the autophagic process. This process is regulated by the Unc-51-like kinase 1 (Ulk1) gene. The interplay with the PI3K/Akt/TOR pathway, with the activity of the α-globin stabilizing protein (AHSP) and the involvement of microRNAs in autophagy and Ulk1 gene expression, is presented and discussed in the context of identifying novel biomarkers and potential therapeutic targets for β-thalassemia. Full article
(This article belongs to the Special Issue Exclusive Review Papers in Autophagy—Second Edition)
Show Figures

Graphical abstract

13 pages, 2341 KB  
Article
Carnosic Acid against Lung Cancer: Induction of Autophagy and Activation of Sestrin-2/LKB1/AMPK Signalling
by Eric J. O’Neill, Newman Siu Kwan Sze, Rebecca E. K. MacPherson and Evangelia Tsiani
Int. J. Mol. Sci. 2024, 25(4), 1950; https://doi.org/10.3390/ijms25041950 - 6 Feb 2024
Cited by 11 | Viewed by 3833
Abstract
Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in [...] Read more.
Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo. Full article
(This article belongs to the Special Issue Anticancer Activity of Natural Products and Related Compounds)
Show Figures

Graphical abstract

14 pages, 2171 KB  
Review
The Important Role of Protein Kinases in the p53 Sestrin Signaling Pathway
by Karsten Gülow, Deniz Tümen and Claudia Kunst
Cancers 2023, 15(22), 5390; https://doi.org/10.3390/cancers15225390 - 13 Nov 2023
Cited by 9 | Viewed by 3016
Abstract
p53, a crucial tumor suppressor and transcription factor, plays a central role in the maintenance of genomic stability and the orchestration of cellular responses such as apoptosis, cell cycle arrest, and DNA repair in the face of various stresses. Sestrins, a group of [...] Read more.
p53, a crucial tumor suppressor and transcription factor, plays a central role in the maintenance of genomic stability and the orchestration of cellular responses such as apoptosis, cell cycle arrest, and DNA repair in the face of various stresses. Sestrins, a group of evolutionarily conserved proteins, serve as pivotal mediators connecting p53 to kinase-regulated anti-stress responses, with Sestrin 2 being the most extensively studied member of this protein family. These responses involve the downregulation of cell proliferation, adaptation to shifts in nutrient availability, enhancement of antioxidant defenses, promotion of autophagy/mitophagy, and the clearing of misfolded proteins. Inhibition of the mTORC1 complex by Sestrins reduces cellular proliferation, while Sestrin-dependent activation of AMP-activated kinase (AMPK) and mTORC2 supports metabolic adaptation. Furthermore, Sestrin-induced AMPK and Unc-51-like protein kinase 1 (ULK1) activation regulates autophagy/mitophagy, facilitating the removal of damaged organelles. Moreover, AMPK and ULK1 are involved in adaptation to changing metabolic conditions. ULK1 stabilizes nuclear factor erythroid 2-related factor 2 (Nrf2), thereby activating antioxidative defenses. An understanding of the intricate network involving p53, Sestrins, and kinases holds significant potential for targeted therapeutic interventions, particularly in pathologies like cancer, where the regulatory pathways governed by p53 are often disrupted. Full article
(This article belongs to the Special Issue Protein Kinases and Pseudokinases in Cancers)
Show Figures

Figure 1

19 pages, 5107 KB  
Article
Moderate Hyperkalemia Regulates Autophagy to Reduce Cerebral Ischemia-Reperfusion Injury in a CA/CPR Rat Model
by Xiaoqin Wang, Xinyue Tian, Haiying Shen, Xiaohua Zhang, Lu Xie and Menghua Chen
Brain Sci. 2023, 13(9), 1285; https://doi.org/10.3390/brainsci13091285 - 4 Sep 2023
Cited by 2 | Viewed by 2505
Abstract
Background: Cerebral ischemia-reperfusion injury (CIRI) can cause irreversible brain damage and autophagy has been implicated in the pathophysiology. Increasing serum potassium (K+) levels reduces CIRI, but the relationship between its protective mechanism and autophagy is unclear. In this study, we aimed [...] Read more.
Background: Cerebral ischemia-reperfusion injury (CIRI) can cause irreversible brain damage and autophagy has been implicated in the pathophysiology. Increasing serum potassium (K+) levels reduces CIRI, but the relationship between its protective mechanism and autophagy is unclear. In this study, we aimed to find the optimal degree of raising serum (K+) and to investigate the relationship between high (K+) and autophagy and the underlying mechanisms in a cardiac arrest/cardiopulmonary resuscitation (CA/CPR) rat model. Methods: Sprague Dawley (SD) rats were divided into four groups: S group, N group, P group, and Q group. The rats S group and N group were administered saline. The rats P group and Q group were administered 640 mg/kg of potassium chloride (KCl) continuously pumped at 4 mL/h (21.3 mg/(kg·min) and divided according to the electrocardiogram (ECG) changes during the administration of KCl. After 24-h of resuscitation, neural damage was assessed by measuring neurological deficit score (NDS), oxidative stress markers, and pathological staining of the cerebral cortex. The level of autophagy and the expression of mTOR-ULK1-Beclin1 pathway-related proteins were evaluated using transmission electron microscopy (TEM), immunostaining, and western blotting. Results: Our results revealed that high (K+) improved NDS and decreased the oxidative stress markers. The autophagosomes, autolysosomes, and lysosomes were decreased following treatment KCl. Furthermore, the levels of micro-tubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ, Unc-51-like kinase 1 (ULK1), and Beclin1 were decreased, whereas mTOR expression was increased in the cortex. Conclusion: The results demonstrated that moderate hyperkalemia could alleviate autophagy after CIRI via regulating the mTOR-ULK1-Beclin1 pathway. Full article
Show Figures

Figure 1

17 pages, 4381 KB  
Review
Epigallocatechin-3-Gallate, an Active Green Tea Component to Support Anti-VEGFA Therapy in Wet Age-Related Macular Degeneration
by Janusz Blasiak, Jan Chojnacki, Joanna Szczepanska, Michal Fila, Cezary Chojnacki, Kai Kaarniranta and Elzbieta Pawlowska
Nutrients 2023, 15(15), 3358; https://doi.org/10.3390/nu15153358 - 28 Jul 2023
Cited by 13 | Viewed by 4831
Abstract
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry [...] Read more.
Age-related macular degeneration (AMD) is a largely incurable disease and an emerging problem in aging societies. It occurs in two forms, dry and wet (exudative, neovascular), which may cause legal blindness and sight loss. Currently, there is not any effective treatment for dry AMD. Meanwhile, repeated intravitreal injections with antibodies effective against vascular endothelial growth factor A (VEGFA) slow down wet AMD progression but are not free from complications. (-)-Epigallocatechin-3-gallate (EGCG) is an active compound of green tea, which exerts many beneficial effects in the retinal pigment epithelium and the neural retina. It has been reported to downregulate the VEGFA gene by suppressing its activators. The inhibition of mitogen-activated protein kinases 1 and 3 (MAPK1 and MAPK3) may lie behind the antiangiogenic action of EGCG mediated by VEGFA. EGCG exerts protective effects against UV-induced damage to retinal cells and improves dysfunctional autophagy. EGCG may also interact with the mechanistic target rapamycin (MTOR) and unc-51-like autophagy activating kinase (ULK1) to modulate the interplay between autophagy and apoptosis. Several other studies report beneficial effects of EGCG on the retina that may be related to wet AMD. Therefore, controlled clinical trials are needed to verify whether diet supplementation with EGCG or green tea consumption may improve the results of anti-VEGFA therapy in wet AMD. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

18 pages, 6660 KB  
Article
Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation
by Lichao Yang, Xiaojing Cheng, Wei Shi, Hui Li, Qi Zhang, Shiping Huang, Xuejing Huang, Sha Wen, Ji Gan, Zhouxiang Liao, Junming Sun, Jinning Liang, Yiqiang Ouyang and Min He
Nutrients 2022, 14(17), 3600; https://doi.org/10.3390/nu14173600 - 31 Aug 2022
Cited by 5 | Viewed by 3238
Abstract
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice [...] Read more.
Abnormal vasorin (Vasn) expression occurs in multiple diseases, particularly liver cancers. Vasn knockout (KO) in mice causes malnutrition, a shortened life span, and decreased physiological functions. However, the causes and underlying mechanisms remain unknown. Here, we established Vasn KO C57BL/6J mice by using the CRISPR/Cas9 system. The animals were weighed, and histology, immunohistochemistry, electronic microscopy, and liver function tests were used to examine any change in the livers. Autophagy markers were detected by Western blotting. MicroRNA (miRNA) sequencing was performed on liver samples and analyses to study the signaling pathway altered by Vasn KO. Significant reductions in mice body and liver weight, accompanied by abnormal liver function, liver injury, and reduced glycogen accumulation in hepatocytes, were observed in the Vasn KO mice. The deficiency of Vasn also significantly increased the number of autophagosomes and the expression of LC3A/B-II/I but decreased SQSTM1/p62 levels in hepatocytes, suggesting aberrant activation of autophagy. Vasn deficiency inhibited glycogen-mediated mammalian target of rapamycin (mTOR) phosphorylation and activated Unc-51-like kinase 1 (ULK1) signaling, suggesting that Vasn deletion upregulates hepatocyte autophagy through the mTOR-ULK1 signaling pathway as a possible cause of diminished life span and health. Our results indicate that Vasn is required for the homeostasis of liver glycogen metabolism upstream of hepatocyte autophagy, suggesting research values for regulating Vasn in pathways related to liver physiology and functions. Overall, this study provides new insight into the role of Vasn in liver functionality. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

16 pages, 4622 KB  
Article
Protective Effect of Mitophagy Regulated by mTOR Signaling Pathway in Liver Fibrosis Associated with Selenium
by Lichun Qiao, Ziwei Guo, Haobiao Liu, Jiaxin Liu, Xue Lin, Huan Deng, Xuan Liu, Yan Zhao, Xiang Xiao, Jian Lei and Jing Han
Nutrients 2022, 14(12), 2410; https://doi.org/10.3390/nu14122410 - 10 Jun 2022
Cited by 22 | Viewed by 3671
Abstract
Background: As a central organ of energy metabolism, the liver is closely related to selenium for its normal function and disease development. However, the underlying roles of mitochondrial energy metabolism and mitophagy in liver fibrosis associated with selenium remain unclear. Methods: 28 rats [...] Read more.
Background: As a central organ of energy metabolism, the liver is closely related to selenium for its normal function and disease development. However, the underlying roles of mitochondrial energy metabolism and mitophagy in liver fibrosis associated with selenium remain unclear. Methods: 28 rats were randomly divided into normal, low-selenium, nano-selenium supplement-1, and supplement-2 groups for a 12-week intervention. We observed pathological and ultrastructural changes in the liver and analyzed the effects of selenium deficiency and nano-selenium supplementation on liver metabolic activities and crucial proteins expression of mammalian target of the rapamycin (mTOR) signaling pathway. Results: Selenium deficiency caused liver pathological damage and fibrosis with the occurrence of mitophagy by disrupting normal metabolic activities; meanwhile, the mTOR signaling pathway was up-regulated to enhance mitophagy to clear damaged mitochondria. Furthermore, nano-selenium supplements could reduce the severity of pathological damage and fibrosis in livers and maintain normal energy metabolic activity. With the increased concentrations of nano-selenium supplement, swelling mitochondria and mitophagy gradually decreased, accompanied by the higher expression of mTOR and phosphorylation-modified mTOR proteins and lower expression of unc-51 like autophagy activating kinase 1 (ULK1) and phosphorylation-modified ULK1 proteins. Conclusions: Mitophagy regulated by the mTOR signaling pathway plays a dual protective role on low-selenium inducing liver fibrosis and nano-selenium supplements preventing liver fibrosis. Mitochondrial energy metabolism plays an important role in these processes as well. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

21 pages, 4654 KB  
Article
Curcumin Alleviates the Senescence of Canine Bone Marrow Mesenchymal Stem Cells during In Vitro Expansion by Activating the Autophagy Pathway
by Jiaqiang Deng, Ping Ouyang, Weiyao Li, Lijun Zhong, Congwei Gu, Liuhong Shen, Suizhong Cao, Lizi Yin, Zhihua Ren, Zhicai Zuo, Junliang Deng, Qigui Yan and Shumin Yu
Int. J. Mol. Sci. 2021, 22(21), 11356; https://doi.org/10.3390/ijms222111356 - 21 Oct 2021
Cited by 25 | Viewed by 5216
Abstract
Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine [...] Read more.
Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 μM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-β-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 μM~10 μM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs. Full article
(This article belongs to the Special Issue Autophagy in Health, Aging and Disease 3.0)
Show Figures

Figure 1

16 pages, 4170 KB  
Article
Nonstructural Protein NS1 of Influenza Virus Disrupts Mitochondrial Dynamics and Enhances Mitophagy via ULK1 and BNIP3
by Jae-Hwan Lee, Soo-Jin Oh, Jeanho Yun and Ok Sarah Shin
Viruses 2021, 13(9), 1845; https://doi.org/10.3390/v13091845 - 15 Sep 2021
Cited by 24 | Viewed by 4525
Abstract
Nonstructural protein 1 (NS1) of influenza virus (IFV) is essential for evading interferon (IFN)-mediated antiviral responses, thereby contributing to the pathogenesis of influenza. Mitophagy is a type of autophagy that selectively removes damaged mitochondria. The role of NS1 in IFV-mediated mitophagy is currently [...] Read more.
Nonstructural protein 1 (NS1) of influenza virus (IFV) is essential for evading interferon (IFN)-mediated antiviral responses, thereby contributing to the pathogenesis of influenza. Mitophagy is a type of autophagy that selectively removes damaged mitochondria. The role of NS1 in IFV-mediated mitophagy is currently unknown. Herein, we showed that overexpression of NS1 protein led to enhancement of mitophagy. Mitophagy induction via carbonyl cyanide 3-chlorophenylhydrazone treatment in IFV-infected A549 cells led to increased viral replication efficiency, whereas the knockdown of PTEN-induced kinase 1 (PINK1) led to the opposite effect on viral replication. Overexpression of NS1 protein led to changes in mitochondrial dynamics, including depolarization of mitochondrial membrane potential. In contrast, infection with NS1-deficient virus resulted in impaired mitochondrial fragmentation, subsequent mitolysosomal formation, and mitophagy induction, suggesting an important role of NS1 in mitophagy. Meanwhile, NS1 protein increased the phosphorylation of Unc-51-like autophagy activating kinase 1 (ULK1) and the mitochondrial expression of BCL2- interacting protein 3 (BNIP3), both of which were found to be important for IFV-mediated mitophagy. Overall, these data highlight the importance of IFV NS1, ULK1, and BNIP3 during mitophagy activation. Full article
(This article belongs to the Special Issue Interaction between Virus and Host Innate Immune Systems)
Show Figures

Figure 1

21 pages, 5012 KB  
Article
ATG101 Degradation by HUWE1-Mediated Ubiquitination Impairs Autophagy and Reduces Survival in Cancer Cells
by JaeYung Lee, Jiyea Kim, Jeongeun Shin, YongHyun Kang, Jungwon Choi and Heesun Cheong
Int. J. Mol. Sci. 2021, 22(17), 9182; https://doi.org/10.3390/ijms22179182 - 25 Aug 2021
Cited by 17 | Viewed by 4764
Abstract
Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating [...] Read more.
Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating individual components of the autophagy machinery under various conditions. Here, we examined whether ULK1 complex component autophagy-related protein 101 (ATG101) is downregulated via ubiquitination, and whether this in turn suppresses autophagy activity in cancer cells. Knockout of ATG101 in cancer cells using CRISPR resulted in severe growth retardation and lower survival under nutrient starvation. Transfection of mutant ATG101 revealed that the C-terminal region is a key domain of ubiquitination, while co-immunoprecipitation and knockdown experiments revealed that HECT, UBA and WWE domain containing E3 ubiquitin protein ligase 1(HUWE1) is a major E3 ubiquitin ligase targeting ATG101. Protein levels of ATG101 was more stable and the related-autophagy activity was higher in HUWE1-depleted cancer cells compared to wild type (WT) controls, indicating that HUWE1-mediated ubiquitination promotes ATG101 degradation. Moreover, enhanced autophagy in HUWE1-depleted cancer cells was reversed by siRNA-mediated ATG101 knockdown. Stable ATG101 level in HUWE1-depleted cells was a strong driver of autophagosome formation similar to upregulation of the known HUWE1 substrate WD repeat domain, phosphoinositide interacting 2 (WIPI2). Cellular survival rates were higher in HUWE1-knockdown cancer cells compared to controls, while concomitant siRNA-mediated ATG101 knockdown tends to increase apoptosis rate. Collectively, these results suggest that HUWE1 normally serves to suppress autophagy by ubiquitinating and triggering degradation of ATG101 and WIPI2, which in turn represses the survival of cancer cells. Accordingly, ATG101-mediated autophagy may play a critical role in overcoming metabolic stress, thereby contributing to the growth, survival, and treatment resistance of certain cancers. Full article
(This article belongs to the Special Issue Ubiquitination and Deubiquitination in Cellular Homeostasis)
Show Figures

Figure 1

Back to TopTop