Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (132)

Search Parameters:
Keywords = Tropical Atlantic Variability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4061 KB  
Article
Increasing Sea Surface Temperatures Driving Widespread Tropicalization in South Atlantic Pelagic Fisheries
by Rodrigo Sant’Ana, Daniel Thá, Lea-Anne Henry, Rafael Schroeder and José Angel Alvarez Perez
Biology 2025, 14(8), 1039; https://doi.org/10.3390/biology14081039 - 13 Aug 2025
Viewed by 441
Abstract
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain [...] Read more.
Ocean warming is leading to a tropicalization of fisheries in subtropical regions around the world. Here, we scrutinize pelagic fisheries catch data from 1978 to 2018 in the South Atlantic Ocean in search of signs of tropicalization in these highly migratory and top-of-the-food-chain fish. Through the analysis of catch composition data, thermal preferences, and climatic data, we described the temporal variability in the mean temperature of the catch and assessed the role of sea surface temperature and the Brazil Current’s transport volumes as drivers of such variability. We observed a significant increase in the mean temperature of the catches, indicating a transition towards a predominance of warm-water species, especially pronounced on the western side of the South Atlantic Ocean. This shift was further corroborated by a significant rise in the proportion of warm-water species over time. Additionally, this study observes a continuous increase in SST during the entire time series on both sides of the South Atlantic Ocean, with significant positive trends. The analysis of catch composition through ordination methods and estimates of beta diversity reveals a transition from an early scenario characterized by mostly cold-water species to a late scenario, dominated by a greater diversity of species with a prevalence of warm-water affinities. These findings underscore the profound impact of ocean warming on marine biodiversity, with significant implications for fisheries management and ecosystem services. Full article
Show Figures

Figure 1

25 pages, 3451 KB  
Article
Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data
by Yuri Onça Prestes, Alex Costa da Silva, André Lanfer Marquez, Gabriel D’annunzio Gomes Junior and Fabrice Hernandez
J. Mar. Sci. Eng. 2025, 13(8), 1536; https://doi.org/10.3390/jmse13081536 - 10 Aug 2025
Viewed by 315
Abstract
Wave climate variability, including seasonal cycles, long-term trends, and interannual anomalies of wave parameters, was investigated across five latitudinal sectors using ERA5 reanalysis data from 1980 to 2023. Pronounced seasonal cycles were observed in both Northern and Southern Hemisphere sectors, although the variability [...] Read more.
Wave climate variability, including seasonal cycles, long-term trends, and interannual anomalies of wave parameters, was investigated across five latitudinal sectors using ERA5 reanalysis data from 1980 to 2023. Pronounced seasonal cycles were observed in both Northern and Southern Hemisphere sectors, although the variability was more marked in the Northern Hemisphere. In contrast, the tropical region exhibited comparatively stable conditions throughout the year. Long-term trends revealed increases in both significant wave height and peak period across most sectors. The tropical region exhibited a trimodal regime driven by wind waves at low latitudes and remotely generated swells from both hemispheres. Teleconnections associated with the North Atlantic Oscillation (NAO) explained interannual variability in wind-wave direction in the tropics with an r2 of 0.74 and wind-wave height variability in the Northern Hemisphere with an r2 of 0.81. Additional indices, such as the Arctic Oscillation (AO), the Tropical North Atlantic (TNA) index, and the Northern Annular Mode (NAM), explained 30 to 60 percent of the directional variability. These results underscore the need to account for climate-driven variability in wave modeling frameworks to improve forecast accuracy and representation of directional trends. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

17 pages, 3919 KB  
Article
On the Links Between Tropical Sea Level and Surface Air Temperature in Middle and High Latitudes
by Sergei Soldatenko, Genrikh Alekseev and Yaromir Angudovich
Atmosphere 2025, 16(8), 913; https://doi.org/10.3390/atmos16080913 - 28 Jul 2025
Viewed by 283
Abstract
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with [...] Read more.
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with the latter contributing about 40% to the overall rise in SL. Rising SL indirectly indicates an increase in ocean heat content and, consequently, its surface temperature. Previous studies have found that tropical sea surface temperature (SST) is critical to regulating the Earth’s climate and weather patterns in high and mid-latitudes. For this reason, SST and SL in the tropics can be considered as precursors of both global climate change and the emergence of climate anomalies in extratropical latitudes. Although SST has been used in this capacity in a number of studies, similar research regarding SL had not been conducted until recently. In this paper, we examine the links between SL in the tropical North Atlantic and North Pacific Oceans and surface air temperature (SAT) at mid- and high latitudes, with the aim of assessing the potential of SL as a predictor in forecasting SAT anomalies. To identify similarities between the variability of tropical SL and SST and that of SAT in high- and mid-latitude regions, as well as to estimate possible time lags, we applied factor analysis, clustering, cross-correlation and cross-spectral analyses. The results reveal a structural similarity in the internal variability of tropical SL and extratropical SAT, along with a significant lagged relationship between them, with a time lag of several years. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 308
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

20 pages, 3788 KB  
Article
Assessing Forest Succession Along Environment, Trait, and Composition Gradients in the Brazilian Atlantic Forest
by Carem Valente, Renan Hollunder, Cristiane Moura, Geovane Siqueira, Henrique Dias and Gilson da Silva
Forests 2025, 16(7), 1169; https://doi.org/10.3390/f16071169 - 16 Jul 2025
Viewed by 533
Abstract
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence [...] Read more.
Tropical forests face increasing threats and are often replaced by secondary forests that regenerate after disturbances. In the Atlantic Forest, this creates fragments of different successional stages. The aim of this study is to understand how soil nutrients and light availability gradients influence the species composition and structure of trees and regenerating strata in remnants of lowland rainforest. We sampled 15 plots for the tree stratum (DBH ≥ 5 cm) and 45 units for the regenerating stratum (height ≥ 50 cm, DBH < 5 cm), obtaining phytosociological, entropy and equitability data for both strata. Canopy openness was assessed with hemispherical photos and soil samples were homogenized. To analyze the interactions between the vegetation of the tree layer and the environmental variables, we carried out three principal component analyses and two redundancy analyses and applied a linear model. The young fragments showed good recovery, significant species diversity, and positive successional changes, while the older ones had higher species richness and were in an advanced stage of succession. In addition, younger forests are associated with sandy, nutrient-poor soils and greater exposure to light, while mature forests have more fertile soils, display a greater diversity of dispersal strategies, are rich in soil clay, and have less light availability. Mature forests support biodiversity and regeneration better than secondary forests, highlighting the importance of preserving mature fragments and monitoring secondary ones to sustain tropical biodiversity. Full article
Show Figures

Graphical abstract

20 pages, 14382 KB  
Article
Exploring the Causes of Multicentury Hydroclimate Anomalies in the South American Altiplano with an Idealized Climate Modeling Experiment
by Ignacio Alonso Jara, Orlando Astudillo, Pablo Salinas, Limbert Torrez-Rodríguez, Nicolás Lampe-Huenul and Antonio Maldonado
Atmosphere 2025, 16(7), 751; https://doi.org/10.3390/atmos16070751 - 20 Jun 2025
Viewed by 403
Abstract
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric [...] Read more.
Paleoclimate records have long documented the existence of multicentury hydroclimate anomalies in the Altiplano of South America. However, the causes and mechanisms of these extended events are still unknown. Here, we present a climate modeling experiment that explores the oceanic drivers and atmospheric mechanisms conducive to long-term precipitation variability in the southern Altiplano (18–25° S; 70–65 W; >3500 masl). We performed a series of 100-year-long idealized simulations using the Weather Research and Forecasting (WRF) model, configured to repeat annually the oceanic and atmospheric forcing leading to the exceptionally humid austral summers of 1983/1984 and 2011/2012. The aim of these cyclical experiments was to evaluate if these specific conditions can sustain a century-long pluvial event in the Altiplano. Unlike the annual forcing, long-term negative precipitation trends are observed in the simulations, suggesting that the drivers of 1983/1984 and 2011/2012 wet summers are unable to generate a century-scale pluvial event. Our results show that an intensification of the anticyclonic circulation along with cold surface air anomalies in the southwestern Atlantic progressively reinforce the lower and upper troposphere features that prevent moisture transport towards the Altiplano. Prolonged drying is also observed under persistent La Niña conditions, which contradicts the well-known relationship between precipitation and ENSO at interannual timescales. Contrasting the hydroclimate responses between the Altiplano and the tropical Andes result from a sustained northward migration of the Atlantic trade winds, providing a useful analog for explaining the divergences in the Holocene records. This experiment suggests that the drivers of century-scale hydroclimate events in the Altiplano were more diverse than previously thought and shows how climate modeling can be used to test paleoclimate hypotheses, emphasizing the necessity of combining proxy data and numerical models to improve our understanding of past climates. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

16 pages, 6912 KB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 552
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

15 pages, 7730 KB  
Article
The Importance of Different Biomes (Atlantic Forest, Cerrado, and Caatinga) in the Regional Structuring of Neotropical Dragonfly Assemblages
by Karolina Teixeira, Acácio de Sá Santos, Diogo Silva Vilela, Cíntia Ribeiro and Marciel Elio Rodrigues
Diversity 2025, 17(5), 345; https://doi.org/10.3390/d17050345 - 14 May 2025
Viewed by 633
Abstract
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at [...] Read more.
Understanding how assemblages are structured is important for ecology, especially in tropical regions that exhibit high biodiversity and are currently experiencing high rates of loss and modification of natural environments caused by anthropogenic impacts. Understanding the structuring of assemblages across different regions at different spatial scales allows us to comprehend how environmental modifications can affect biodiversity on a local and regional scale. The objective of this study was to evaluate the biodiversity of Odonata species using taxonomic diversity metrics (richness and composition) in areas of Cerrado, Atlantic Forest, and Caatinga and to evaluate which sets of local and spatial environmental variables are associated with these assemblages among the different areas evaluated. The study was conducted in the state of Bahia, where 49 streams were sampled, including 17 in the Atlantic Forest, 18 in the Caatinga, and 15 in the Cerrado. Our results demonstrate a high diversity of Odonata species, with 95 species collected. We found a similar species richness among the regions sampled. However, each region presented a distinct composition, with greater similarity between the Cerrado and the Caatinga. Spatial predictors along with some environmental variables were associated with the Caatinga and Cerrado. Some environmental variables, such as the amount of riparian vegetation and aquatic vegetation, were associated with the Cerrado. The results highlighted that each of the evaluated regions are fundamental for maintaining and conserving the regional dragonfly biodiversity. The lack of conservation of aquatic ecosystems in the different regions leads to local species loss and, consequently, to a loss of regional Odonata biodiversity. Full article
(This article belongs to the Special Issue Tropical Aquatic Biodiversity)
Show Figures

Figure 1

18 pages, 11692 KB  
Article
Water Balance in an Atlantic Forest Remnant: Focus on Representative Tree Species
by Adérito C. Cau, José A. Junqueira Junior, Alejandra B. Vega, Severino J. Macôo, André F. Rodrigues, Marcela C. N. S. Terra, Li Guo and Carlos R. Mello
Forests 2025, 16(5), 812; https://doi.org/10.3390/f16050812 - 13 May 2025
Viewed by 483
Abstract
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP [...] Read more.
The Atlantic Forest has undergone deforestation and prolonged droughts, affecting ecosystem services. This study assesses the water balance using hydrological observations from representative tree species within a Montane Semideciduous Seasonal Forest (MF) remnant. Gross precipitation (GP), canopy interception (CI), and effective precipitation (EP = Throughfall + Stemflow) were recorded daily, and soil moisture was measured down to 1.80 m every two days during the dry period of the 2023/2024 hydrological year. Additionally, aboveground biomass (AGB), fresh root biomass (BR), and soil hydrological properties in the soil profile were obtained to support the water balance results. The highest EP values were recorded in Miconia willdenowii, while the lowest were in Xylopia brasiliensis. Root zone water storage exhibited a declining trend, with the highest values in Miconia willdenowii. ET remained low, mainly in April, July, and September, with Miconia willdenowii and Copaifera langsdorffii showing the highest values, and AGB correlated with CI and ET. The dynamic of this ecosystem is apparent in the temporal variations (CVt) of soil moisture, influenced by EP and ET. The greatest variability was recorded in the surface layer (0–20 cm), stabilizing with depth, especially below 120 cm. The Temporal Stability Index (TSI) of soil water storage indicated greater stability in Blepharocalyx salicifolius. This study highlights the significance of soil water storage and ET in a tropical forest ecosystem, particularly under drought conditions, suggesting potential species that may be more effective in recovering degraded areas. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

26 pages, 7930 KB  
Article
Sargassum Biomass Movement and Proliferation in the Eastern Tropical Atlantic
by Yanna Alexia Fidai, Jadu Dash, Emma Tompkins, Donatus Yaw Atiglo, Philip-Neri Jayson-Quashigah, Winnie Naa Adjorkor Sowah and Kwasi Appeaning Addo
Phycology 2025, 5(2), 17; https://doi.org/10.3390/phycology5020017 - 2 May 2025
Cited by 1 | Viewed by 1516
Abstract
Since 2011, pelagic sargassum blooms (S. fluitans and S. natans) have impacted coastal communities, aquaculture, tourism, and biodiversity across the Tropical Atlantic region. Whilst the initial event is generally attributed to an anomalous North Atlantic Oscillation (2009–2010), the drivers of sargassum movement [...] Read more.
Since 2011, pelagic sargassum blooms (S. fluitans and S. natans) have impacted coastal communities, aquaculture, tourism, and biodiversity across the Tropical Atlantic region. Whilst the initial event is generally attributed to an anomalous North Atlantic Oscillation (2009–2010), the drivers of sargassum movement and proliferation remain unclear. This research gap is particularly evident in West Africa, where annual and seasonal sargassum variability is under-researched, and a lack of consensus exists on seasonal and annual trends. This paper addresses these gaps by (1) providing a first attempt at characterising the seasonal and annual trends of sargassum biomass in the Eastern Tropical Atlantic, through using satellite imagery to create a time-series for 2011–2022; and (2) exploring the hypothetical drivers of movement and proliferation of sargassum for this area, through assessing its co-variation with potential drivers including atmospheric, oceanic, and policy, establishing a historical timeline of events. The time-series analysis reveals an annual biomass peak in September and a second peak between March and May. The exploration of potential drivers reveals that alongside sea surface temperature there are multiple factors that could be influencing sargassum biomass, and that further research is necessary to clarify primary and secondary drivers. The results contribute to understanding drivers, impacts, and predictions of sargassum blooms in the Eastern Tropical Atlantic. We anticipate that our findings will enable sargassum-affected areas to better anticipate the size and timing of sargassum events in West Africa and offer researchers a new perspective on possible drivers of proliferation within the wider Tropical Atlantic region. Full article
Show Figures

Figure 1

11 pages, 16684 KB  
Article
Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes
by Genrikh Alekseev, Sergei Soldatenko, Natalia Glok, Natalia Kharlanenkova, Yaromir Angudovich and Maksim Smirnov
Climate 2025, 13(5), 84; https://doi.org/10.3390/cli13050084 - 27 Apr 2025
Cited by 1 | Viewed by 640
Abstract
Sea surface temperature (SST) is considered a strong indicator of climate change, being an essential parameter for long-range weather and climate forecasting. Another important indicator of climate change is sea level (SL), which has a longer history of systematic instrumental observations. This paper [...] Read more.
Sea surface temperature (SST) is considered a strong indicator of climate change, being an essential parameter for long-range weather and climate forecasting. Another important indicator of climate change is sea level (SL), which has a longer history of systematic instrumental observations. This paper aims to examine the relationships between low-latitude variations in ocean characteristics (SST and SL) and surface air temperature (SAT) anomalies in the Arctic and mid-latitudes, and discuss the possibility of using SST and SL as predictors to forecast seasonal SAT anomalies. Archives of meteorological observations, atmospheric and oceanic reanalyses, and long-term series of tide gauge data on SL were used in this study. An analysis of relationships between seasonal SAT in different mid-to-high latitude regions and SST made it possible to identify areas in the ocean that have the greatest influence on SAT patterns. The most commonly identified area is located in the tropical North Atlantic. Another area was found in the Indo-Pacific warm pool. The predictive potential of the relationships identified between ocean characteristics (SST and SL) and SAT will be used to build deep learning models aimed at predicting climate variability in mid-to-high latitudes. Full article
Show Figures

Figure 1

19 pages, 4267 KB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Cited by 1 | Viewed by 997
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

41 pages, 1028 KB  
Review
Historical Review of Research on Fisheries vs. Climate Changes and Proposals for the Future in a Global Warming Context
by Juan Pérez-Rubín and Elena Pérez-Rubín
J. Mar. Sci. Eng. 2025, 13(2), 260; https://doi.org/10.3390/jmse13020260 - 30 Jan 2025
Viewed by 1617
Abstract
Marine environmental variability and climate change are interconnected; they are the main causes of the fluctuations in ecosystems and cyclically affect fisheries. This work has four main goals. The first is to present a broad historical review of international research activities on fisheries [...] Read more.
Marine environmental variability and climate change are interconnected; they are the main causes of the fluctuations in ecosystems and cyclically affect fisheries. This work has four main goals. The first is to present a broad historical review of international research activities on fisheries and climate change, mainly in European waters. We have recovered a selection of seminal international scientific publications from 1914 to 1995, which aroused great interest among the scientific community at that time, although most of these publications have fallen into oblivion in the 21st century. The second goal is to review the main intergovernmental initiatives on climate and marine research from the 1980s to the present, detecting gaps and a lack of unanimity in some guidelines from international organizations. The third goal is to analyze decadal warming/cooling in the Canary Current Upwelling System (extending from the NW Iberian Peninsula to Senegal), to understand the current rapid tropicalization of pelagic and benthic ecosystems in Southern European Atlantic seas. The fourth goal is to identify priority research lines for the future, including the need to promote an international retrospective on fisheries oceanography research, for at least the last hundred years. Full article
Show Figures

Figure 1

29 pages, 31037 KB  
Article
El Niño–Southern Oscillation Prediction Based on the Global Atmospheric Oscillation in CMIP6 Models
by Ilya V. Serykh
Climate 2025, 13(2), 25; https://doi.org/10.3390/cli13020025 - 27 Jan 2025
Viewed by 1231
Abstract
In this work, the preindustrial control (piControl) and Historical experiments results from climatic Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) are analyzed for their ability to predict the El Niño–Southern Oscillation (ENSO). Using the principal [...] Read more.
In this work, the preindustrial control (piControl) and Historical experiments results from climatic Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) are analyzed for their ability to predict the El Niño–Southern Oscillation (ENSO). Using the principal component method, it is shown that the Global Atmospheric Oscillation (GAO), of which the ENSO is an element, is the main mode of interannual variability of planetary anomalies of surface air temperature (SAT) and atmospheric sea level pressure (SLP) in the ensemble of 50 CMIP6 models. It turns out that the CMIP6 ensemble of models reproduces the planetary structure of the GAO and its west–east dynamics with a period of approximately 3.7 years. The models showed that the GAO combines ENSO teleconnections with the tropics of the Indian and Atlantic Oceans, and with temperate and high latitudes. To predict strong El Niño and La Niña events, we used a predictor index (PGAO) obtained earlier from observation data and reanalyses. The predictive ability of the PGAO is based on the west–east propagation of planetary structures of SAT and SLP anomalies characteristic of the GAO. Those CMIP6 models have been found that reproduce well the west–east spread of the GAO, with El Niño and La Niña being phases of this process. Thanks to this, these events can be predicted with approximately a year’s lead time, thereby overcoming the so-called spring predictability barrier (SPB) of the ENSO. Thus, the influence of global anomalies of SAT and SLP on the ENSO is shown, taking into account that it may increase the reliability of the early forecast of El Niño and La Niña events. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

23 pages, 27902 KB  
Article
Spatio-Temporal Characteristics of Climate Extremes in Sub-Saharan Africa and Potential Impact of Oceanic Teleconnections
by Lormido Ernesto Zita, Flávio Justino, Carlos Gurjão, James Adamu and Manuel Talacuece
Atmosphere 2025, 16(1), 86; https://doi.org/10.3390/atmos16010086 - 15 Jan 2025
Cited by 1 | Viewed by 2292
Abstract
Sub-Saharan Africa (SSA) is a region vulnerable to extreme weather events due to its low level of adaptive capacity. In recent decades, SSA has been punctuated by more intense climatic phenomena that severely affect its population. Therefore, this study evaluates the performance of [...] Read more.
Sub-Saharan Africa (SSA) is a region vulnerable to extreme weather events due to its low level of adaptive capacity. In recent decades, SSA has been punctuated by more intense climatic phenomena that severely affect its population. Therefore, this study evaluates the performance of the ERA5 and CHIRPS datasets, and the spatio-temporal evolution of extreme weather indices and their potential relationship/response to climate variability modes in the Pacific, Indian, and Atlantic oceans, namely, the El Niño−Southern Oscillation, Indian Ocean Dipole, and Tropical Atlantic Variability (ENSO, IOD, and TAV). The CHIRPS dataset showed strong positive correlations with CPC in spatial patterns and similarity in simulating interannual variability and in almost all seasons. Based on daily CHIRPS and CPC data, nine extreme indices were evaluated focusing on regional trends and change detection, and the maximum lag correlation method was applied to investigate fluctuations caused by climate variability modes. The results revealed a significant decrease in total precipitation (PRCPTOT) in north−central SSA, accompanied by a reduction in Consecutive Wet Days (CWDs) and maximum 5-day precipitation indices (RX5DAYS). At the same time, there was an increase in Consecutive Dry Days (CDDs) and maximum rainfall in 1 day (RX1DAY). With regard to temperatures, absolute minimums and maximums (TNn and TXn) showed a tendency to increase in the center−north and decrease in the south of the SSA, while daily maximums and minimums (TXx and TNx) showed the opposite pattern. The IOD, TAV, and ENSO modes of climate variability influence temperature and precipitation variations in the SSA, with distinct regional responses and lags between the basins. Full article
Show Figures

Figure 1

Back to TopTop