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Abstract: Mobile edge computing (MEC) powered by unmanned aerial vehicles (UAVs), with the
advantages of flexible deployment and wide coverage, is a promising technology to solve compu-
tationally intensive communication problems. In this paper, an orthogonal time frequency space
(OTFS)-based UAV-assisted MEC system is studied, in which OTFS technology is used to mitigate the
Doppler effect in UAV high-speed mobile communication. The weighted total energy consumption of
the system is minimized by jointly optimizing the time division, CPU frequency allocation, transmit
power allocation and flight trajectory while considering Doppler compensation. Thus, the resultant
problem is a challenging nonconvex problem. We propose a joint algorithm that combines the benefits
of the atomic orbital search (AOS) algorithm and convex optimization. Firstly, an improved AOS
algorithm is proposed to swiftly obtain the time slot allocation and high-quality solution of the UAV
optimal path. Secondly, the optimal solution for the CPU frequency and transmit power allocation is
found by using Lagrangian duality and the first-order Taylor formula. Finally, the optimal solution
of the original problem is iteratively obtained. The simulation results show that the weighted total
energy consumption of the OTFS-based system decreases by 13.6% compared with the orthogonal
frequency division multiplexing (OFDM)-based system. The weighted total energy consumption
of the proposed algorithm decreases by 11.7% and 26.7% compared with convex optimization and
heuristic algorithms, respectively.

Keywords: orthogonal time frequency space (OTFS); 6G; unmanned aerial vehicle (UAV); mobile
edge computing (MEC); resource allocation

1. Introduction

With the rapid development of the Internet of Things, more and more smart devices
(smart phones, smart cameras, smart bracelets, smart medical, smart sensors) are being
widely used. However, most of these applications require higher computing power to
handle computationally intensive tasks [1]. The limited computational capacity and energy
consumption make it difficult for UEs to autonomously carry out tasks. To address this
problem, MEC has become a promising solution to liberate UEs from heavy tasks [2]. How-
ever, the traditional MEC also has many limitations. (1) Due to the poor communication
conditions in remote mountainous areas, the MEC environment is full of uncertainties [3].
(2) Because of multipath and blocking, MEC servers generally provide non-line-of-sight
(NLOS) channel links, and the channel quality and transmission rate are severely limited [4].
In addition, it is difficult to quickly deploy a traditional fixed base station (BS) to suitable
locations due to terrain limitations during natural hazards [5]. Fortunately, the deployment
of UAV-assisted MEC, with advantages of flexibility and large coverage, is providing new
opportunities to address the challenges of traditional MEC systems. First, UAVs can adapt
the flight trajectory according to the resource strategy of UEs. In addition, UAV-assisted
MEC achieves wider ground coverage due to line-of-sight (LOS) channel links and high
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altitude. Based on these many advantages, UAV-assisted MEC has become an indispensable
technology for 6G mobile networks.

However, the problem of energy constraint of UAV-assisted MEC remains a critical
issue. To reduce energy consumption, it is necessary to optimize the computational re-
sources and flight trajectory. However, the optimization problem may be non-convex and
difficult to solve directly. Many methods to solve such problems have been investigated,
such as convex optimization, heuristic algorithms and machine learning. In [6], a new
algorithm was designed that combines the advantages of genetic algorithm (GA) and parti-
cle swarm algorithm (PSO) to solve the problem of the energy-saving computing offload
management of a MEC system. Liu et al. proposed a single-agent deep reinforcement
learning approach to the scheduling problem, which was analogized to the load balancing
problem in computer networks to solve the high concurrency problem of scheduling re-
quests [7]. In [8], the short-term memory was constructed to forecast the traffic of BS-based
deep learning algorithm. On this basis, an offload strategy based on cross-entropy for
offline mobile data was offered. In order to effectively predict the distribution of content
requests and their movement patterns for UEs, a machine learning framework based on
the concept of echo state network was proposed to attain the optimal flight path and the
content cached of UAVs [9]. In [10], an offloading algorithm based on distributed deep
learning was proposed. On this basis, shared playback memory was used to store newly
generated offloading decisions to further improve the performance of each neural network.
To obtain the locations of UAVs and BSs, a deep learning-based hybrid online offloading
framework was proposed to minimize the energy consumption of all UEs [11]. In [12],
the UAV energy efficiency is maximized by jointly optimizing the UAV trajectory, user
transmit power and computational load distribution for the user’s business requirements
and is solved based on Dinkelbach’s algorithm and successive convex approximation (SCA)
techniques. The authors in [13] used Lagrangian duality to optimize the flight trajectory,
transmission power, time slot scheduling and task data assignment to minimize the overall
energy. In [14], an alternate iterative algorithm based on the block alternating descent
method was proposed to jointly optimize the UAV position and computing resources to
minimize the weighted and energy consumption of UAVs and UEs. In Ref. [15], a single
output multi-input MEC system was investigated, and a three-stage iterative method was
proposed to jointly optimize the UAV position and computing resources. The authors
in [16] proposed a MEC network with access to numerous BSs and a UAV, and convex
optimization was used to maximize the weighted computational efficiency of the system.
However, most of the above works were conducted using ideal LOS channels, independent
of multipath channels and Doppler shifts, which is not realistic in a practical setting. During
the high-speed movement of UAVs, channel estimation and equalization for over-the-air
wireless communication will become very difficult due to multiple channels and Doppler
shifts [17]. The OFDM technology makes it difficult to solve this problem. To combat the
Doppler shift in the multipath propagation channel, the OTFS has been extensively studied.
The OTFS technique directly modulates data in the time-delay-doppler (TDD) domain and
extends over the entire time-frequency (TF) domain [18,19]. It transforms the time-varying
multipath channel into the TDD domain such that all symbols in the transmission cell
experience nearly identical and slowly varying sparse channels. Therefore, OTFS can
effectively adapt to time-varying channels in high-speed mobile communication systems
and can obtain greater diversity gain [20]. Recently, there have also been many detailed
studies of the Doppler diffusion problem for OTFS modulation. In [21], a multiple-input
multiple-output (MIMO)-OTFS system with complete and incomplete reception of channel
state information and conversion of time-and frequency-selective channels to delayed
Doppler domains was designed to establish reliable time-varying channels for high-speed
mobile devices. An OTFS system based on index modulation was proposed in [22] to obtain
better bit error rate (BER) performance, which is very suitable for high-spectral-efficiency
signals. In addition, the antenna selection problem under OTFS modulation was studied
in [23], and the performance of MIMO-OTFS was analyzed.
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Unlike previous works [6–16], this study investigates UAV-assisted MEC based on the
advantages of OTFS, taking into account the Doppler effect. To solve the highly convex
problem, we propose a joint algorithm that combines a convex optimization algorithm with
a heuristic. The main contribution is summarized as follows:

• In order to mitigate the Doppler effect under the high-speed movement of the UAV
and address the resource allocation and trajectory problems, OTFS-based UAV-assisted
MEC is proposed to combine the advantages of OTFS modulation techniques;

• The UAV trajectory is optimized with the constraints of data offloading and the BER,
taking into account Doppler compensation;

• Thus, the resultant problem is a challenging nonconvex problem, and we propose
a joint algorithm to solve this problem. Firstly, an improved AOS algorithm based
on Levy flight is proposed to obtain the sub-slot assignment of all time slots and
flight trajectories. Secondly, the optimal solution for the CPU frequency and trans-
mit power allocation is obtained by using Lagrangian duality and the first-order
Taylor formula. Finally, the optimal solution of the original problem is obtained by
alternating iterations.

The remainder of the paper has the following structure. In Section 2, we provide a
system model and problem formulation. Section 3 contains the procedures of the joint
algorithm. We present simulation results in Section 4 and the conclusion in Section 5.

2. System Model and Problem Formulation

As shown in Figure 1, the system consists of a ground BS, a UAV and a set of K UEs,
and all of these devices have a single antenna. It is assumed that UEs and the UAV can only
perform simple data processing due to energy constraints, while the BS is equipped with
servers with powerful computing power, regardless of energy consumption. In addition,
the UAV can act as a mobile relay to offload a portion of the UE tasks to the BS [24]. Thus, to
reduce the energy consumption, the UE can choose to offload the processing either locally
or remotely to the UAV. The UAV can also choose to process data locally or on the BS [13,25].
To ensure the reliability of wireless link data transmission and enhance the data offloading
capability, OTFS modulation is used to mitigate the Doppler effect.
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2.1. Coordinate System

It is assumed that UEs remain the same in the horizontal plane, and the 3D Cartesian
coordinate system of the kth UE is expressed as qk = [xk, yk]

T , K = {1, 2, . . . K}. Assume
that in a period T, the UAV has been flying at the position of height H, and three-dimensional
Cartesian coordinate is expressed as qu = [xu, yu]

T . For calculation convenience, the
continuous time T is discretized into N time slots of equal duration δ = T

N , and the sets
of time slots are denoted as N = {1, 2, . . . , N}. Since the time slot δ is sufficiently tiny, the
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position of the UAV remains unchanged, and three-dimensional Cartesian coordinates are
expressed as qu[n] = [xu[n], yu[n]]

T at slot time n.

2.2. Transmission Model

The Rayleigh channel is considered assuming the presence of occlusion between the
UE and UAV due to the complexity of the urban environment. The BS is located in an open
section, the LOS channel between the UAV and BS is considered [26]. The quality of the
communication channel between the UAV and UEs as well as the BS varies with the location
of the UAV. Moreover, it is assumed that the channel state information is sufficiently known
by the existing channel estimation techniques. The channel gains of UAV-UE and UAV-BS
at time slot n are denoted as hk,u[n] and hu,b[n], respectively, and given as

hk,u[n] =
g0(

H2 + ‖qu[n]− qk‖
2
) β1

2

h̃, ∀n, k, (1)

hu,b[n] =
g0

H2+||qb − qu[n]||
2 , ∀n, (2)

where qb is the coordinates of the BS. g0 is the channel power gain at the distance d = 1
m. β1 is the path loss exponent. h̃ is a Rayleigh decay function that obeys the following
probability density function:

f (x) =
x
b2 e
−x2

2b2 , (3)

where b denotes the Rayleigh distribution parameter, and x denotes the received signal.
The OTFS modulation model is described below. The block diagram of the single-

input single-output OTFS system is shown in Figure 2. The system transmits and receives
uncoded modulated symbols, which can be thought of as adding processing modules to
each of the front and back of the traditional OFDM model [27]. The pre-processing module
is the inverse symmetric finite Fourier transform (ISFFT) and the post-processing module
is the symmetric finite Fourier transform (SFFT).
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First, at the transmitter side, there is the placement of M1N1 data information symbols
into the TDD domain signal grid, where there are N1 rows of data in the Doppler domain
and M1 columns of data in the time delay domain. Then, the TDD domain signal is
transformed to the TF domain by ISFFT [28]. The formula can be expressed as

X[m1, n1] =
1√

M1N1

N1−1

∑
k1

M1−1

∑
l1

x[k1, l1]e
j2π
(

n1k1
N1
−m1 l1

M1

)
, (4)

where x[k1, l1] denotes the symbols of the TDD domain.
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The TF domain signal becomes a time-domain signal after the Heisenberg transforma-
tion, and the transmit signal x(t1) can be expressed as

x(t1) =
N1−1

∑
k1

M1−1

∑
l1

X[m1, n1]g1(t1 − n1T1)ej2πm1∆ f (t1−n1T1), (5)

where ∆ f denotes the frequency spacing between adjacent subcarriers, g1
(*) denotes the

sampling function of the pulse filter, and T1 denotes a cycle of the TF domain.
At the receiving end, the transmitted signal y(t1) is converted to the TF domain by

Wigner, which is expressed as

Y[m1, n1] =
∫

y(t1)g2(t1 − n1T1)ej2πm1∆ f (t1−−n1T1)dt1, (6)

where g2
(*) denotes the filter sampling function at the receiver side.

Then, the signal is converted to the received signal of the OTFS by SFFT in the
TDD domain.

y[k1, l1] =
1√

M1N1

N1−1

∑
n1=0

M1−1

∑
m1=0

Y[n1, m1]e
−j2π

(
n1k1
N1
−m1 l1

M1

)
+ v(t1), (7)

where v(t1) represents the white Gaussian noise.

2.3. Computation Model

As illustrated in Figure 3, assume that both the UAV and UE can process data locally or
remotely at n time slots [13]. Note that local computation and offloading can be performed
simultaneously, while the UAV server starts processing data only after UEs has finished
offloaded. Due to the input data of the UAV and BS being massive and the output result
minor, the time of the result return is ignored. Therefore, each time slot can be divided
into two sub-slots for task offloading from UEs and the UAV task processing (offloading
from the UAV to BS). In order to effectively avoid interference and ensure fairness, the time
division multiple access (TDMA) protocol is considered to equally divide the first sub-slots
to UEs.

to[n] + tc[n] = δ, tc[n] ≥ 0, to[n] ≥ 0, ∀n (8)
Electronics 2023, 12, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 3. The time slot division. 

2.3.1. Local Computation 
Due to the separation of the calculation unit and the communication circuit [29], UEs 

can carry out tasks offloading and local computation at the same time. The dynamic fre-
quency scaling (DFS) technology is adopted by the UE to adequately utilize the energy for 
local computing [30]. Therefore, the CPU frequency can be used as a variable to decrease 
consumption of UEs. The local data processing and energy consumption of UE k are de-
noted as 

[ ] [ ]kc
k

f n
l n

C
δ

= , ,n k∀ , (9) 

[ ] [ ]3Eck k kn r f n δ= , ,n k∀ , (10) 

where kr  denotes the effective capacitance coefficient of the UE, and C  denotes the 

CPU cycles. kf  denotes the computing capability of the UE. 

2.3.2. UE Computation Offloading 
In the first-time sub-slot, the mission data and energy consumption offloaded by the 

UE k to the UAV are, respectively, expressed as 

[ ] [ ] [ ] [ ],
2 2log 1

o
k u ko

k

h n p nt n
l n B

K σ
 

= + 
 

, ,n k∀ , (11) 

[ ] [ ] [ ]o
ko

k

p n t n
E n

K
= , ,n k∀ , (12) 

where 2σ  , B   and [ ]kp n   denote the noise power, the bandwidth of communication 
and the transmit power of UE k in time slot n, respectively. 

2.3.3. UAV Local Computation 
The UAV processes data only in the second sub-time slot. Then, the data processed 

and energy consumption by the UAV are as follows 

[ ] [ ] [ ],
,

c
k uc

k u

f n t n
l n

C
= , ,n k∀ , (13) 

[ ] [ ] [ ]3
, ,Ec c
k u u k un r f n t n= , ,n k∀ , (14) 

where ,k uf  represents the CPU frequency allocated to UE k data processed by the UAV 

in the time slot n, and ur  denotes the effective capacitance coefficient of the UAV. 

Figure 3. The time slot division.

2.3.1. Local Computation

Due to the separation of the calculation unit and the communication circuit [29], UEs
can carry out tasks offloading and local computation at the same time. The dynamic
frequency scaling (DFS) technology is adopted by the UE to adequately utilize the energy
for local computing [30]. Therefore, the CPU frequency can be used as a variable to
decrease consumption of UEs. The local data processing and energy consumption of UE k
are denoted as

lc
k[n] =

fk[n]δ
C

, ∀n, k, (9)
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Ec
k[n] = rk f 3

k [n]δ, ∀n, k, (10)

where rk denotes the effective capacitance coefficient of the UE, and C denotes the CPU
cycles. fk denotes the computing capability of the UE.

2.3.2. UE Computation Offloading

In the first-time sub-slot, the mission data and energy consumption offloaded by the
UE k to the UAV are, respectively, expressed as

lo
k [n] =

to[n]
K

B log2

[
1 +

hk,u[n]pk[n]
σ2

]
, ∀n, k, (11)

Eo
k [n] =

pk[n]to[n]
K

, ∀n, k, (12)

where σ2, B and pk[n] denote the noise power, the bandwidth of communication and the
transmit power of UE k in time slot n, respectively.

2.3.3. UAV Local Computation

The UAV processes data only in the second sub-time slot. Then, the data processed
and energy consumption by the UAV are as follows

lc
k,u[n] =

fk,u[n]tc[n]
C

, ∀n, k, (13)

Ec
k,u[n] = ru f 3

k,u[n]t
c[n], ∀n, k, (14)

where fk,u represents the CPU frequency allocated to UE k data processed by the UAV in
the time slot n, and ru denotes the effective capacitance coefficient of the UAV.

2.3.4. UAV Computation Offloading

In the second sub-time slot, data that cannot be processed or consumes too much
energy is offloaded by the UAV to the BS. The energy consumed by the UAV for offloading
at time slot n is given as

Eo
u[n] =

σ2

hu,b[n]

2

K
∑

k=1
(lok [n]−lck,u [n])

Btc [n] − 1

tc[n], ∀n, k (15)

For the detailed proof, see Appendix A.

2.4. Flying Model

The UAV has a maximum moving distance Dmax between two adjacent time slots, and
the take-off q0 and landing positions qz of the UAV are preset. The trajectory constraints
can be written as

qu[n + 1] = qz, (16)

qu[1] = q0, (17)

‖qu[n + 1]− qu[n]‖ ≤ Dmax, (18)

v[n] = ‖qu[n + 1]− qu[n]‖/δ, ∀n. (19)
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Then, consider the BER constraint. Assuming that the threshold value of BER in OTFS
and OFDM modulated systems is BERmax, BERmax, satisfies the following constraint [22].

BERmax ≥ max
k∈K

{
1
2

er f s
(√

100.1SNRk [n]
)}

, (20)

where, er f s
(*) denotes the error complement function, and SNR denotes signal noise ratio.

Furthermore, we take into account the Doppler effect constraint. Let θk[n] denote the
angle between the direction of flight at the nth slot and the line connecting the UAV to the
kth UE, denoted as

θk[n] =

−−−−→
qu[n]qk ×

−−−−−−−−−→
qu[n]qu[n + 1]

‖qu[n]qk‖‖qu[n]qu[n + 1]‖ , (21)

At the nth slot, the velocity component of v[n] on the line between the UAV and the
UE should be smaller than the Doppler speed vp, expressed as

v[n]θk[n] ≤ vp. (22)

Regardless of whether it is hovering or flying, the UAV needs to consume a lot of
energy. According to [31], the flight energy consumption of the UAV can be expressed as

E f [n] = δpo

(
1 + 3||v[n]||2

U2
tip

)
+ 1

2 δdoρosA||v[n]||3+

δpH

(√
1 + ||v[n]||4

4v4
0
− ||v[n]||

2

v02v2
0

) 1
2

, ∀n, k, (23)

where pH denotes the blade profile power, and ρo denotes the induced power. s, do, A, po,
Utip and v0 are constants and represent the rotor solidity, fuselage drag ratio, rotor disc
area, air density, tip speed of the rotor blade and mean rotor-induced velocity, respectively.

2.5. Problem Formulation

In fact, the flight energy consumption E f [n] is considerably greater than the energy
consumption of UEs. However, in complex environments, the energy of UEs is also very
valuable. Hence, we considered the weighted sum energy consumption. In the paper, the
time division, transmit power allocation, CPU frequency allocation and flight trajectory are
jointly optimized to minimize the weighted total energy consumption under computing
resource constraints. The specific problem is formulated as

P1 : min
p,t,F,Q

N

∑
n=1

(
K

∑
k=1

(
µ1(Ec

k[n] + Eo
k [n]) + µ2Ec

k,u[n]
))

+ µ2

N

∑
n=1

(
Eo

u[n] + E f [n]
)

(24a)

s.t. lc
k[n] + lo

k [n] ≥ Lmin
k , ∀n, k, (24b)

lo
k [n] ≥ lc

k,u[n], ∀n, k, (24c)

0 ≤ pk[n] ≤ pk
max, ∀n, k, (24d)

k

∑
k=1

fk,u[n] ≤ fu
max, ∀n, k, (24e)

0 ≤ fk[n] ≤ fk
max, ∀n, k, (24f)

0 ≤ fk,u[n], (24g)
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0 ≤ σ2

hu,b[n]

2

K
∑

k=1
(lok [n]−lck,u [n])

Btc [n] − 1

 ≤ pmax
u , ∀n, k, (24h)

‖qu[n]− qz‖ ≤ (N − n + 1)Dmax, ∀n, (24i)

(8), (18), (20), (22). (24j)

where, p = {pk[n]∀n, k}, f =
{

fk,u[n], fk[n]∀n, k
}

, t = {to[n], tc[n]∀n, k} and q = {qk[n]∀n,
k} represent the relevant variable. Hence, (24b) guarantees that UEs can complete data
processing in each time slot, (24c) ensures that the mission data performed locally by
the UAV should not be greater than that offloaded by the UE k in the nth time slot, and
(24d–24h) are the transmission power and CPU frequency constraints. The constraint (24i)
guarantees that the UAV reaches the destination in (n + 1) time slot.

Note that problem (P1) is a nonconvex optimization problem because the optimization
variables are heavily coupled to each other. The nonconvexity comes from the nonconvex
objective functions, constraints (24b,24c,24h). For solving it, we propose a joint algorithm,
which is discussed in the next section.

3. Energy Consumption Minimization by the Joint Algorithm

In the section, we propose a two-stage alternating optimization joint algorithm that
combines the benefits of the AOS algorithm and convex optimization. Firstly, an improved
AOS algorithm is proposed to swiftly obtain time slot allocation and the high-quality
solution of the optimal path of UAV. Secondly, the optimal solution for the CPU frequency
and transmit power allocation is obtained by using Lagrangian duality and the first-order
Taylor formula. In the following, we will describe the algorithm in detail.

3.1. Joint Optimization of Time Slot Partition and UAV Trajectory Based on the AOS Algorithm

The atomic orbital search algorithm is a new meta-heuristic optimization algorithm
proposed by Mahdi Azizi [32]. The algorithm is based on quantum mechanics and combines
the principle of atomic electron correlation. The transfer of two states of electrons is
simulated between high-and low-energy states by the AOS algorithm. When the absorbed
photons exceed the binding energy, the electron will be relocated to a lower energy inner
orbital. Conversely, the electron will undergo a transition to an excited energy level in the
outer orbital.

BSk
j and BEk

j represent bound states and bound energies of the k layer in the j iteration,
BSj and BEj represent bound states and bound energies of atoms, respectively. The formula
is shown as follows: 

BSk
j =

I
∑

i=1
Xk

i,j

I , BSj =

M
∑

i=1
Xi,j

M

BEk
j =

I
∑

i=1
Ek

i,j

I , BEj =

M
∑

i=1
Ei,j

M

(25)

where Xk
i,j and Ek

i,j represent the candidate solution of the k layer in the j iteration and the
corresponding objective function value, and Xi and Ei represent the i candidate solution in
the j iteration and the corresponding objective function value. During the solution process,
the objective function values of the candidate solutions are in ascending order, and the
number of candidate solutions in each layer and the corresponding number of layers for
each candidate solution are determined based on a normal Gaussian distribution function.

The updated rule for candidate solutions in the search procedure is as follows: generate
a random number τ. If τ ≥ POth, then perform operation 1; otherwise, perform operation 2.
Where POth = POmax

th +
(

POmin
th − POmax

th
)

j/Iter, it represents the adaptive probability
threshold of the candidate solution update operation.
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Operation 1: in the j iteration, the Xk
i,j update operation is as follows:

Xk
i,j+1 =

 Xk
i,j + αk

i,j

(
βk

i,jX
j
best − λk

i,jBSj

)
/K, Xk

i,j > BEk
j

Xk
i,j + αk

i,j

(
βk

i,jX
k,j
best − λk

i,jBSk
j

)
, other

(26)

If Xk
i,j > BEk

j , the candidate solution closes to the globally optimal solution and the
bound state of the atom. Otherwise, it will be close to the optimal candidate solution and
the bound state of its layer, where Xk,j

best and X j
best represent the optimal solution of the

k layer and the global optimal solution in the j iteration; αk
i,j, βk

i,j, λk
i,j represent random

numbers that follow the Levy distribution, which is expressed as

α, β, γ =
vυ1

|υ2|
1
κ

, (27)

v =

Γ(1 + κ) sin
(
π κ

2
)

Γ
[(

1+κ
2

)
κ2

κ−1
2

]
 1

κ

, (28)

where υ1 and υ2 follow a standard normal distribution, and the parameter κ is a constant.
Operation 2: generate a random number and if the value is greater than 0.5, then

let Xk
i,j+1 = Xk

i,j + ωk
i,j, where ωk

i,j is a random disturbance, and randomly generate a new
solution. The operation increases the diversity of candidate solutions.

The AOS algorithm does not consider constraints. Therefore, we add a constraint
check step to evaluate each solution candidate. Specifically, the constraints in P1 can be
transformed into a penalty function and added to the objective function. The optimal
solution of problem (P1) is obtained by solving a series of unconstrained optimization
problems. The process of the improved AOS algorithm is present in Algorithm 1.

Algorithm 1: The Improve AOS Algorithm

1: Input: P,F and the maximum number of iterations jm.
2: Initialization: the iteration index j = 1.
3: While j ≤ jm do
4: for k = 1 : K do
5: Determine BSk

j , BEk
j and Xk,j

best.
6: for i = 1 : I do
7: Generate αk

i,j, βk
i,j, λk

i,j by (27) and (28).
8: Determine τ and POth.
9: If τ ≥ POth then
10: If Xk

i,j > BEk
j then

11: Xk
i,j+1 = Xk

i,j + αk
i,j

(
βk

i,jXbest − λk
i,jBSj

)
/K

12: else
13: Xk

i,j+1 = Xk
i,j + αk

i,j

(
βk

i,jX
k,j
best − λk

i,jBSk
j

)
14: end if
15: else
16: Xk

i,j+1 = Xk
i,j + ωk

i,j
17: end if
18: end for
19: end for
20: Update BSj, BEj and X j

best.
21: j = j + 1
22: end while
23: Output: t and Q
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3.2. UEs Transmission Power and CPU Frequency Optimization

This section studies the optimization P of and F under given t and q further to reduce
system energy consumption, which is formulated as

P2.1 : min
p,F

N

∑
n=1

(
K

∑
k=1

(
µ1(Ec

k[n] + Eo
k [n]) + µ2Ec

k,u[n]
)
+ µ2Eo

u[n]

)
. (29a)

s.t. (24b–24h). (29b)

Eo
u[n] in the above problem (P2.1) is nonconvex. To facilitate the solution, a slack

variable ε0[n] is introduced, and convex approximation is performed by using first-order
Taylor equations, which are given by

2

K
∑

k=1

(
to [n]

K B log2

(
1 + hk,u [n]pk [n]

σ2

)
− fk,u [n]tc [n]

C

)
Btc[n] ≤ ε0[n], (30)

1 ≤ ε0[n] ≤ εmax
0 [n], (31)

where εmax
0 [n] is the maximum upper bound on and satisfies the following equation

εmax
0 [n] =

hu,b[n]pmax
u

σ2 + 1. (32)

The nonconvex constraint (30) can be expressed as

K

∑
k=1

log2

(
1 +

hk,u[n]pk[n]
σ2

)
≤ Ktc[n]

to[n]
log2 ε0[n] +

Ktc[n]
Bto[n]

K

∑
k=1

fk,u[n]
C

(33)

Note that the left-hand side of the constraint (33) is concave with respect to pk[n]. To
deal with the above inequality, we adopt the successive convex approximation technique.
With a given feasible point pr

k[n] at each iteration, the nonconvexity can be approximated
to a convex one as

log2

(
1 +

hk,u[n]pk[n]
σ2

)
≤ rr

1,k[n] + rr
2,k[n]pk[n], (34)

where rr
1,k[n] and rr

2,k[n] are given as

rr
1,k[n] = log2

(
1 +

hk,u[n]pr
k[n]

σ2

)
−

pr
k[n]hk,u[n]

σ2 ln 2
(

1 + hk,u [n]pr
k [n]

σ2

) , (35)

rr
2,k[n] =

hk,u[n]

σ2 ln 2
(

1 + hk,u [n]pr
k [n]

σ2

) (36)

According to (33) and (34), the inequality constraint can be given as

K

∑
k=1

rr
2,k[n]pk[n] ≤

Ktc[n]
to[n]

log2 ε0[n]−
k

∑
k=1

rr
1,k[n] +

Ktc[n]
Bto[n]

K

∑
k=1

fk,u[n]
C

(37)

Therefore, the problem (P2.1) can be approximated as follows:

P2.2 : min
P,F,ε

N

∑
n=1

(
K

∑
k=1

(
µ1(Ec

k[n] + Eo
k [n]) + µ2Ec

k,u[n]
)
+ µ2

σ2

hu,b[n]
ε0[n]tc[n]

)
(38a)
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s.t. (24b–24g), (31), (37). (38b)

where ε = {ε0[n], ∀n} denotes the auxiliary variable. To proceed, the Lagrange duality
method is exploited to obtain the optimal solution of the subproblem (P2.2), which is
deduced from Theorem 1.

Theorem 1. αk[n], ξk[n], ζ[n]and λ[n] represent the nonnegative Lagrangian multipliers associated
with constraints (24b), (24c), (37) and (24f), respectively. The solutions are given as

f ∗k [n] = min

(√
αk[n]

3µ1Crk
, f max

k

)
, (39)

f ∗k,u[n] =



0,
ζ[n]Ktc[n]

Bto[n]C
− λ[n]− ξk[n]

tc [n]
C ≤ 0√

1
3µ2tc[n]ru

(
ζ[n]Ktc [n]

Bto [n]C − λ[n]− ξk[n]
tc [n]

C

)
, 0 ≤

√
1

3µ2tc [n]ru

(
ζ[n]Ktc[n]

Bto[n]C
− λ[n]− ξk[n]

tc [n]
C

)
≤ f max

u

f max
u ,

√
1

3µ2tc [n]ru

(
ζ[n]Ktc [n]

Bto [n]C − λ[n]− ξk[n]
tc [n]

C

)
≥ f max

u

(40)

ε∗0[n] =



1,
hu,b[n]ζ[n]K

µ2to[n]σ2 ln 2
≤ 1

hu,b[n]ζ[n]K
µ2to[n]σ2 ln 2

, 1 ≤ hu,b [n]ζ[n]K
µ2to [n]σ2 ln 2 ≤ εmax

0 [n]

εmax
0 [n],

hu,b[n]ζ[n]K
µ2to[n]σ2 ln 2

≥ εmax
0 [n]

(41)

p∗k [n] =



0,
(αk[n] + ξk[n])B to [n]

K(
ζ[n]rr

2,k[n] +
µ1to [n]

K

)
ln 2
− σ2

hk,u [n]
≤ 0

(αk[n] + ξk[n])B to [n]
K(

ζ[n]rr
2,k[n] +

µ1to [n]
K

)
ln 2
− σ2

hk,u [n]
0 ≤ (αk [n]+ξk [n])B to [n]

K(
ζ[n]rr

2,k [n]+
µ1to [n]

K

)
ln 2
− σ2

hk,u [n]
≤ pmax

k

pmax
k ,

(αk[n] + ξk[n])B to [n]
K(

ζ[n]rr
2,k[n] +

µ1to [n]
K

)
ln 2
− σ2

hk,u [n]
≥ pmax

k

(42)

Proof of Theorem 1. See Appendix B. �

From (39), it shows that for UE k in time slot n, the larger the value of µ1, the lower the
allocated CPU frequency. This indicates that the UEs can save on energy costs by increasing
the value of µ1 to prolong their life. It can be seen from (40) that the UAV processes the data
only when the tc[n] meets the condition (43). In other words, it can be used as a threshold
to decide whether the UAV should be tasked. In addition, the larger value of µ2, the lower
the allocated CPU frequency, which indicates that the UAVs can save on energy costs by
increasing the value of µ2 to prolong their life.

tc[n] >
δ

ξk [n]
C − λ[n]− ζ[n]K

BC +

√(
δ

ξk [n]
C − λ[n]− ζ[n]K

BC

)2
+ 4 ξk [n]λ[n]δ

C

2 ξk [n]
C

(43)

A higher weight µ1 indicates a higher energy saving priority for the UE, as judged
from (42). Specifically, the UE k offloads mission data to the UAV only when the channel
power gain exceeds the threshold, which reveals the effects of wireless channels on the
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offloading decision, indicating that the flight path of the UAV has a significant impact on
the offloading strategy.

hk,u[n] ≥

(
ζ[n]rr

2,k[n] +
µ1to [n]

K

)
σ2 ln 2

(αk[n] + ξk[n])B to [n]
K

(44)

The details for solving problem P2.2 are summarized in Algorithm 2.

Algorithm 2: P and F optimization

1: Input: Give q, t, and tolerance errors ς1, ς2.
2: Initialization: The step size θ ∈(0,1], and the iteration index i = 1.
3: Repeat 1

Initialize the iteration index r = 1.
4: Repeat 2
5: Obtain F∗r,i[n], P∗r,i[n] by (39)–(42).

6: Update αr,i[n],λr,i[n],ξr,i[n],ζr,i[n], calculate the weighted sum energy consumption E(1)
r .

7: Set r = r + 1.
8: until ‖E(1)

r−1 − E(1)
r ‖ ≤ ς1, then obtain P∗i [n] = P∗r,i[n] and F∗i [n] = F∗r,i[n].

9: Update pi
k[n] = pi

k[n] + θ
(

pi
k[n]− p∗,ik [n]

)
.

10: Calculate the weighted sum energy consumption E(2)
i .

11: Set i = i + 1.
12: until ‖E(2)

i−1 − E(2)
i ‖ ≤ ς2, then obtain F[n] = F∗i [n] and P[n] = P∗i [n].

13: Output: P, F, and E.

3.3. Algorithm Design

The overall algorithm is summarized as Algorithm 3. An alternating iterative joint
algorithm was proposed to solve the original problem. Specifically, the optimization
variables in the original problem P1 are divided into two subproblems of time slot division
t, UAV trajectory q, and computational resources P, F and then solved by alternating
optimization. Firstly, the optimal solutions of the optimization variables time slot division
t and trajectory q are obtained by Algorithm 1, and then the optimal solutions of the
computational resources P and F are obtained by Algorithm 2 to solve problem P2.2.
Finally, there are multiple iterations until the algorithm converges.

Algorithm 3: The Joint Algorithm for Solving (P1)

1: Initialization: (t0, q0, P0, F0) and the iteration index l = 1.
2: repeat
3: l ← l + 1 .
4: Given (Pl−1, Fl−1), update (tl , ql) by Algorithm 1.
5: Given (tl , ql), update (Pl , Fl) by Algorithm 2.
6: until all variables move toward convergence.

4. Simulation Results

In this section, the performance of the proposed algorithm is evaluated by computer
simulation. Unless otherwise stated, the system parameters are shown in Table 1. To verify
the superiority of the proposed OTFS system and the algorithm, first, the performance
of OTFS and OFDM systems with different modulation techniques is compared. Then,
the superiority of the proposed algorithm is illustrated by comparison with three other
benchmark algorithms. The design idea of the algorithm is as follows:

• OTFS-(*), different modulation techniques are simulated in the OTFS system based on
the algorithm proposed in this paper.
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• OFDM-(*), different modulation techniques are simulated in the OFDM system based
on the algorithm proposed in this paper.

• Atomic orbital search (AOS), solving for optimization variables based on the AOS
algorithm [32].

• Particle swarm optimization (PSO), based on the improved PSO solution optimization
variables, the algorithm inertia weights cosine adaptive adjustment, while the learning
factor is self-adjusting, based on inertia weights.

• Convex optimization algorithm (CXO), the original problem optimization variables are
divided into three subproblems (the UAV trajectory, time slot division and other com-
puting resource allocation) and iteratively solved based on the convex optimization
algorithm [13].

Table 1. Simulation parameters.

Parameters Notation Typical Values

Starting point of the UAV q0 (0, 0) m
Terminal point of the UAV qz (100, 100) m

Height of the UAV H 100 m
Maximum CPU frequency of the UAV f max

u 5 GHz
Maximum CPU frequency of UEs f max

k 1 GHz
The UAV’s maximum placement Dmax 20 m

Maximum transmission power of UEs pmax
k 1 W

Maximum transmission power the UAV pmax
u 3 W

Tip velocity of a rotor blade Utip 120 m/s
The total system bandwidth B 10 M

The time periods T 12 s
CPU cycles C 1000 cycles/bit

UE task input data size Lmin
k 2.5 M

Number of time slots N 12
Noise power σ2 −110 dbm

Weight of energy consumption µ1, µ2 10, 0.01
Channel power gain g0 −30 dbm

BER threshold BERmax 10−2

Doppler speed vp 90 km/h

In Figure 4, the BER is compared for the two modulation modes at different speeds.
It can be seen that BER becomes larger as the flight speed of the UAV increases, which
indicates that the Doppler shift from high speed-movement can seriously affect the com-
munication quality. We also note that the difference in BER between the two modulation
modes becomes larger as the SNR increases. This means that the OTFS modulation mode
requires a lower SNR than the OFDM modulation mode for the same communication
conditions. In other words, the communication range of the UAV can be increased by using
the OTFS modulation mode. Therefore, the OTFS modulation mode is expected to play an
important role in high-mobility channel communication.

Figure 5 shows the weighted total energy consumption and flight trajectory for both
OTFS and OFDM modes. From Figure 5a, the weighted total energy consumption of both
schemes increases with the amount of minimum data. It can be seen that the OTFS system
performs better than OFDM regardless of the modulation technique. In particular, the
weighted total energy consumption of OTFS in BPSK modulation is significantly lower
than that of OFDM. From Figure 5b, we can see that compared with the conventional
OFDM mode, the UAV does not need to be too close to the UEs in OTFS mode. The
reason for this phenomenon is that under high-speed movement, the UAV shows good
robustness to the Doppler effect, and OTFS can obtain greater diversity gain in time and
frequency. In other words, the UAV has a larger communication range when using the
OTFS modulation technique under the same communication conditions. Therefore, the
UAV will try to shorten the distance to achieve energy saving.
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Figure 6 illustrates the sum energy consumption versus the different minimum data.
The energy consumption of all schemes increases with the increase in the number of bits
Lmin

k . The reason for the phenomenon is that when the amount of data is comparatively
small, the UAV and UEs can effectively optimize resources. When the data are too large,
the system needs to call on limited resources to complete the task as much as possible,
resulting in a sharp increase in the weighted sum energy consumption. In other words,
the more data, the smaller the resources that can be optimized. Notably, the sum energy
consumption of the proposed algorithm is considerably less than that of the AOS, CXO and
PSO algorithm, which indicates that the proposed algorithms are effective.
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Figure 7 illustrates the weighted energy consumption of four schemes with a varying
number of UEs. It can be seen that energy consumption increases with the number of UEs.
However, the weighted energy consumption of the proposed algorithm is smaller than that
of the other algorithms, indicating the effectiveness of the algorithm. It is worth noting
that when the number of UEs is relatively small, the difference in the weighted total energy
consumption of the four schemes is not large. However, as the number of UEs increases,
the weighted total energy consumption of the proposed algorithm is much smaller than the
other schemes, which suggests that the scheme can better adapt the multi-UEs scenarios.
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In order to reveal the relationship of energy consumption between UEs and the UAV,
the actual energy consumption of the two devices is plotted in various values of µ1 in
Figure 8. This illustrates that as µ1 increases, the energy consumption of UEs decreases
while that of UAV increases, which also verifies Theorem 1. The more valuable the UE
energy, the larger the amount of energy required to be consumed by the UAV to meet the
minimum computational requirements. Note that the actual energy consumption of the
UAV does not increase monotonically with µ1. On the one hand, the UAV energy of the
UAV is weighted so that the real energy of UAV fluctuates within a certain range without
affecting the target value. On the other hand, constrained by flight resources of the UAV,
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the energy consumption tends to the upper limit. In conclusion, UEs and the UAV always
cooperate in carrying out the task.

Electronics 2023, 12, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 7. The weighted sum energy consumption versus UEs quantity for four algorithms. 

In order to reveal the relationship of energy consumption between UEs and the UAV, 
the actual energy consumption of the two devices is plotted in various values of 1μ  in 
Figure 8. This illustrates that as 1μ  increases, the energy consumption of UEs decreases 
while that of UAV increases, which also verifies Theorem 1. The more valuable the UE 
energy, the larger the amount of energy required to be consumed by the UAV to meet the 
minimum computational requirements. Note that the actual energy consumption of the 
UAV does not increase monotonically with 1μ . On the one hand, the UAV energy of the 
UAV is weighted so that the real energy of UAV fluctuates within a certain range without 
affecting the target value. On the other hand, constrained by flight resources of the UAV, 
the energy consumption tends to the upper limit. In conclusion, UEs and the UAV always 
cooperate in carrying out the task. 

 
Figure 8. Real energy consumption comparison of UEs and the UAV with varying weight 1μ . 

In Figure 9, the weighted energy consumption of the UE and the system at different 
time slots are plotted to reveal the impact of UAV position on UEs. Figure 9a shows that 
the different positions of the UAV have great influence on the energy consumption of the 
UE. When the UAV is close to the UE, the energy consumption of the UE is relatively low. 
It is worth noting that when the energy consumption of the system is the lowest, the en-
ergy consumption of all UEs is relatively low. The reason is that the first half of the UAV 
will be close to the favorable service position, and the second half will rapidly become far 
away from the favorable service position. When the UAV reaches a favorable service po-
sition, it will fly slowly to reduce energy consumption. In brief, Figure 9 shows that tra-
jectory optimization can effectively reduce the sum energy consumption of the system. 

Figure 8. Real energy consumption comparison of UEs and the UAV with varying weight µ1.

In Figure 9, the weighted energy consumption of the UE and the system at different
time slots are plotted to reveal the impact of UAV position on UEs. Figure 9a shows that
the different positions of the UAV have great influence on the energy consumption of the
UE. When the UAV is close to the UE, the energy consumption of the UE is relatively low.
It is worth noting that when the energy consumption of the system is the lowest, the energy
consumption of all UEs is relatively low. The reason is that the first half of the UAV will be
close to the favorable service position, and the second half will rapidly become far away
from the favorable service position. When the UAV reaches a favorable service position,
it will fly slowly to reduce energy consumption. In brief, Figure 9 shows that trajectory
optimization can effectively reduce the sum energy consumption of the system.
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Figure 10 depicts the iterations of the weighted total energy under the three schemes.
It can be seen that the weighted total energy consumption decreases more obviously in the
first and second iterations, and the third basically tends toward stability. The reason for
this phenomenon is that the proposed iterative algorithm is far from the optimal position
in the first two iterations, and the UE needs to consume a lot of energy to complete the task.
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In the third iteration, all optimization variables remain almost stable, and a better solution
is obtained. This further verifies the convergence of the algorithm.
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Finally, in Figure 11, we analyze the weighted total energy consumption under differ-
ent values of time slot division (t denotes the variable to[n]). It can be seen that when the
values are very low, the energy consumption of the four schemes is also low and similar.
With the increase in Lmin

k , the energy of the benchmark algorithms will increase greatly after
exceeding a certain threshold. However, the proposed algorithm can complete the task
with lower energy consumption, which is more obvious. The reason for the phenomenon is
that within a limited time and with an increase in data, UEs or the UAV can only offload a
large number of tasks that cannot be processed by adjusting the transmit power, but there
is a threshold upper limit for the transmission power. The proposed algorithm can auto-
matically allocate the time slot size, raise the upper limit of the threshold, and effectively
reduce transmit power to reduce energy consumption. This demonstrates that time slot
optimization plays an important role in reducing total energy consumption.
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5. Conclusions

In this paper, we propose resource allocation and trajectory optimization in OTFS
based UAV-assisted MEC for severe Doppler effects caused by high-speed motion. The
weighted total energy consumption of the system is minimized by jointly optimizing the
time division, CPU frequency allocation, transmit power allocation and flight trajectory
under the premise of considering Doppler compensation. A joint algorithm combining the
advantages of the heuristic algorithm and convex optimization algorithm is proposed for
the above nonconvex problem. The simulation results demonstrate that the OTFS-based
UAV system outperforms the OFDM-based UAV system, and the proposed algorithm
is superior to the convex optimization and heuristic algorithm. In future research, we
will focus on multiple UAVs and multiple UEs, and move to real-world scenarios as soon
as possible.

Author Contributions: Conceptualization, W.L. and C.L.; methodology, W.L. and Y.G.; software,
N.L.; validation, N.L. and H.Y.; formal analysis, W.L.; investigation, W.L.; data curation, N.L.;
writing—original draft preparation, Y.G.; writing—review and editing, H.Y.; supervision, Y.G.; project
administration, C.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Jiangsu Province (Grant
No. BK20211227) and National Natural Science Foundation of China (Grant No. 61871400, 62273356).

Data Availability Statement: Data available on request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The UAV offload energy consumption Eo
u[n] at the nth time slot is denoted as

Eo
u[n] = pu[n]tc[n], (A1)

where pu[n] denotes the transmit power of the UAV at time slot n. The task data offloaded
by the nth time slot UAV to the BS can be expressed as

K

∑
k=1

(
lo
k [n]− lc

k,u[n]
)
= to[n]B log2

[
1 +

hu,b[n]pu[n]
σ2

]
. (A2)

The expression of pu[n] can be obtained by the above equation

pu[n] =
σ2

hu,b[n]

2

K
∑

k=1
(lok [n]−lck,u [n])

Btc [n] − 1

. (A3)

Thus, Eo
u[n] can be reformulated as

Eo
u[n] =

σ2

hu,b[n]

2

K
∑

k=1
(lok [n]−lck,u [n])

Btc [n] − 1

tc[n]. (A4)

Appendix B

Let αk[n], ξk[n], ζ[n] and λ[n] denote the nonnegative Lagrangian multipliers associ-
ated with constraints (24b), (24c), (37) and (24f), respectively. For convenience of discussion,
we use { f ∗k [n], f ∗k,u[n], ε∗0[n], p∗k [n]} to denote the optimal solution to the problem (P2.2).
Hence, the Lagrangian of subproblem (P2.2) is presented as
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L(P,F,ε,α,λ,ξ,ζ) =
N
∑

n=1

(
K
∑

k=1

(
µ1

(
rk f 3

k [n]δ +
pk [n]to [n]

K

)
+ µ2ru f 3

k,u[n]t
c[n]

)
+ µ2σ2

hu,b [n]
ε0[n]tc[n]

)
+αk[n]

N
∑

n=1

(
K
∑

k=1

(
Lmin

k − fk [n]δ
C − B

K to[n] log2

(
1 + hk,u [n]pk [n]

σ2

)))
+ξk[n]

N
∑

n=1

(
K
∑

k=1

(
fk,u [n]tc [n]

C − B
K to[n] log2

(
1 + hk,u [n]pk [n]

σ2

)))
+ζ[n]

N
∑

n=1

(
K
∑

k=1
rr

2,k[n]pk[n]−
Ktc [n]
to [n] log2 ε0[n]− Ktc [n]

Bto [n]

K
∑

k=1

fk,u [n]
C +

k
∑

k=1
rr

1,k[n]
)

+λ[n]
N
∑

n=1

(
K
∑

k=1
( fk,u[n])− f max

u

)
(A5)

where α = {αk[n], ∀n, k}, ξ = {ξk[n], ∀n, k}, ζ = {ζ[n], ∀n, k} and λ = {λ[n], ∀n, k} denote
the set of the dual variables related to (24b), (24c), (37) and (24f), respectively. Thus, the
Lagrangian dual function of p2.2 is given by

D1 : L̃(α,λ,ξ,ζ) = min
P,F,ε

L(P,F,ε,α,λ,ξ,ζ) (A6)

s.t. (24d), (24f), (24g), (31). (A7)

Thus, the solutions of P, ε and F with any given α, λ, ξ and ζ can be obtained by
solving D1. In particular, if the values of all dual variables are optimal, the corresponding
solutions are optimal. By leveraging the Karush–Kuhn–Tucker (KKT) conditions [33] and
setting the first-order derivatives of L(P,F,ε,α,λ,ξ,ζ) with respect to fk[n], fk,u[n], ε0[n] and
pk[n], the corresponding optimal solutions can be easily obtained as in (39)–(42). Hence,
Theorem 1 is proved.
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