Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (231)

Search Parameters:
Keywords = UAV trajectory generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3506 KiB  
Article
UAV Navigation Using EKF-MonoSLAM Aided by Range-to-Base Measurements
by Rodrigo Munguia, Juan-Carlos Trujillo and Antoni Grau
Drones 2025, 9(8), 570; https://doi.org/10.3390/drones9080570 - 12 Aug 2025
Viewed by 86
Abstract
This study introduces an innovative refinement to EKF-based monocular SLAM by incorporating attitude, altitude, and range-to-base data to enhance system observability and minimize drift. In particular, by utilizing a single range measurement relative to a fixed reference point, the method enables unmanned aerial [...] Read more.
This study introduces an innovative refinement to EKF-based monocular SLAM by incorporating attitude, altitude, and range-to-base data to enhance system observability and minimize drift. In particular, by utilizing a single range measurement relative to a fixed reference point, the method enables unmanned aerial vehicles (UAVs) to mitigate error accumulation, preserve map consistency, and operate reliably in environments without GPS. This integration facilitates sustained autonomous navigation with estimation error remaining bounded over extended trajectories. Theoretical validation is provided through a nonlinear observability analysis, highlighting the general benefits of integrating range data into the SLAM framework. The system’s performance is evaluated through both virtual experiments and real-world flight data. The real-data experiments confirm the practical relevance of the approach and its ability to improve estimation accuracy in realistic scenarios. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

26 pages, 10272 KiB  
Article
Research on Disaster Environment Map Fusion Construction and Reinforcement Learning Navigation Technology Based on Air–Ground Collaborative Multi-Heterogeneous Robot Systems
by Hongtao Tao, Wen Zhao, Li Zhao and Junlong Wang
Sensors 2025, 25(16), 4988; https://doi.org/10.3390/s25164988 - 12 Aug 2025
Viewed by 329
Abstract
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to [...] Read more.
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to achieve rapid three-dimensional space coverage and complex terrain crossing for rapid and efficient map construction. Meanwhile, it utilizes the stable operation capability of an unmanned ground vehicle (UGV) and the ground detail survey capability to achieve precise map construction. The maps constructed by the two are accurately integrated to obtain precise disaster environment maps. Among them, the map construction and positioning technology is based on the FAST LiDAR–inertial odometry 2 (FAST-LIO2) framework, enabling the robot to achieve precise positioning even in complex environments, thereby obtaining more accurate point cloud maps. Before conducting map fusion, the point cloud is preprocessed first to reduce the density of the point cloud and also minimize the interference of noise and outliers. Subsequently, the coarse and fine registrations of the point clouds are carried out in sequence. The coarse registration is used to reduce the initial pose difference of the two point clouds, which is conducive to the subsequent rapid and efficient fine registration. The coarse registration uses the improved sample consensus initial alignment (SAC-IA) algorithm, which significantly reduces the registration time compared with the traditional SAC-IA algorithm. The precise registration uses the voxelized generalized iterative closest point (VGICP) algorithm. It has a faster registration speed compared with the generalized iterative closest point (GICP) algorithm while ensuring accuracy. In reinforcement learning navigation, we adopted the deep deterministic policy gradient (DDPG) path planning algorithm. Compared with the deep Q-network (DQN) algorithm and the A* algorithm, the DDPG algorithm is more conducive to the robot choosing a better route in a complex and unknown environment, and at the same time, the motion trajectory is smoother. This paper adopts Gazebo simulation. Compared with physical robot operation, it provides a safe, controllable, and cost-effective environment, supports efficient large-scale experiments and algorithm debugging, and also supports flexible sensor simulation and automated verification, thereby optimizing the overall testing process. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

21 pages, 1549 KiB  
Article
Reinforcement Learning-Guided Particle Swarm Optimization for Multi-Objective Unmanned Aerial Vehicle Path Planning
by Wuke Li, Ying Xiong and Qi Xiong
Symmetry 2025, 17(8), 1292; https://doi.org/10.3390/sym17081292 - 11 Aug 2025
Viewed by 179
Abstract
Multi-objective Unmanned Aerial Vehicle (UAV) path planning in complex 3D environments presents a fundamental challenge requiring the simultaneous optimization of conflicting objectives such as path length, safety, altitude constraints, and smoothness. This study proposes a novel hybrid framework, termed QL-MOPSO, that integrates reinforcement [...] Read more.
Multi-objective Unmanned Aerial Vehicle (UAV) path planning in complex 3D environments presents a fundamental challenge requiring the simultaneous optimization of conflicting objectives such as path length, safety, altitude constraints, and smoothness. This study proposes a novel hybrid framework, termed QL-MOPSO, that integrates reinforcement learning with metaheuristic optimization through a three-stage hierarchical architecture. The framework employs Q-learning to generate a global guidance path in a discretized 2D grid environment using an eight-directional symmetric action space that embodies rotational symmetry at π/4 intervals, ensuring uniform exploration capabilities and unbiased path planning. A crucial intermediate stage transforms the discrete 2D path into a 3D initial trajectory, bridging the gap between discrete learning and continuous optimization domains. The MOPSO algorithm then performs fine-grained refinement in continuous 3D space, guided by a novel Q-learning path deviation objective that ensures continuous knowledge transfer throughout the optimization process. Experimental results demonstrate that the symmetric action space design yields 20.6% shorter paths compared to asymmetric alternatives, while the complete QL-MOPSO framework achieves 5% path length reduction and significantly faster convergence compared to standard MOPSO. The proposed method successfully generates Pareto-optimal solutions that balance multiple objectives while leveraging the symmetry-aware guidance mechanism to avoid local optima and accelerate convergence, offering a robust solution for complex multi-objective UAV path planning problems. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
Show Figures

Figure 1

21 pages, 7718 KiB  
Article
Monitoring the Early Growth of Pinus and Eucalyptus Plantations Using a Planet NICFI-Based Canopy Height Model: A Case Study in Riqueza, Brazil
by Fabien H. Wagner, Fábio Marcelo Breunig, Rafaelo Balbinot, Emanuel Araújo Silva, Messias Carneiro Soares, Marco Antonio Kramm, Mayumi C. M. Hirye, Griffin Carter, Ricardo Dalagnol, Stephen C. Hagen and Sassan Saatchi
Remote Sens. 2025, 17(15), 2718; https://doi.org/10.3390/rs17152718 - 6 Aug 2025
Viewed by 433
Abstract
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address [...] Read more.
Monitoring the height of secondary forest regrowth is essential for assessing ecosystem recovery, but current methods rely on field surveys, airborne or UAV LiDAR, and 3D reconstruction from high-resolution UAV imagery, which are often costly or limited by logistical constraints. Here, we address the challenge of scaling up canopy height monitoring by evaluating a recent deep learning model, trained on data from the Amazon and Atlantic Forests, developed to extract canopy height from RGB-NIR Planet NICFI imagery. The research questions are as follows: (i) How are canopy height estimates from the model affected by slope and orientation in natural forests, based on a large and well-balanced experimental design? (ii) How effectively does the model capture the growth trajectories of Pinus and Eucalyptus plantations over an eight-year period following planting? We find that the model closely tracks Pinus growth at the parcel scale, with predictions generally within one standard deviation of UAV-derived heights. For Eucalyptus, while growth is detected, the model consistently underestimates height, by more than 10 m in some cases, until late in the cycle when the canopy becomes less dense. In stable natural forests, the model reveals seasonal artifacts driven by topographic variables (slope × aspect × day of year), for which we propose strategies to reduce their influence. These results highlight the model’s potential as a cost-effective and scalable alternative to field-based and LiDAR methods, enabling broad-scale monitoring of forest regrowth and contributing to innovation in remote sensing for forest dynamics assessment. Full article
Show Figures

Figure 1

32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 452
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 362
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

16 pages, 1823 KiB  
Article
Collaborative Target Tracking Algorithm for Multi-Agent Based on MAPPO and BCTD
by Yuebin Zhou, Yunling Yue, Bolun Yan, Linkun Li, Jinsheng Xiao and Yuan Yao
Drones 2025, 9(8), 521; https://doi.org/10.3390/drones9080521 - 24 Jul 2025
Viewed by 354
Abstract
Target tracking is a representative task in multi-agent reinforcement learning (MARL), where agents must collaborate effectively in environments with dense obstacles, evasive targets, and high-dimensional observations—conditions that often lead to local optima and training inefficiencies. To address these challenges, this paper proposes a [...] Read more.
Target tracking is a representative task in multi-agent reinforcement learning (MARL), where agents must collaborate effectively in environments with dense obstacles, evasive targets, and high-dimensional observations—conditions that often lead to local optima and training inefficiencies. To address these challenges, this paper proposes a collaborative tracking algorithm for UAVs that integrates behavior cloning with temporal difference (BCTD) and multi-agent proximal policy optimization (MAPPO). Expert trajectories are generated using the artificial potential field (APF), followed by policy pre-training via behavior cloning and TD-based value optimization. MAPPO is then employed for dynamic fine-tuning, enhancing robustness and coordination. Experiments in a simulated environment show that the proposed MAPPO+BCTD framework outperforms MAPPO, QMIX, and MADDPG in success rate, convergence speed, and tracking efficiency. The proposed method effectively alleviates the local optimization problem of APF and the training inefficiency problem of RL, offering a scalable and reliable solution for dynamic multi-agent coordination. Full article
(This article belongs to the Special Issue Cooperative Perception for Modern Transportation)
Show Figures

Figure 1

27 pages, 5145 KiB  
Article
An Improved Deep Q-Learning Approach for Navigation of an Autonomous UAV Agent in 3D Obstacle-Cluttered Environment
by Ghulam Farid, Muhammad Bilal, Lanyong Zhang, Ayman Alharbi, Ishaq Ahmed and Muhammad Azhar
Drones 2025, 9(8), 518; https://doi.org/10.3390/drones9080518 - 23 Jul 2025
Cited by 1 | Viewed by 384
Abstract
The performance of the UAVs while executing various mission profiles greatly depends on the selection of planning algorithms. Reinforcement learning (RL) algorithms can effectively be utilized for robot path planning. Due to random action selection in case of action ties, the traditional Q-learning [...] Read more.
The performance of the UAVs while executing various mission profiles greatly depends on the selection of planning algorithms. Reinforcement learning (RL) algorithms can effectively be utilized for robot path planning. Due to random action selection in case of action ties, the traditional Q-learning algorithm and its other variants face the issues of slow convergence and suboptimal path planning in high-dimensional navigational environments. To solve these problems, we propose an improved deep Q-network (DQN), incorporating an efficient tie-breaking mechanism, prioritized experience replay (PER), and L2-regularization. The adopted tie-breaking mechanism improves the action selection and ultimately helps in generating an optimal trajectory for the UAV in a 3D cluttered environment. To improve the convergence speed of the traditional Q-algorithm, prioritized experience replay is used, which learns from experiences with high temporal difference (TD) error and avoids uniform sampling of stored transitions during training. This also allows the prioritization of high-reward experiences (e.g., reaching a goal), which helps the agent to rediscover these valuable states and improve learning. Moreover, L2-regularization is adopted that encourages smaller weights for more stable and smoother Q-values to reduce the erratic action selections and promote smoother UAV flight paths. Finally, the performance of the proposed method is presented and thoroughly compared against the traditional DQN, demonstrating its superior effectiveness. Full article
Show Figures

Figure 1

36 pages, 9024 KiB  
Article
Energy Optimal Trajectory Planning for the Morphing Solar-Powered Unmanned Aerial Vehicle Based on Hierarchical Reinforcement Learning
by Tichao Xu, Wenyue Meng and Jian Zhang
Drones 2025, 9(7), 498; https://doi.org/10.3390/drones9070498 - 15 Jul 2025
Viewed by 431
Abstract
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an [...] Read more.
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an energy-optimal trajectory planning method based on Hierarchical Reinforcement Learning for morphing solar-powered Unmanned Aerial Vehicles (UAVs), exemplified by a Λ-shaped aircraft. This method aims to train a hierarchical policy to autonomously track energy peaks. It features a top-level decision policy selecting appropriate bottom-level policies based on energy factors, which generate control commands such as thrust, attitude angles, and wing deflection angles. Shaped properly by reward functions and training conditions, the hierarchical policy can enable the UAV to adapt to changing flight conditions and achieve autonomous flight with energy maximization. Evaluated through 24 h simulation flights on the summer solstice, the results demonstrate that the hierarchical policy can appropriately switch its bottom-level policies during daytime and generate real-time control commands that satisfy optimal energy power requirements. Compared with the minimum energy consumption benchmark case, the proposed hierarchical policy achieved 0.98 h more of full-charge high-altitude cruise duration and 1.92% more remaining battery energy after 24 h, demonstrating superior energy optimization capabilities. In addition, the strong adaptability of the hierarchical policy to different quarterly dates was demonstrated through generalization ability testing. Full article
Show Figures

Figure 1

22 pages, 3045 KiB  
Article
Optimization of RIS-Assisted 6G NTN Architectures for High-Mobility UAV Communication Scenarios
by Muhammad Shoaib Ayub, Muhammad Saadi and Insoo Koo
Drones 2025, 9(7), 486; https://doi.org/10.3390/drones9070486 - 10 Jul 2025
Viewed by 614
Abstract
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, [...] Read more.
The integration of reconfigurable intelligent surfaces (RISs) with non-terrestrial networks (NTNs), particularly those enabled by unmanned aerial vehicles (UAVs) or drone-based platforms, has emerged as a transformative approach to enhance 6G connectivity in high-mobility scenarios. UAV-assisted NTNs offer flexible deployment, dynamic altitude control, and rapid network reconfiguration, making them ideal candidates for RIS-based signal optimization. However, the high mobility of UAVs and their three-dimensional trajectory dynamics introduce unique challenges in maintaining robust, low-latency links and seamless handovers. This paper presents a comprehensive performance analysis of RIS-assisted UAV-based NTNs, focusing on optimizing RIS phase shifts to maximize the signal-to-interference-plus-noise ratio (SINR), throughput, energy efficiency, and reliability under UAV mobility constraints. A joint optimization framework is proposed that accounts for UAV path loss, aerial shadowing, interference, and user mobility patterns, tailored specifically for aerial communication networks. Extensive simulations are conducted across various UAV operation scenarios, including urban air corridors, rural surveillance routes, drone swarms, emergency response, and aerial delivery systems. The results reveal that RIS deployment significantly enhances the SINR and throughput while navigating energy and latency trade-offs in real time. These findings offer vital insights for deploying RIS-enhanced aerial networks in 6G, supporting mission-critical drone applications and next-generation autonomous systems. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

17 pages, 4316 KiB  
Article
A Coverage Path Planning Method with Energy Optimization for UAV Monitoring Tasks
by Zhengqiang Xiong, Chang Han, Xiaoliang Wang and Li Gao
J. Low Power Electron. Appl. 2025, 15(3), 39; https://doi.org/10.3390/jlpea15030039 - 9 Jul 2025
Viewed by 331
Abstract
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper [...] Read more.
Coverage path planning solves the problem of moving an effector over all points within a specific region with effective routes. Most existing studies focus on geometric constraints, often overlooking robot-specific features, like the available energy, weight, maximum speed, sensor resolution, etc. This paper proposes a coverage path planning algorithm for Unmanned Aerial Vehicles (UAVs) that minimizes energy consumption while satisfying a set of other requirements, such as coverage and observation resolution. To deal with these issues, we propose a novel energy-optimal coverage path planning framework for monitoring tasks. Firstly, the 3D terrain’s spatial characteristics are digitized through a combination of parametric modeling and meshing techniques. To accurately estimate actual energy expenditure along a segmented trajectory, a power estimation module is introduced, which integrates dynamic feasibility constraints into the energy computation. Utilizing a Digital Surface Model (DSM), a global energy consumption map is generated by constructing a weighted directed graph over the terrain. Subsequently, an energy-optimal coverage path is derived by applying a Genetic Algorithm (GA) to traverse this map. Extensive simulation results validate the superiority of the proposed approach compared to existing methods. Full article
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 583
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

24 pages, 4442 KiB  
Article
Time-Series Correlation Optimization for Forest Fire Tracking
by Dongmei Yang, Guohao Nie, Xiaoyuan Xu, Debin Zhang and Xingmei Wang
Forests 2025, 16(7), 1101; https://doi.org/10.3390/f16071101 - 3 Jul 2025
Viewed by 334
Abstract
Accurate real-time tracking of forest fires using UAV platforms is crucial for timely early warning, reliable spread prediction, and effective autonomous suppression. Existing detection-based multi-object tracking methods face challenges in accurately associating targets and maintaining smooth tracking trajectories in complex forest environments. These [...] Read more.
Accurate real-time tracking of forest fires using UAV platforms is crucial for timely early warning, reliable spread prediction, and effective autonomous suppression. Existing detection-based multi-object tracking methods face challenges in accurately associating targets and maintaining smooth tracking trajectories in complex forest environments. These difficulties stem from the highly nonlinear movement of flames relative to the observing UAV and the lack of robust fire-specific feature modeling. To address these challenges, we introduce AO-OCSORT, an association-optimized observation-centric tracking framework designed to enhance robustness in dynamic fire scenarios. AO-OCSORT builds on the YOLOX detector. To associate detection results across frames and form smooth trajectories, we propose a temporal–physical similarity metric that utilizes temporal information from the short-term motion of targets and incorporates physical flame characteristics derived from optical flow and contours. Subsequently, scene classification and low-score filtering are employed to develop a hierarchical association strategy, reducing the impact of false detections and interfering objects. Additionally, a virtual trajectory generation module is proposed, employing a kinematic model to maintain trajectory continuity during flame occlusion. Locally evaluated on the 1080P-resolution FireMOT UAV wildfire dataset, AO-OCSORT achieves a 5.4% improvement in MOTA over advanced baselines at 28.1 FPS, meeting real-time requirements. This improvement enhances the reliability of fire front localization, which is crucial for forest fire management. Furthermore, AO-OCSORT demonstrates strong generalization, achieving 41.4% MOTA on VisDrone, 80.9% on MOT17, and 92.2% MOTA on DanceTrack. Full article
(This article belongs to the Special Issue Advanced Technologies for Forest Fire Detection and Monitoring)
Show Figures

Figure 1

25 pages, 26505 KiB  
Article
Multi-UAV Trajectory Planning Based on a Two-Layer Algorithm Under Four-Dimensional Constraints
by Yong Yang, Yujie Fu, Runpeng Xin, Weiqi Feng and Kaijun Xu
Drones 2025, 9(7), 471; https://doi.org/10.3390/drones9070471 - 1 Jul 2025
Cited by 1 | Viewed by 420
Abstract
With the rapid development of the low-altitude economy and smart logistics, unmanned aerial vehicles (UAVs), as core low-altitude platforms, have been widely applied in urban delivery, emergency rescue, and other fields. Although path planning in complex environments has become a research hotspot, optimization [...] Read more.
With the rapid development of the low-altitude economy and smart logistics, unmanned aerial vehicles (UAVs), as core low-altitude platforms, have been widely applied in urban delivery, emergency rescue, and other fields. Although path planning in complex environments has become a research hotspot, optimization and scheduling of UAVs under time window constraints and task assignments remain insufficiently studied. To address this issue, this paper proposes an improved algorithmic framework based on a two-layer structure to enhance the intelligence and coordination efficiency of multi-UAV path planning. In the lower layer path planning stage, considering the limitations of the whale optimization algorithm (WOA), such as slow convergence, low precision, and susceptibility to local optima, this study integrates a backward learning mechanism, nonlinear convergence factor, random number generation strategy, and genetic algorithm principle to construct an improved IWOA. These enhancements significantly strengthen the global search capability and convergence performance of the algorithm. For upper layer task assignment, the improved ALNS (IALNS) addresses local optima issues in complex constraints. It integrates K-means clustering for initialization and a simulated annealing mechanism, improving scheduling rationality and solution efficiency. Through the coordination between the upper and lower layers, the overall solution flexibility is improved. Experimental results demonstrate that the proposed IALNS-IWOA two-layer method outperforms the conventional IALNS-WOA approach by 7.30% in solution quality and 7.36% in environmental adaptability, effectively improving the overall performance of UAV trajectory planning. Full article
Show Figures

Figure 1

29 pages, 915 KiB  
Article
Measurement Along the Path of Unmanned Aerial Vehicles for Best Horizontal Dilution of Precision and Geometric Dilution of Precision
by Yanwu Ding, Dan Shen, Khanh Pham and Genshe Chen
Sensors 2025, 25(13), 3901; https://doi.org/10.3390/s25133901 - 23 Jun 2025
Viewed by 320
Abstract
In the zenith-horizon placement for achieving minimum geometric dilution of precision (GDOP), one access node or sensor is positioned along the z-axis, while the remaining nodes are placed symmetrically on a three-dimensional (3D) cone. This configuration yields the minimum GDOP at the cone’s [...] Read more.
In the zenith-horizon placement for achieving minimum geometric dilution of precision (GDOP), one access node or sensor is positioned along the z-axis, while the remaining nodes are placed symmetrically on a three-dimensional (3D) cone. This configuration yields the minimum GDOP at the cone’s tip, which we term the designated min-GDOP point. However, in practical localization applications, the unknown node is not necessarily located at this designated min-GDOP point; instead, it may be situated anywhere within an area. As a result, evaluating localization accuracy across the entire area, rather than at a single point, is more relevant. Averaged horizontal dilution of precision (HDOP) and GDOP across the region provide more meaningful metrics for system-wide performance than values computed only at a specific location. Although many recent positioning applications leverage multiple unmanned aerial vehicles (UAVs), many established fixed sensor deployments predate the widespread adoption of UAVs. This paper proposes a novel approach with a single UAV working in conjunction with existing fixed access nodes for positioning. This approach offers improved adaptability for fixed infrastructure while circumventing the expense of establishing entirely new UAV systems, thus providing a valuable compromise. We investigate the criteria of average HDOP and GDOP over the given area. The objective is to determine optimal UAV positions along the flight path that minimize the average HDOP and/or GDOP across the area. Due to the analytical complexity, we employ numerical methods. Our simulation results demonstrate that minimizing average HDOP and GDOP often requires different UAV positions, depending on the number of access nodes and the size of the area. Consequently, achieving simultaneous minimization of both metrics with a single UAV trajectory is generally infeasible. When minimizing the average HDOP with a small number of access nodes, aligning the UAV’s XY-plane angle with those of the stationary nodes, offset by 60, proves advantageous. This angular alignment becomes less critical as the number of access nodes increases. For scenarios where both HDOP and GDOP are important, UAV placement can be optimized by selecting appropriate trade-offs. Additionally, we quantify how increasing the number of access nodes improves the average HDOP and GDOP over the specified area. Full article
Show Figures

Figure 1

Back to TopTop