DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios
Abstract
:1. Introduction
2. System Model and the Proposed Method
2.1. Sparse Representation of Narrowband Array Signal
2.2. Weighted l1-norm Method
- (1)
- Decompose the data matrix to reduce dimension by the singular value, and preprocess Xsv and A to obtain Xsvw and Aw;
- (2)
- Calculate the weight W according to Formula (12);
- (3)
- Estimate the spectrum by using Formula (14).
3. Results
3.1. Simulation Results and Analysis
3.1.1. Simulation 1
3.1.2. Simulation 2
3.1.3. Simulation 3
3.1.4. Simulation 4
3.1.5. Simulation 5
3.2. Experiment Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuhong, Y.; Terry, N.G.; Zhe, C.; Chong, F. A fast multi source sound DOA estimator considering colored noise in circular array. IEEE Sens. J. 2019, 55, 6914–6926. [Google Scholar]
- Soheil, S.; Francois, C.; Yiu-Tong, C.; Il-Min, K.; Roger, C. Joint DOA and clutter covariance matrix estimation in compressive sensing MIMO radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 318–331. [Google Scholar]
- Sanjoy, B. Passive radio system for real-time drone detection and DOA estimation. In Proceedings of the IEEE International Conference on Military Communications and Information Systems (ICMCIS), Warsaw, Poland, 22–23 May 2018. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Kailath, T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Trans. Acoust. Speech Signal Process 1986, 34, 1340–1342. [Google Scholar] [CrossRef]
- Ziskind, I.; Wax, M. Maximum likelihood location of multiple sources by alternating projection. IEEE Trans. Acoust. Speech Signal Process 1988, 36, 1553–1560. [Google Scholar] [CrossRef]
- Candes, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Mathema 2006, 59, 1207–1223. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Gorodnitsky, I.F.; Rao, B.D. Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 1997, 45, 600–616. [Google Scholar] [CrossRef] [Green Version]
- Cotter, S.F.; Rao, B.D.; Engan, K.; Kreutz-Delgado, K. Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 2005, 53, 2477–2488. [Google Scholar] [CrossRef]
- Bilik, I. Spatial Compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1754–1769. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process 2005, 53, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Jeffs, B.D. Sparse inverse solution methods for signal and image processing applications. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA, 15 May 1998. [Google Scholar]
- Rao, B.D.; Kreutz-Delgado, K. An affine scaling methodology for best basis selection. IEEE Trans. Signal Process 1999, 47, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.M.; Huang, Z.T.; Zhou, Y.Y. Direction of-arrival estimation of wideband signals via covariance matrix sparse representation. IEEE Trans. Signal Process. 2011, 59, 4256–4270. [Google Scholar] [CrossRef]
- Wipf, D.; Nagarajan, S. Iterative reweighted L1 and L2 methods for finding sparse solution. IEEE J. Select Topic Signal Process 2010, 4, 317–329. [Google Scholar] [CrossRef]
- Liu, F.L.; Peng, L.; Wei, M.; Chen, P.P.; Guo, S.M. An improved L1-SVD algorithm based on noise subspace for DOA estimation. Progress Electromagn. Res. C 2012, 29, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Gao, L.; Zhu, Z. DOA estimation based on weighted l1 norm sparse signal representation. J. Beijing Univ. Technol. 2018, 44, 1297–1302. [Google Scholar]
- Xu, X.; Xiaohan, W.; Zhongfu, Y. DOA estimation based on sparse signal recovery utilizing weighted-norm penalty. IEEE Signal Process Lett. 2012, 19, 155–158. [Google Scholar] [CrossRef]
- Marcos, T.; de Oliveira Ricardo, K.M. Low cost antenna array based on drone tracking device for outdoor environments. Hindawi Wirel. Commun. Mobile Compu. 2019, 1, 1–14. [Google Scholar]
- Gao, Y.; Deng, Z.; Zhang, Y.; Sun, S.; Li, Z. Mobile Phone passive positioning through the detection of uplink signals for search and rescue. Sensors 2019, 19, 4526. [Google Scholar] [CrossRef] [Green Version]
- Meryem, M.; Elif Nur, A.; Meltem, G.; Asuman, S.; Ali, Ö. A novel GFDM waveform design based on cascaded WHT-LWT transform for the beyond 5G wireless communications. Sensors 2021, 21, 1831. [Google Scholar]
- Georgia, L.; Dimitrios, M.; Dimitris, G. Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Sensors 2020, 20, 3537. [Google Scholar]
- Martins, E.; Fatih, E.; Chethan, K.A. Detection and classification of UAVs using RF fingerprints in the presence of Wi-Fi and bluetooth interference. IEEE Open J. Commun. Soc。 2019, 1, 60–76. [Google Scholar]
- Zuo, M.; Xie, S.; Zhang, X.; Yang, M. Recognition of UAV video signal using RF fingerprints in the presence of WiFi interference. IEEE Access 2021, 9, 88844–88851. [Google Scholar] [CrossRef]
Carrier Frequency | Bandwidth | Number of the Subcarriers | Number of Effective Subcarriers | Subcarrier Spacing | Time of Useful Symbol Length | Number of Symbols |
---|---|---|---|---|---|---|
2038 MHz | 20 MHz | 256 | 192 | 78.125 KHz | 12.8 us | 10 |
SNR (dB) | L1-SVD | W-L1-SVD | C-L1-SVD | The Proposed |
---|---|---|---|---|
−12 | (79°, 100°) | (78°, 100°) | (78°, 100°) | (79°, 100°) |
0 | (80°, 100°) | (79°, 101°) | (79°, 101°) | (80°, 101°) |
Algorithm | RMSE (deg) | Average Calculation Time (s) |
---|---|---|
W-L1-SVD | 3.57 | 2.993 |
L1-SVD | 22.9 | 2.992 |
The proposed | 0.98 | 2.997 |
C-L1-SVD | 26.03 | 2.972 |
Algorithm | p = 1 | p = 2 | p = 4 |
---|---|---|---|
L1-SVD | (81°, 101°) | (80°, 101°) | (80°, 100°) |
W-L1-SVD | (81°, 100°) | (79°, 101°) | (79°, 101°) |
C-L1-SVD | (81°, 103°) | (79°, 101°) | (80°, 100°) |
The proposed | (81°, 101°) | (80°, 101°) | (79°, 100°) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, M.; Xie, S.; Zhang, X.; Yang, M. DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios. Sensors 2021, 21, 4614. https://doi.org/10.3390/s21134614
Zuo M, Xie S, Zhang X, Yang M. DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios. Sensors. 2021; 21(13):4614. https://doi.org/10.3390/s21134614
Chicago/Turabian StyleZuo, Ming, Shuguo Xie, Xian Zhang, and Meiling Yang. 2021. "DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios" Sensors 21, no. 13: 4614. https://doi.org/10.3390/s21134614