Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = UAV–OFDM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3071 KB  
Article
OTFS: A Potential Waveform for Space–Air–Ground Integrated Networks in 6G and Beyond
by Obinna Okoyeigbo, Xutao Deng, Agbotiname Lucky Imoize and Olamilekan Shobayo
Telecom 2025, 6(1), 19; https://doi.org/10.3390/telecom6010019 - 11 Mar 2025
Cited by 2 | Viewed by 2705
Abstract
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler [...] Read more.
6G is expected to provide ubiquitous connectivity, particularly in remote and inaccessible environments, by integrating satellite and aerial networks with existing terrestrial networks, forming Space–Air–Ground Integrated Networks (SAGINs). These networks, comprising satellites, unmanned aerial vehicles (UAVs), and high-speed terrestrial networks, introduce severe Doppler effects due to high mobility. Traditional modulation techniques like Orthogonal Frequency Division Multiplexing (OFDM) struggle to maintain reliable communication under such conditions. This paper investigates Orthogonal Time Frequency Space (OTFS) modulation as a robust alternative for high-mobility scenarios in SAGINs. Using 6G exploration library in MATLAB, this study compares the bit error rate (BER) performance of OTFS and OFDM under static and multipath channels with varying mobility scenarios from 20 km/h to 2000 km/h, and varying modulation orders (BPSK, QPSK, and 8-PSK). The results indicate that OTFS significantly outperforms OFDM, while maintaining signal integrity under extreme mobility conditions. OTFS modulates information symbols in the delay–Doppler domain, demonstrating a strong robustness against Doppler shifts and delay spreads. This makes it particularly suitable for high-mobility applications such as satellites, UAVs, and high-speed terrestrial networks. Conversely, while OFDM remains effective in static and low-mobility environments, it struggles with severe Doppler effects, common in the proposed SAGINs. These findings reinforce OTFS as a promising modulation technique for SAGINs in 6G and beyond. Full article
Show Figures

Figure 1

29 pages, 4419 KB  
Article
OTFS-Based Handover Triggering in UAV Networks
by Ehab Mahmoud Mohamed, Hany S. Hussein, Mohammad Ahmed Alnakhli and Sherief Hashima
Drones 2025, 9(3), 185; https://doi.org/10.3390/drones9030185 - 3 Mar 2025
Cited by 1 | Viewed by 963
Abstract
In this paper, delay Doppler (DD) domain is utilized for enabling an efficient handover-triggering mechanism in highly dynamic unmanned aerial vehicles (UAVs) or drones to ground networks. In the proposed scheme, the estimated DD channel gains using DD multi-carrier modulation (DDMC), e.g., orthogonal [...] Read more.
In this paper, delay Doppler (DD) domain is utilized for enabling an efficient handover-triggering mechanism in highly dynamic unmanned aerial vehicles (UAVs) or drones to ground networks. In the proposed scheme, the estimated DD channel gains using DD multi-carrier modulation (DDMC), e.g., orthogonal time frequency space (OTFS) modulation, are utilized for triggering the handover decisions. This is motivated by the fact that the estimated DD channel gain is time-invariant throughout the whole OTFS symbol despite the entity speed. This results in more stable handover decisions over that based on the time-varying received-signal strength (RSS) or frequency time (FT) channel gains using orthogonal frequency division multiplexing (OFDM) modulation employed in fifth-generation–new radio (5G-NR) and its predecessors. To mathematically bind the performance of the proposed scheme, we studied its performance under channel estimation errors of the most dominant DD channel estimators, i.e., least square (LS) and minimum mean square error (MMSE), and we prove that they have marginal effects on its performance. Numerical analyses demonstrated the superiority of the proposed DD-based handover-triggering scheme over candidate benchmarks in terms of the handover overhead, the achievable throughput, and ping-pong ratio under different simulation conditions. Full article
Show Figures

Figure 1

22 pages, 9199 KB  
Review
UAV Detection with Passive Radar: Algorithms, Applications, and Challenges
by Zhibo Tang, He Ma, Youmin Qu and Xingpeng Mao
Drones 2025, 9(1), 76; https://doi.org/10.3390/drones9010076 - 20 Jan 2025
Cited by 2 | Viewed by 8066
Abstract
The unmanned aerial vehicle (UAV) industry has developed rapidly in recent years and is being applied in a wide range of fields. However, incidents involving unauthorized UAVs that threaten public safety have occurred frequently, highlighting the need for effective and accurate methods to [...] Read more.
The unmanned aerial vehicle (UAV) industry has developed rapidly in recent years and is being applied in a wide range of fields. However, incidents involving unauthorized UAVs that threaten public safety have occurred frequently, highlighting the need for effective and accurate methods to detect and respond to illegal UAVs. This has led to the emergence of various UAV detection technologies, among which passive radar stands out due to its unique advantages. This review aims to offer insights that can support further research and development in the field of UAV detection using passive radar. We begin by exploring the origins of passive radar and then provide a comprehensive overview of its progress from multiple angles, particularly focusing on its application in UAV detection. Finally, we provide a forward-looking discussion on the future development trends and challenges faced by passive radar in UAV detection. Full article
Show Figures

Figure 1

19 pages, 809 KB  
Article
Robust Symbol and Frequency Synchronization Method for Burst OFDM Systems in UAV Communication
by Lintao Li, Yue Han, Zongru Li, Hua Li, Jiayi Lv and Yimin Li
Drones 2024, 8(9), 425; https://doi.org/10.3390/drones8090425 - 25 Aug 2024
Viewed by 1641
Abstract
This paper introduces a robust synchronization method for orthogonal frequency division multiplexing (OFDM) in multi-unmanned aerial vehicle (UAV) communication systems, focusing on minimizing overhead while achieving reliable synchronization. The proposed synchronization scheme enhances both frame efficiency and implementation simplicity. Initially, a high-efficiency frame [...] Read more.
This paper introduces a robust synchronization method for orthogonal frequency division multiplexing (OFDM) in multi-unmanned aerial vehicle (UAV) communication systems, focusing on minimizing overhead while achieving reliable synchronization. The proposed synchronization scheme enhances both frame efficiency and implementation simplicity. Initially, a high-efficiency frame structure is designed without a guard time interval, utilizing a preamble sequence to simultaneously achieve both symbol synchronization and automatic gain control (AGC) before demodulation. Subsequently, a novel 2-bit non-uniform quantization method for the Zadoff–Chu sequences is developed, enabling the correlation operations in the traditional symbol synchronization algorithm to be implemented via bitwise exclusive OR (XOR) and addition operations. The complexity of hardware implementation and the energy consumption for symbol synchronization can be reduced significantly. Furthermore, the impact of AGC on frequency synchronization performance is examined, and an improved frequency synchronization method based on AGC gain compensation is proposed. Finally, the performance of the proposed method is rigorously analyzed and compared with that of the traditional method through computer simulations, demonstrating the effectiveness and superiority of the proposed approach. Full article
(This article belongs to the Special Issue Advances in Perception, Communications, and Control for Drones)
Show Figures

Figure 1

27 pages, 19065 KB  
Article
Flexible and Reconfigurable OFDM Implementation in DSP Platform for Various Purposes and Applications
by Spyridon K. Chronopoulos
Sensors 2024, 24(9), 2732; https://doi.org/10.3390/s24092732 - 25 Apr 2024
Cited by 6 | Viewed by 1953
Abstract
In the modern technological era of sophisticated applications and high-quality communications, a platform of clever strategy and quickly updated systems is needed. It should be capable of withstanding the fastest emerging problems like signal attenuation and hostile actions intended to harm the whole [...] Read more.
In the modern technological era of sophisticated applications and high-quality communications, a platform of clever strategy and quickly updated systems is needed. It should be capable of withstanding the fastest emerging problems like signal attenuation and hostile actions intended to harm the whole network. The main contributions of this work are the production of an OFDM system (with low cost) that can sustain high-speed communications and be easily adjusted with new integrated code while exhibiting the feasibility of implementing a transmitter–receiver system in the same DSP and demonstrating the holistic approach with the qualitative integration of such an architecture in a warfare scenario. Specifically, in this research, the point of view is toward three facts. The first is to show a method of quick self-checking the operational status of a digital signal processor (DSP) platform and then the pedagogical issues of how to fast check and implement an updated code inside DSPs through simple schematics. The second point is to present the prototype system that can easily be programmed using a graphical user interface (GUI) and can change its properties (such as the transmitted modulated sinusoids—orthogonal frequency division multiplexing subcarriers). Alongside the presentation, the measurements are presented and discussed. These were acquired with the use of an oscilloscope and spectrum analyzer. The third point is to qualitatively show the application of such a system inside a modern warfare environment and to recommend various potential system responses according to the development of such a platform of reconfigurable implemented OFDM systems. The implementation was performed for two types of systems: (1) transmitter and (2) transmitter–receiver system. Notably, the system acts quickly with a delay of about 1 msec in the case of transmitting and receiving in the same DSP, suggesting excellent future results under real conditions. Full article
Show Figures

Figure 1

24 pages, 1429 KB  
Article
UAV-Assisted Cooperative NOMA and OFDM Communication Systems: Analysis and Optimization
by Thuc Kieu-Xuan and Anh Le-Thi
J. Sens. Actuator Netw. 2024, 13(1), 18; https://doi.org/10.3390/jsan13010018 - 19 Feb 2024
Cited by 1 | Viewed by 2632
Abstract
Utilizing unmanned aerial vehicles (UAVs) to facilitate wireless communication has emerged as a viable and promising strategy to enhance current and prospective wireless systems. This approach offers many advantages by establishing line-of-sight connections, optimizing operational efficiency, and enabling flexible deployment capabilities in various [...] Read more.
Utilizing unmanned aerial vehicles (UAVs) to facilitate wireless communication has emerged as a viable and promising strategy to enhance current and prospective wireless systems. This approach offers many advantages by establishing line-of-sight connections, optimizing operational efficiency, and enabling flexible deployment capabilities in various terrains. Thus, in this paper, we investigate UAV communication in a relaying network in which a UAV helps communication between a source and two destination users while flying to a location. To have a complete view of our proposed system, we consider both orthogonal multiple access, such as OFDMs and non-orthogonal multiple access (NOMA) scenarios. Moreover, we apply successive convex optimization (SCO) and the block-coordinate gradient descent (BCGD) for the sum-rate optimization problems to improve the system performance under constraints of total bandwidth and total power at the ground base station and UAV. The experimental results validate that the achievable secrecy rates are notably enhanced using our proposed algorithms and show optimal trends for critical parameters, such as transmit powers, the flight trajectory and speed of the UAV, and resource allocation of OFDM and NOMA. Full article
Show Figures

Figure 1

20 pages, 8458 KB  
Article
Resource Allocation and Trajectory Optimization in OTFS-Based UAV-Assisted Mobile Edge Computing
by Wei Li, Yan Guo, Ning Li, Hao Yuan and Cuntao Liu
Electronics 2023, 12(10), 2212; https://doi.org/10.3390/electronics12102212 - 12 May 2023
Cited by 5 | Viewed by 2419
Abstract
Mobile edge computing (MEC) powered by unmanned aerial vehicles (UAVs), with the advantages of flexible deployment and wide coverage, is a promising technology to solve computationally intensive communication problems. In this paper, an orthogonal time frequency space (OTFS)-based UAV-assisted MEC system is studied, [...] Read more.
Mobile edge computing (MEC) powered by unmanned aerial vehicles (UAVs), with the advantages of flexible deployment and wide coverage, is a promising technology to solve computationally intensive communication problems. In this paper, an orthogonal time frequency space (OTFS)-based UAV-assisted MEC system is studied, in which OTFS technology is used to mitigate the Doppler effect in UAV high-speed mobile communication. The weighted total energy consumption of the system is minimized by jointly optimizing the time division, CPU frequency allocation, transmit power allocation and flight trajectory while considering Doppler compensation. Thus, the resultant problem is a challenging nonconvex problem. We propose a joint algorithm that combines the benefits of the atomic orbital search (AOS) algorithm and convex optimization. Firstly, an improved AOS algorithm is proposed to swiftly obtain the time slot allocation and high-quality solution of the UAV optimal path. Secondly, the optimal solution for the CPU frequency and transmit power allocation is found by using Lagrangian duality and the first-order Taylor formula. Finally, the optimal solution of the original problem is iteratively obtained. The simulation results show that the weighted total energy consumption of the OTFS-based system decreases by 13.6% compared with the orthogonal frequency division multiplexing (OFDM)-based system. The weighted total energy consumption of the proposed algorithm decreases by 11.7% and 26.7% compared with convex optimization and heuristic algorithms, respectively. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data)
Show Figures

Figure 1

19 pages, 2156 KB  
Article
A Channel Compensation Technique Based on Frequency-Hopping Binary Offset Carrier Modulated Signal
by Xue Li, Zihan Rao and Linshan Xue
Remote Sens. 2023, 15(7), 1849; https://doi.org/10.3390/rs15071849 - 30 Mar 2023
Cited by 1 | Viewed by 2227
Abstract
Space-Air-GroundIntegrated Network (SAGIN) has been becoming a promising future network construction to enable the integration of terrestrial communications, aerial networks and satellite systems, for achieving high data rate wireless access and seamless coverage. Focusing on the space-to-air propagation, which is requiring transmitted signal [...] Read more.
Space-Air-GroundIntegrated Network (SAGIN) has been becoming a promising future network construction to enable the integration of terrestrial communications, aerial networks and satellite systems, for achieving high data rate wireless access and seamless coverage. Focusing on the space-to-air propagation, which is requiring transmitted signal of large Doppler shift resilience in dynamic circumstances, the proposed signal as employing I/Q modulation to accommodate frequency-hopping binary offset carrier (FH-BOC) signal and orthogonal frequency division multiplexing (OFDM) signal, and to exploit respective benefits. Finally, numeric results are provided to demonstrate performance superiority on Bit Error Rate (BER) and signal tracking stability. In conclusion, our designed signal requires about 8 dB less energy per bit at the desired BER level than normally compensated OFDM signal. Full article
Show Figures

Figure 1

30 pages, 4601 KB  
Review
NOMA-Based VLC Systems: A Comprehensive Review
by Syed Agha Hassnain Mohsan, Muhammad Sadiq, Yanlong Li, Alexey V. Shvetsov, Svetlana V. Shvetsova and Muhammad Shafiq
Sensors 2023, 23(6), 2960; https://doi.org/10.3390/s23062960 - 9 Mar 2023
Cited by 49 | Viewed by 8410
Abstract
The enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) [...] Read more.
The enhanced proliferation of connected entities needs a deployment of innovative technologies for the next generation wireless networks. One of the critical concerns, however, is the spectrum scarcity, due to the unprecedented broadcast penetration rate nowadays. Based on this, visible light communication (VLC) has recently emerged as a viable solution to secure high-speed communications. VLC, a high data rate communication technology, has proven its stature as a promising complementary to its radio frequency (RF) counterpart. VLC is a cost-effective, energy-efficient, and secure technology that exploits the current infrastructure, specifically within indoor and underwater environments. Yet, despite their appealing capabilities, VLC systems face several limitations which constraint their potentials such as LED’s limited bandwidth, dimming, flickering, line-of-sight (LOS) requirement, impact of harsh weather conditions, noise, interference, shadowing, transceiver alignment, signal decoding complexity, and mobility issue. Consequently, non-orthogonal multiple access (NOMA) has been considered an effective technique to circumvent these shortcomings. The NOMA scheme has emerged as a revolutionary paradigm to address the shortcomings of VLC systems. The potentials of NOMA are to increase the number of users, system’s capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication scenarios. Motivated by this, the presented study offers an overview of NOMA-based VLC systems. This article provides a broad scope of existing research activities of NOMA-based VLC systems. This article aims to provide firsthand knowledge of the prominence of NOMA and VLC and surveys several NOMA-enabled VLC systems. We briefly highlight the potential and capabilities of NOMA-based VLC systems. In addition, we outline the integration of such systems with several emerging technologies such as intelligent reflecting surfaces (IRS), orthogonal frequency division multiplexing (OFDM), multiple-input and multiple-output (MIMO) and unmanned aerial vehicles (UAVs). Furthermore, we focus on NOMA-based hybrid RF/VLC networks and discuss the role of machine learning (ML) tools and physical layer security (PLS) in this domain. In addition, this study also highlights diverse and significant technical hindrances prevailing in NOMA-based VLC systems. We highlight future research directions, along with provided insights that are envisioned to be helpful towards the effective practical deployment of such systems. In a nutshell, this review highlights the existing and ongoing research activities for NOMA-based VLC systems, which will provide sufficient guidelines for research communities working in this domain and it will pave the way for successful deployment of these systems. Full article
Show Figures

Figure 1

22 pages, 117667 KB  
Article
Integrated Communication and Measurement System with BOC-Assisted OFDM
by Xue Li, Xiaolin Zeng and Linshan Xue
Drones 2023, 7(1), 14; https://doi.org/10.3390/drones7010014 - 26 Dec 2022
Cited by 6 | Viewed by 2448
Abstract
For unmanned aerial vehicles (UAVs), high-precision measurement and high-speed communication are necessary to realize flight and operational missions. In this paper, we propose an integrated communication and measurement system in a Doppler frequency offset environment. The system combines orthogonal frequency division multiplexing (OFDM) [...] Read more.
For unmanned aerial vehicles (UAVs), high-precision measurement and high-speed communication are necessary to realize flight and operational missions. In this paper, we propose an integrated communication and measurement system in a Doppler frequency offset environment. The system combines orthogonal frequency division multiplexing (OFDM) modulation with binary offset carrier (BOC) modulation to formulate an OFDM+BOC composite signal through power control. High-precision measurement is achieved through BOC modulation, and high data transmission is achieved through OFDM modulation. Furthermore, the high-precision Doppler frequency offset tracked by the BOC signal is adopted to assist in the demodulation of the OFDM signal. This substantially decreases the impact of the Doppler frequency offset on the OFDM signal. Moreover, the ranging error is within 102, and the maximum Doppler frequency error is within 2 Hz. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

15 pages, 1480 KB  
Article
A Pilot-Based Integration Method of Ranging and LS Channel Estimation for OFDM Systems
by Bangtao Hu, Xue Li and Linshan Xue
Drones 2022, 6(12), 400; https://doi.org/10.3390/drones6120400 - 6 Dec 2022
Cited by 4 | Viewed by 2364
Abstract
In the design of unmanned aerial vehicle (UAV) communication systems, orthogonal frequency division multiplexing (OFDM) is a commonly used communication technology. An efficient channel estimation and equalization algorithm is required to recover the amplitude, phase, and frequency of the signal in OFDM systems. [...] Read more.
In the design of unmanned aerial vehicle (UAV) communication systems, orthogonal frequency division multiplexing (OFDM) is a commonly used communication technology. An efficient channel estimation and equalization algorithm is required to recover the amplitude, phase, and frequency of the signal in OFDM systems. At present, the more precise channel estimation method is based on the pilot. However, its spectrum utilization is relatively low. Therefore, this paper presents the design of a new pilot based on the LS channel estimation, which extends the role of the traditional pilot and improves the utilization of the spectrum. In addition to the channel estimation and equalization, the new pilot can also be utilized for ranging. Simulation results show that the proposed scheme can achieve both channel estimation and communication ranging functions by using the new pilot, and it outperforms the conventional method in channel estimation performance. The proposed method can complete ranging when the bit error rate (BER) is above 0 dB. Moreover, compared with the traditional channel estimation, it reduces the requirement for SNR by about 1 dB under the same BER. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

24 pages, 1513 KB  
Article
Deep-Learning-Based Stream-Sensing Method for Detecting Asynchronous Multiple Signals
by Yeongjun Kim and Harim Lee
Appl. Sci. 2022, 12(9), 4534; https://doi.org/10.3390/app12094534 - 29 Apr 2022
Cited by 1 | Viewed by 2025
Abstract
In a disaster site, terrestrial communication infrastructures are often destroyed or malfunctioning, and hence it is very difficult to detect the existence of survivors in the site. At such sites, UAVs are rapidly emerging as an alternative to mobile base stations to establish [...] Read more.
In a disaster site, terrestrial communication infrastructures are often destroyed or malfunctioning, and hence it is very difficult to detect the existence of survivors in the site. At such sites, UAVs are rapidly emerging as an alternative to mobile base stations to establish temporary infrastructure. In this paper, a novel deep-learning-based multi-source detection scheme is proposed for the scenario in which an UAV wants to estimate the number of survivors sending rescue signals within its coverage in a disaster site. For practicality, survivors are assumed to use off-the-shelf smartphones to send rescue signals, and hence the transmitted signals are orthogonal frequency division multiplexing (OFDM)-modulated. Since the line of sight between the UAV and survivors cannot be generally secured, the sensing performance of existing radar techniques significantly deteriorates. Furthermore, we discover that transmitted signals of survivors are unavoidably aysnchronized to each other, and thus existing frequency-domain multi-source classification approaches cannot work. To overcome the limitations of these existing technologies, we propose a lightweight deep-learning-based multi-source detection scheme by carefully designing neural network architecture, input and output signals, and a training method. Extensive numerical simulations show that the proposed scheme outperforms existing methods for various SNRs under the scenario where synchronous and asynchronous transmission is mixed in a received signal. For almost all cases, the precision and recall of the proposed scheme is nearly one, even when users’ signal-to-noise ratios (SNRs) are randomly changing within a certain range. The precision and recall are improved up to 100% compared to existing methods, confirming that the proposal overcomes the limitation of the existing works due to the asynchronicity. Moreover, for Intel(R) Core(TM) i7-6900K CPU, the processing time of our proposal for a case is 31.8 milliseconds. As a result, the proposed scheme provides a robust and reliable detection performance with fast processing time. This proposal can also be applied to any field that needs to detect the number of wireless signals in a scenario where synchronization between wireless signals is not guaranteed. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence, Deep Neural Networks)
Show Figures

Figure 1

13 pages, 2973 KB  
Communication
DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios
by Ming Zuo, Shuguo Xie, Xian Zhang and Meiling Yang
Sensors 2021, 21(13), 4614; https://doi.org/10.3390/s21134614 - 5 Jul 2021
Cited by 14 | Viewed by 3534
Abstract
In this paper, a weighted l1-norm is proposed in a l1-norm-based singular value decomposition (L1-SVD) algorithm, which can suppress spurious peaks and improve accuracy of direction of arrival (DOA) estimation for the low signal-to-noise (SNR) scenarios. The weighted matrix [...] Read more.
In this paper, a weighted l1-norm is proposed in a l1-norm-based singular value decomposition (L1-SVD) algorithm, which can suppress spurious peaks and improve accuracy of direction of arrival (DOA) estimation for the low signal-to-noise (SNR) scenarios. The weighted matrix is determined by optimizing the orthogonality of subspace, and the weighted l1-norm is used as the minimum objective function to increase the signal sparsity. Thereby, the weighted matrix makes the l1-norm approximate the original l0-norm. Simulated results of orthogonal frequency division multiplexing (OFDM) signal demonstrate that the proposed algorithm has s narrower main lobe and lower side lobe with the characteristics of fewer snapshots and low sensitivity of misestimated signals, which can improve the resolution and accuracy of DOA estimation. Specifically, the proposed method exhibits a better performance than other works for the low SNR scenarios. Outdoor experimental results of OFDM signals show that the proposed algorithm is superior to other methods with a narrower main lobe and lower side lobe, which can be used for DOA estimation of UAV and pseudo base station. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

11 pages, 525 KB  
Article
Non Data-Aided SNR Estimation for UAV OFDM Systems
by Junfang Li, Mingqian Liu, Ningjie Tang and Bodong Shang
Algorithms 2020, 13(1), 22; https://doi.org/10.3390/a13010022 - 10 Jan 2020
Cited by 5 | Viewed by 4813
Abstract
Signal-to-noise ratio (SNR) estimation is essential in the unmanned aerial vehicle (UAV) orthogonal frequency division multiplexing (OFDM) system for getting accurate channel estimation. In this paper, we propose a novel non-data-aided (NDA) SNR estimation method for UAV OFDM system to overcome the carrier [...] Read more.
Signal-to-noise ratio (SNR) estimation is essential in the unmanned aerial vehicle (UAV) orthogonal frequency division multiplexing (OFDM) system for getting accurate channel estimation. In this paper, we propose a novel non-data-aided (NDA) SNR estimation method for UAV OFDM system to overcome the carrier interference caused by the frequency offset. First, an absolute value series is achieved which is based on the sampled received sequence, where each sampling point is validated by the data length apart. Second, by dividing absolute value series into the different series according to the total length of symbol, we obtain an output series by stacking each part. Third, the root mean squares of noise power and total power are estimated by utilizing the maximum and minimum platform in the characteristic curve of the output series after the wavelet denoising. Simulation results show that the proposed method performs better than other methods, especially in the low synchronization precision, and it has low computation complexity. Full article
Show Figures

Figure 1

Back to TopTop