Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data
Abstract
1. Introduction
2. Methods
2.1. Atlantic Ocean
2.2. Wave and Atmospheric Data
2.3. Climate Indices
2.4. Data Processing
3. Results
3.1. Monthly Climatology
3.2. Climatology, Trends, and Anomalies
3.3. Climate Indices and Wave Climate
3.4. Histograms and Distribution Curves
3.5. Climate Indices Modulating Wave Direction in the Tropical Region
4. Discussion
4.1. Wave Climatology in the Atlantic Ocean
4.2. Influence of the NAO in the Tropical Region
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Correlation Matrix of Wave Parameters and Climate Indices
NA Sector | AMO | ENSO | NAM | NAO | PDO | SAM | AO | SOI | TNA | TSA | TASI |
---|---|---|---|---|---|---|---|---|---|---|---|
SWH (m) | −0.05 | 0.25 | 0.63 | 0.69 | 0.00 | 0.12 | 0.68 | −0.25 | −0.23 | −0.34 | 0.00 |
SHWW (m) | −0.21 | 0.21 | 0.64 | 0.81 | 0.02 | 0.09 | 0.79 | −0.20 | −0.31 | −0.31 | −0.13 |
SHS (m) | 0.12 | 0.23 | 0.51 | 0.43 | −0.03 | 0.11 | 0.45 | −0.24 | −0.10 | −0.33 | 0.14 |
PP (s) | 0.08 | 0.15 | 0.35 | 0.16 | −0.07 | 0.15 | 0.20 | −0.17 | 0.00 | −0.34 | 0.25 |
MWP (s) | 0.16 | 0.18 | 0.37 | 0.19 | −0.04 | 0.18 | 0.21 | −0.20 | 0.02 | −0.31 | 0.26 |
MPWW (s) | −0.17 | 0.21 | 0.63 | 0.79 | 0.02 | 0.11 | 0.77 | −0.19 | −0.27 | −0.32 | −0.08 |
MPS (s) | 0.13 | 0.18 | 0.41 | 0.24 | −0.04 | 0.19 | 0.26 | −0.19 | 0.00 | −0.33 | 0.25 |
MWD (°) | −0.29 | 0.01 | 0.50 | 0.67 | −0.03 | −0.24 | 0.70 | −0.10 | −0.41 | −0.29 | −0.25 |
MDWW (°) | −0.27 | 0.03 | 0.53 | 0.69 | −0.06 | −0.16 | 0.74 | −0.10 | −0.35 | −0.32 | −0.18 |
MDTS (°) | −0.29 | −0.02 | 0.51 | 0.68 | −0.05 | −0.27 | 0.71 | −0.08 | −0.43 | −0.30 | −0.27 |
SNA Sector | AMO | ENSO | NAM | NAO | PDO | SAM | AO | SOI | TNA | TSA | TASI |
---|---|---|---|---|---|---|---|---|---|---|---|
SWH (m) | 0.19 | 0.08 | −0.03 | −0.15 | −0.02 | 0.11 | −0.17 | 0.00 | 0.13 | −0.09 | 0.26 |
SHWW (m) | 0.16 | −0.14 | −0.36 | −0.25 | −0.14 | −0.03 | −0.35 | 0.27 | 0.26 | 0.24 | 0.18 |
SHS (m) | 0.20 | 0.12 | 0.09 | −0.07 | −0.01 | 0.15 | −0.09 | −0.07 | 0.07 | −0.20 | 0.26 |
PP (s) | 0.08 | 0.09 | 0.23 | −0.01 | −0.01 | 0.18 | 0.01 | −0.11 | −0.02 | −0.31 | 0.23 |
MWP (s) | 0.17 | 0.13 | 0.20 | −0.05 | 0.03 | 0.18 | −0.04 | −0.13 | 0.03 | −0.26 | 0.25 |
MPWW (s) | 0.17 | −0.20 | −0.42 | −0.25 | −0.17 | −0.03 | −0.39 | 0.31 | 0.29 | 0.26 | 0.18 |
MPS (s) | 0.20 | 0.08 | 0.14 | −0.07 | −0.02 | 0.19 | −0.09 | −0.07 | 0.08 | −0.21 | 0.27 |
MWD (°) | 0.08 | 0.17 | −0.16 | −0.31 | 0.09 | 0.01 | −0.22 | −0.05 | −0.04 | 0.03 | 0.00 |
MDWW (°) | 0.28 | 0.03 | −0.42 | −0.55 | 0.05 | 0.18 | −0.59 | 0.09 | 0.22 | 0.20 | 0.15 |
MDTS (°) | 0.07 | 0.16 | −0.13 | −0.21 | 0.06 | −0.02 | −0.13 | −0.05 | −0.09 | 0.05 | −0.06 |
TA Sector | AMO | ENSO | NAM | NAO | PDO | SAM | AO | SOI | TNA | TSA | TASI |
---|---|---|---|---|---|---|---|---|---|---|---|
SWH (m) | 0.22 | 0.08 | 0.05 | 0.06 | −0.14 | 0.06 | 0.00 | −0.05 | −0.06 | −0.23 | 0.16 |
SHWW (m) | 0.13 | 0.12 | 0.16 | 0.48 | −0.16 | −0.07 | 0.35 | −0.01 | −0.22 | −0.13 | −0.10 |
SHS (m) | 0.19 | 0.05 | 0.02 | −0.09 | −0.09 | 0.08 | −0.11 | −0.07 | 0.00 | −0.24 | 0.21 |
PP (s) | −0.06 | 0.22 | 0.01 | −0.28 | 0.08 | 0.14 | −0.13 | −0.27 | −0.01 | −0.33 | 0.25 |
MWP (s) | 0.12 | 0.11 | 0.01 | −0.25 | 0.03 | 0.16 | −0.18 | −0.15 | 0.05 | −0.18 | 0.22 |
MPWW (s) | 0.09 | 0.07 | 0.14 | 0.51 | −0.15 | −0.10 | 0.35 | 0.02 | −0.27 | −0.10 | −0.17 |
MPS (s) | 0.15 | 0.15 | 0.04 | −0.19 | 0.01 | 0.16 | −0.14 | −0.17 | 0.03 | −0.21 | 0.23 |
MWD (°) | 0.06 | 0.12 | −0.40 | −0.71 | 0.20 | 0.18 | −0.53 | −0.03 | 0.47 | 0.20 | 0.38 |
MDWW (°) | 0.13 | 0.08 | −0.30 | −0.61 | 0.18 | 0.28 | −0.48 | −0.09 | 0.59 | 0.09 | 0.54 |
MDTS (°) | 0.13 | 0.11 | −0.42 | −0.74 | 0.16 | 0.13 | −0.56 | 0.01 | 0.51 | 0.19 | 0.44 |
SSA Sector | AMO | ENSO | NAM | NAO | PDO | SAM | AO | SOI | TNA | TSA | TASI |
---|---|---|---|---|---|---|---|---|---|---|---|
SWH (m) | 0.23 | 0.13 | 0.17 | 0.02 | −0.09 | 0.01 | 0.07 | −0.13 | −0.03 | −0.11 | 0.09 |
SHWW (m) | 0.09 | 0.06 | 0.09 | 0.13 | −0.04 | −0.23 | 0.15 | −0.02 | −0.04 | 0.02 | −0.02 |
SHS (m) | 0.22 | 0.12 | 0.15 | −0.04 | −0.10 | 0.11 | 0.03 | −0.13 | −0.01 | −0.15 | 0.13 |
PP (s) | 0.04 | 0.13 | 0.14 | −0.04 | −0.13 | 0.15 | 0.07 | −0.18 | −0.10 | −0.25 | 0.09 |
MWP (s) | 0.18 | 0.10 | 0.15 | −0.05 | −0.11 | 0.16 | 0.02 | −0.15 | −0.02 | −0.17 | 0.13 |
MPWW (s) | 0.06 | 0.03 | 0.06 | 0.12 | −0.02 | −0.21 | 0.12 | 0.01 | −0.02 | 0.02 | −0.01 |
MPS (s) | 0.19 | 0.09 | 0.13 | −0.06 | −0.12 | 0.16 | 0.01 | −0.13 | 0.00 | −0.16 | 0.15 |
MWD (°) | −0.17 | 0.26 | 0.17 | 0.01 | 0.28 | −0.19 | 0.04 | −0.40 | −0.22 | −0.06 | −0.22 |
MDWW (°) | −0.18 | 0.37 | 0.23 | 0.10 | 0.40 | −0.13 | 0.07 | −0.52 | −0.24 | −0.16 | −0.16 |
MDTS (°) | −0.19 | 0.23 | 0.14 | −0.01 | 0.26 | −0.21 | 0.04 | −0.37 | −0.21 | −0.05 | −0.20 |
SA Sector | AMO | ENSO | NAM | NAO | PDO | SAM | AO | SOI | TNA | TSA | TASI |
---|---|---|---|---|---|---|---|---|---|---|---|
SWH (m) | −0.23 | −0.18 | 0.00 | −0.07 | −0.10 | 0.31 | 0.11 | 0.08 | −0.06 | −0.12 | −0.03 |
SHWW (m) | −0.07 | 0.02 | 0.05 | 0.06 | −0.05 | 0.49 | 0.11 | 0.00 | 0.03 | −0.20 | 0.08 |
SHS (m) | −0.27 | −0.29 | −0.04 | −0.13 | −0.12 | 0.14 | 0.09 | 0.14 | −0.10 | −0.05 | −0.09 |
PP (s) | −0.36 | −0.23 | −0.06 | −0.15 | −0.10 | 0.05 | 0.12 | 0.08 | −0.14 | −0.07 | −0.09 |
MWP (s) | −0.31 | −0.21 | −0.06 | −0.18 | −0.03 | 0.05 | 0.08 | 0.04 | −0.14 | −0.06 | −0.09 |
MPWW (s) | −0.10 | −0.04 | 0.04 | 0.06 | −0.08 | 0.47 | 0.08 | 0.05 | 0.02 | −0.18 | 0.05 |
MPS (s) | −0.25 | −0.22 | −0.05 | −0.15 | −0.09 | 0.15 | 0.09 | 0.05 | −0.11 | −0.12 | −0.03 |
MWD (°) | −0.20 | 0.01 | 0.02 | 0.06 | −0.01 | 0.28 | 0.04 | −0.05 | 0.04 | 0.01 | 0.05 |
MDWW (°) | −0.07 | 0.01 | 0.06 | 0.11 | −0.02 | 0.59 | 0.03 | 0.02 | 0.16 | −0.07 | 0.21 |
MDTS (°) | −0.21 | 0.03 | 0.05 | 0.05 | −0.01 | 0.21 | 0.04 | −0.10 | −0.04 | −0.05 | −0.01 |
References
- Sobey, R.J.; Orloff, L.S. Intensity-Duration-Frequency Summaries for Wave Climate. Coast. Eng. 1999, 36, 37–58. [Google Scholar] [CrossRef]
- Dahunsi, A.M.; Foli, B.A.K. Assessment of Past and Future Potential of Ocean Wave Power in the Gulf of Guinea. Int. J. Sustain. Eng. 2023, 16, 302–323. [Google Scholar] [CrossRef]
- Melet, A.; Meyssignac, B.; Almar, R.; Le Cozannet, G. Under-Estimated Wave Contribution to Coastal Sea-Level Rise. Nat. Clim. Change 2018, 8, 234–239. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Gingerich, S.B.; Van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A.; et al. Most Atolls Will Be Uninhabitable by the Mid-21st Century Because of Sea-Level Rise, Exacerbating Wave-Driven Flooding. Sci. Adv. 2018, 4, eaap9741. [Google Scholar] [CrossRef]
- Dobrynin, M.; Kleine, T.; Düsterhus, A.; Baehr, J. Skilful Seasonal Prediction of Ocean Surface Waves in the Atlantic Ocean. Geophys. Res. Lett. 2019, 46, 1731–1739. [Google Scholar] [CrossRef]
- Semedo, A.; Sušelj, K.; Rutgersson, A.; Sterl, A. A Global View on the Wind Sea and Swell Climate and Variability from ERA-40. J. Clim. 2011, 24, 1461–1479. [Google Scholar] [CrossRef]
- Wang, C. Atlantic Climate Variability and Its Associated Atmospheric Circulation Cells. J. Clim. 2002, 15, 1516–1536. [Google Scholar] [CrossRef]
- Woolf, D.K.; Challenor, P.G.; Cotton, P.D. Variability and Predictability of the North Atlantic Wave Climate. J. Geophys. Res. 2002, 107, 9-1–9-14. [Google Scholar] [CrossRef]
- Bromirski, P.D. Climate-Induced Decadal Ocean Wave Height Variability from Microseisms: 1931–2021. JGR Ocean. 2023, 128, e2023JC019722. [Google Scholar] [CrossRef]
- Morales-Márquez, V.; Orfila, A.; Simarro, G.; Marcos, M. Extreme Waves and Climatic Patterns of Variability in the Eastern North Atlantic and Mediterranean Basins. Ocean Sci. 2020, 16, 1385–1398. [Google Scholar] [CrossRef]
- Cerrone, D.; Fusco, G.; Cotroneo, Y.; Simmonds, I.; Budillon, G. The Antarctic Circumpolar Wave: Its Presence and Interdecadal Changes during the Last 142 Years. J. Clim. 2017, 30, 6371–6389. [Google Scholar] [CrossRef]
- Kim, Y.S.; Orsi, A.H. On the Variability of Antarctic Circumpolar Current Fronts Inferred from 1992–2011 Altimetry*. J. Phys. Oceanogr. 2014, 44, 3054–3071. [Google Scholar] [CrossRef]
- Semedo, A. Seasonal Variability of Wind Sea and Swell Waves Climate along the Canary Current: The Local Wind Effect. JMSE 2018, 6, 28. [Google Scholar] [CrossRef]
- Xie, S.-P.; Carton, J.A. Tropical Atlantic Variability: Patterns, Mechanisms, and Impacts. In Geophysical Monograph Series; Wang, C., Xie, S.P., Carton, J.A., Eds.; American Geophysical Union: Washington, DC, USA, 2013; pp. 121–142. ISBN 978-1-118-66594-7. [Google Scholar]
- Karbi, I.; Chemke, R. A Shift towards Broader and Less Persistent Southern Hemisphere Temperature Anomalies. NPJ Clim. Atmos. Sci. 2023, 6, 200. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A Recent Increase in Global Wave Power as a Consequence of Oceanic Warming. Nat. Commun. 2019, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Young, I.R.; Babanin, A.V.; Zieger, S. Response to Comment on “Global Trends in Wind Speed and Wave Height”. Science 2011, 334, 905. [Google Scholar] [CrossRef]
- Erikson, L.; Morim, J.; Hemer, M.; Young, I.; Wang, X.L.; Mentaschi, L.; Mori, N.; Semedo, A.; Stopa, J.; Grigorieva, V.; et al. Global Ocean Wave Fields Show Consistent Regional Trends between 1980 and 2014 in a Multi-Product Ensemble. Commun. Earth Env. 2022, 3, 320. [Google Scholar] [CrossRef]
- Timmermans, B.W.; Gommenginger, C.P.; Dodet, G.; Bidlot, J.-R. Global Wave Height Trends and Variability from New Multimission Satellite Altimeter Products, Reanalyses, and Wave Buoys. Geophys. Res. Lett. 2020, 47, e2019GL086880. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea Surface Temperature Variability: Patterns and Mechanisms. Annu. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In Geophysical Monograph Series; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 134, pp. 1–35. ISBN 978-0-87590-994-3. [Google Scholar]
- Zhang, R.; Delworth, T.L. Impact of Atlantic Multidecadal Oscillations on India/Sahel Rainfall and Atlantic Hurricanes. Geophys. Res. Lett. 2006, 33, 2006GL026267. [Google Scholar] [CrossRef]
- Maia, N.Z.; Almeida, L.P.; Nicolodi, J.L.; Calliari, L.; Castelle, B. Long-Term Trends and Wave Climate Variability in the South Atlantic Ocean: The Influence of Climate Indices. Reg. Stud. Mar. Sci. 2023, 66, 103131. [Google Scholar] [CrossRef]
- Young, I.R.; Fontaine, E.; Liu, Q.; Babanin, A.V. The Wave Climate of the Southern Ocean. J. Phys. Oceanogr. 2020, 50, 1417–1433. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Young, I.R.; Verhagen, L.A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency. Coast. Eng. 1996, 29, 47–78. [Google Scholar] [CrossRef]
- Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, UK, 1994; p. 532. ISBN 9780521577816. [Google Scholar]
- Bruno, M.F.; Molfetta, M.G.; Totaro, V.; Mossa, M. Performance Assessment of ERA5 Wave Data in a Swell Dominated Region. JMSE 2020, 8, 214. [Google Scholar] [CrossRef]
- Bessonova, V.; Tapoglou, E.; Dorrel, R.; Dethlefs, N.; York, K. Global evaluation of wave data reanalysis: Comparison of the ERA5 dataset to buoy observations. Appl. Ocean Res. 2025, 157, 104490. [Google Scholar] [CrossRef]
- Bromirski, P.D.; Cayan, D.R. Wave Power Variability and Trends across the N Orth A Tlantic Influenced by Decadal Climate Patterns. JGR Ocean. 2015, 120, 3419–3443. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate Impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, 2006GL026242. [Google Scholar] [CrossRef]
- Boer, G.J.; Sospedra-Alfonso, R. Assessing the Skill of the Pacific Decadal Oscillation (PDO) in a Decadal Prediction Experiment. Clim. Dyn. 2019, 53, 5763–5775. [Google Scholar] [CrossRef]
- Hemer, M.A.; Katzfey, J.; Trenham, C.E. Global Dynamical Projections of Surface Ocean Wave Climate for a Future High Greenhouse Gas Emission Scenario. Ocean Model. 2013, 70, 221–245. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-Day South American Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Yu, B.; Lin, H. Tropical Atmospheric Forcing of the Wintertime North Atlantic Oscillation. J. Clim. 2016, 29, 1755–1772. [Google Scholar] [CrossRef]
- Mendes, D.; Souza, E.P.; Marengo, J.A.; Mendes, M.C.D. Climatology of Extratropical Cyclones over the South American–Southern Oceans Sector. Theor. Appl. Clim. 2010, 100, 239–250. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Zhao, J. Impact of the Spring North Atlantic Oscillation on the Northern Hemisphere Tropical Cyclone Genesis Frequency. Front. Earth Sci. 2022, 10, 829791. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic Climate Variability: The Role of the North Atlantic Oscillation. J. Mar. Syst. 2009, 78, 28–41. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M. Estimates of Meridional Atmosphere and Ocean Heat Transports. J. Clim. 2001, 14, 3433–3443. [Google Scholar] [CrossRef]
- Colosi, L.V.; Villas Bôas, A.B.; Gille, S.T. The Seasonal Cycle of Significant Wave Height in the Ocean: Local Versus Remote Forcing. JGR Ocean. 2021, 126, e2021JC017198. [Google Scholar] [CrossRef]
- Stopa, J.E.; Ardhuin, F.; Girard-Ardhuin, F. Wave Climate in the Arctic 1992–2014: Seasonality and Trends. Cryosphere 2016, 10, 1605–1629. [Google Scholar] [CrossRef]
- Shi, J.; Feng, X.; Toumi, R.; Zhang, C.; Hodges, K.I.; Tao, A.; Zhang, W.; Zheng, J. Global Increase in Tropical Cyclone Ocean Surface Waves. Nat. Commun. 2024, 15, 174. [Google Scholar] [CrossRef]
- Wang, C.; Dong, S.; Evan, A.T.; Foltz, G.R.; Lee, S.-K. Multidecadal Covariability of North Atlantic Sea Surface Temperature, African Dust, Sahel Rainfall, and Atlantic Hurricanes. J. Clim. 2012, 25, 5404–5415. [Google Scholar] [CrossRef]
- Pianca, C.; Mazzini, P.L.F.; Siegle, E. Brazilian Offshore Wave Climate Based on NWW3 Reanalysis. Braz. J. Oceanogr. 2010, 58, 53–70. [Google Scholar] [CrossRef]
- Silva, A.P.; Klein, A.H.F.; Fetter-Filho, A.F.H.; Hein, C.J.; Méndez, F.J.; Broggio, M.F.; Dalinghaus, C. Climate-Induced Variability in South Atlantic Wave Direction over the Past Three Millennia. Sci. Rep. 2020, 10, 18553. [Google Scholar] [CrossRef]
- Maia, N.Z.; Almeida, L.P.; Emmendorfer, L.; Nicolodi, J.L.; Calliari, L. Wave Climate Trends and Breakpoints during the Atlantic Multidecadal Oscillation (AMO) in Southern Brazil. Ocean Coast. Res. 2022, 70, e22027. [Google Scholar] [CrossRef]
- Young, I.R.; Ribal, A. Multiplatform Evaluation of Global Trends in Wind Speed and Wave Height. Science 2019, 364, 548–552. [Google Scholar] [CrossRef]
- Campos, R.M.; Gramcianinov, C.B.; De Camargo, R.; Da Silva Dias, P.L. Assessment and Calibration of ERA5 Severe Winds in the Atlantic Ocean Using Satellite Data. Remote Sens. 2022, 14, 4918. [Google Scholar] [CrossRef]
- Omonigbehin, O.; Eresanya, E.O.; Tao, A.; Setordjie, V.E.; Daramola, S.; Adebiyi, A. Long-Term Evolution of Significant Wave Height in the Eastern Tropical Atlantic between 1940 and 2022 Using the ERA5 Dataset. JMSE 2024, 12, 714. [Google Scholar] [CrossRef]
- Sainsbury, E.M.; Schiemann, R.K.H.; Hodges, K.I.; Baker, A.J.; Shaffrey, L.C.; Bhatia, K.T. What Governs the Interannual Variability of Recurving North Atlantic Tropical Cyclones? J. Clim. 2022, 35, 3627–3641. [Google Scholar] [CrossRef]
- Patra, A.; Min, S.; Seong, M. Climate Variability Impacts on Global Extreme Wave Heights: Seasonal Assessment Using Satellite Data and ERA5 Reanalysis. JGR Ocean. 2020, 125, e2020JC016754. [Google Scholar] [CrossRef]
- Sreelakshmi, S.; Bhaskaran, P.K. Wind-Generated Wave Climate Variability in the Indian Ocean Using ERA-5 Dataset. Ocean Eng. 2020, 209, 107486. [Google Scholar] [CrossRef]
- Ding, R.; Nnamchi, H.C.; Yu, J.-Y.; Li, T.; Sun, C.; Li, J.; Tseng, Y.; Li, X.; Xie, F.; Feng, J.; et al. North Atlantic Oscillation Controls Multidecadal Changes in the North Tropical Atlantic−Pacific Connection. Nat. Commun. 2023, 14, 862. [Google Scholar] [CrossRef]
- Dai, P.; Tan, B. The Nature of the Arctic Oscillation and Diversity of the Extreme Surface Weather Anomalies It Generates. J. Clim. 2017, 30, 5563–5584. [Google Scholar] [CrossRef]
- Geng, X.; Zhao, J.; Kug, J.-S. ENSO-Driven Abrupt Phase Shift in North Atlantic Oscillation in Early January. NPJ Clim. Atmos. Sci. 2023, 6, 80. [Google Scholar] [CrossRef]
- King, J.; Anchukaitis, K.J.; Allen, K.; Vance, T.; Hessl, A. Trends and Variability in the Southern Annular Mode over the Common Era. Nat. Commun. 2023, 14, 2324. [Google Scholar] [CrossRef]
- Black, R.X.; McDaniel, B.A. Diagnostic Case Studies of the Northern Annular Mode. J. Clim. 2004, 17, 3990–4004. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, X.; Chen, J.; Huang, W.; Sun, C.; Wang, H. Physical Mechanism of Winter Temperature Multidecadal Variations in Arid Central Asia: The Role of the Atlantic Multidecadal Oscillation (AMO). J. Clim. 2023, 36, 7363–7377. [Google Scholar] [CrossRef]
- Kawamura, A.; McKerchar, A.I.; Spigel, R.H.; Jinno, K. Chaotic Characteristics of the Southern Oscillation Index Time Series. J. Hydrol. 1998, 204, 168–181. [Google Scholar] [CrossRef]
- Gbangou, T.; Ludwig, F.; Van Slobbe, E.; Greuell, W.; Kranjac-Berisavljevic, G. Rainfall and Dry Spell Occurrence in Ghana: Trends and Seasonal Predictions with a Dynamical and a Statistical Model. Theor. Appl. Clim. 2020, 141, 371–387. [Google Scholar] [CrossRef]
- Chen, S.-F.; Wu, R. An Enhanced Influence of Sea Surface Temperature in the Tropical Northern Atlantic on the Following Winter ENSO since the Early 1980s. Atmos. Ocean. Sci. Lett. 2017, 10, 175–182. [Google Scholar] [CrossRef]
- Chang, P.; Ji, L.; Li, H. A decadal variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature 1997, 385, 516–518. [Google Scholar] [CrossRef]
- Caloiero, T.; Aristodemo, F.; Algieri Ferraro, D. Trend Analysis of Significant Wave Height and Energy Period in Southern Italy. Theor. Appl. Clim. 2019, 138, 917–930. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 2022, 14, 1709. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 2nd ed.; Charles Griffin & Co.: London, UK, 1955; p. 196. [Google Scholar]
- Holthuijsen, L.H. Waves in Oceanic and Coastal Waters; Cambridge University Press: Cambridge, UK, 2007; p. 404. ISBN 9780511618536. [Google Scholar]
- Young, I.R. Seasonal Variability of the Global Ocean Wind and Wave Climate. Int. J. Climatol. 1999, 19, 931–950. [Google Scholar] [CrossRef]
- Ardhuin, F.; Chapron, B.; Collard, F. Observation of Swell Dissipation across Oceans. Geophys. Res. Lett. 2009, 36, 2008GL037030. [Google Scholar] [CrossRef]
- George, S.E.; Saunders, M.A. North Atlantic Oscillation Impact on Tropical North Atlantic Winter Atmospheric Variability. Geophys. Res. Lett. 2001, 28, 1015–1018. [Google Scholar] [CrossRef]
- Foltz, G.R.; McPhaden, M.J.; Lumpkin, R. A Strong Atlantic Meridional Mode Event in 2009: The Role of Mixed Layer Dynamics. J. Clim. 2012, 25, 363–380. [Google Scholar] [CrossRef]
- Wang, X.L.; Zwiers, F.W.; Swail, V.R. North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. J. Clim. 2004, 17, 2368–2383. [Google Scholar] [CrossRef]
- Bell, R.; Kirtman, B. Seasonal Forecasting of Wind and Waves in the North Atlantic Using a Grand Multimodel Ensemble. Weather Forescasting 2019, 34, 31–59. [Google Scholar] [CrossRef]
- Castelle, B.; Dodet, G.; Masselink, G.; Scott, T. A New Climate Index Controlling Winter Wave Activity along the Atlantic Coast of Europe: The West Europe Pressure Anomaly. Geophys. Res. Lett. 2017, 44, 1384–1392. [Google Scholar] [CrossRef]
- Goharnejad, H.; Perrie, W.; Toulany, B.; Casey, M.; Zhang, M. Impacts of Climate Change on Seasonal Extreme Waves in the Northwest Atlantic Using a Spatial Neural Gas Clustering Method. J. Ocean Eng. Sci. 2023, 8, 367–385. [Google Scholar] [CrossRef]
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-West Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Vinogradov, S.V.; Ponte, R.M. Low-frequency Variability in Coastal Sea Level from Tide Gauges and Altimetry. J. Geophys. Res. 2011, 116, 2011JC007034. [Google Scholar] [CrossRef]
- Röthlisberger, M.; Papritz, L. Quantifying the Physical Processes Leading to Atmospheric Hot Extremes at a Global Scale. Nat. Geosci. 2023, 16, 210–216. [Google Scholar] [CrossRef]
- Woollings, T.; Drouard, M.; O’Reilly, C.H.; Sexton, D.M.H.; McSweeney, C. Trends in the Atmospheric Jet Streams Are Emerging in Observations and Could Be Linked to Tropical Warming. Commun. Earth Env. 2023, 4, 125. [Google Scholar] [CrossRef]
- Reguero, B.G.; Méndez, F.J.; Losada, I.J. Variability of Multivariate Wave Climate in Latin America and the Caribbean. Glob. Planet. Change 2013, 100, 70–84. [Google Scholar] [CrossRef]
- Rocha, R.P.; Sugara, S.; Silveira, R.B. Sea Waves Generated by Extratropical Cyclones in the South Atlantic Ocean: Hindcast and Validation against Altimeter Data. Weather Forescasting 2004, 19, 398–410. [Google Scholar] [CrossRef]
- Reguero, B.G.; Losada, I.J.; Méndez, F.J. A Global Wave Power Resource and Its Seasonal, Interannual and Long-Term Variability. Appl. Energy 2015, 148, 366–380. [Google Scholar] [CrossRef]
- Cabral, I.S.; Young, I.R.; Toffoli, A. Long-Term and Seasonal Variability of Wind and Wave Extremes in the Arctic Ocean. Front. Mar. Sci. 2022, 9, 802022. [Google Scholar] [CrossRef]
- Laloue, A.; Ghantous, M.; Faugère, Y.; Dalphinet, A.; Aouf, L. Statistical Analysis of Global Ocean Significant Wave Heights from Satellite Altimetry over the Past 2 Decades. State Planet 2024, 4-osr8, 1–9. [Google Scholar] [CrossRef]
- Takbash, A.; Young, I. Long-Term and Seasonal Trends in Global Wave Height Extremes Derived from ERA-5 Reanalysis Data. JMSE 2020, 8, 1015. [Google Scholar] [CrossRef]
- Bader, J.; Latif, M. The Impact of Decadal-scale Indian Ocean Sea Surface Temperature Anomalies on Sahelian Rainfall and the North Atlantic Oscillation. Geophys. Res. Lett. 2003, 30, 2003GL018426. [Google Scholar] [CrossRef]
- Czaja, A.; Frankignoul, C. Observed Impact of Atlantic SST Anomalies on the North Atlantic Oscillation. J. Clim. 2002, 15, 606–623. [Google Scholar] [CrossRef]
- Delworth, T.L.; Mann, M.E. Observed and Simulated Multidecadal Variability in the Northern Hemisphere. Clim. Dyn. 2000, 16, 661–676. [Google Scholar] [CrossRef]
- Seager, R.; Harnik, N.; Kushnir, Y.; Robinson, W.; Miller, J. Mechanisms of Hemispherically Symmetric Climate Variability*. J. Clim. 2003, 16, 2960–2978. [Google Scholar] [CrossRef]
- Ruggerio, P.; Kratzmann, M.G.; Himmelstoss, E.A.; Reid, D.; Allan, J.; Kaminsky, G. National Assessment of Shoreline Change: Historical Shoreline Change Along the Pacific Northwest Coast; Open-File Report: Reston, VA, USA, 2013; p. 76. [CrossRef]
- Aarnes, O.J.; Abdalla, S.; Bidlot, J.-R.; Breivik, Ø. Marine Wind and Wave Height Trends at Different ERA-Interim Forecast Ranges. J. Clim. 2015, 28, 819–837. [Google Scholar] [CrossRef]
- Young, I.R.; Sanina, E.; Babanin, A.V. Calibration and Cross Validation of a Global Wind and Wave Database of Altimeter, Radiometer, and Scatterometer Measurements. J. Atmos. Ocean. Technol. 2017, 34, 1285–1306. [Google Scholar] [CrossRef]
- Hemer, M.A.; Church, J.A.; Hunter, J.R. Variability and Trends in the Directional Wave Climate of the Southern Hemisphere. Int. J. Climatol. 2010, 30, 475–491. [Google Scholar] [CrossRef]
- Jiang, H.; Mu, L. Wave Climate from Spectra and Its Connections with Local and Remote Wind Climate. J. Phys. Oceanogr. 2019, 49, 543–559. [Google Scholar] [CrossRef]
- Reis, B.L.R.; Parise, C.K.; Correia, G.S.; De Lima, L.G.; Perotto, H.; Bose, N.D.A.; De Mendonça, L.F.F. The Bimodal Regime of Ocean Waves and Winds over the Continental Shelf of Maranhão. Reg. Stud. Mar. Sci. 2024, 77, 103629. [Google Scholar] [CrossRef]
- Gulev, S.K.; Grigorieva, V. Variability of the Winter Wind Waves and Swell in the North Atlantic and North Pacific as Revealed by the Voluntary Observing Ship Data. J. Clim. 2006, 19, 5667–5685. [Google Scholar] [CrossRef]
- Manola, I.; Haarsma, R.J.; Hazeleger, W. Drivers of North Atlantic Oscillation Events. Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 19741. [Google Scholar] [CrossRef]
- Mehta, V.M.; Suarez, M.J.; Manganello, J.V.; Delworth, T.L. Oceanic Influence on the North Atlantic Oscillation and Associated Northern Hemisphere Climate Variations: 1959–1993. Geophys. Res. Lett. 2000, 27, 121–124. [Google Scholar] [CrossRef]
- Hoerling, M.P.; Hurrell, J.W.; Xu, T. Tropical Origins for Recent North Atlantic Climate Change. Science 2001, 292, 90–92. [Google Scholar] [CrossRef]
- Zhao, Y.; Capotondi, A. The Role of the Tropical Atlantic in Tropical Pacific Climate Variability. NPJ Clim. Atmos. Sci. 2024, 7, 140. [Google Scholar] [CrossRef]
NA | SNA | TA | SSA | SA | |
---|---|---|---|---|---|
Significant Wave Height (m) | 2.34 | 2.16 | 1.77 | 2.76 | 2.80 |
Significant Wave Height of Wind Waves (m) | 1.30 | 0.96 | 0.65 | 1.26 | 1.46 |
Significant Wave Height of Swell (m) | 1.68 | 1.76 | 1.58 | 2.23 | 2.13 |
Peak Period (s) | 8.56 | 9.46 | 10.30 | 10.57 | 9.89 |
Mean Wave Period (s) | 7.22 | 7.83 | 8.07 | 8.77 | 8.33 |
Mean Period of Wind Waves (s) | 4.38 | 3.90 | 3.46 | 4.37 | 4.65 |
Mean Period of Swell (°) | 8.05 | 8.57 | 8.75 | 9.64 | 9.31 |
Mean Wave Direction (°) | 194.25 | 191.29 | 125.06 | 213.86 | 231.15 |
Mean Direction of Wind Waves (°) | 180.25 | 161.84 | 107.49 | 201.74 | 210.15 |
Mean Direction of Total Swell (°) | 192.36 | 195.62 | 130.09 | 209.40 | 232.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prestes, Y.O.; da Silva, A.C.; Marquez, A.L.; Gomes Junior, G.D.; Hernandez, F. Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data. J. Mar. Sci. Eng. 2025, 13, 1536. https://doi.org/10.3390/jmse13081536
Prestes YO, da Silva AC, Marquez AL, Gomes Junior GD, Hernandez F. Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data. Journal of Marine Science and Engineering. 2025; 13(8):1536. https://doi.org/10.3390/jmse13081536
Chicago/Turabian StylePrestes, Yuri Onça, Alex Costa da Silva, André Lanfer Marquez, Gabriel D’annunzio Gomes Junior, and Fabrice Hernandez. 2025. "Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data" Journal of Marine Science and Engineering 13, no. 8: 1536. https://doi.org/10.3390/jmse13081536
APA StylePrestes, Y. O., da Silva, A. C., Marquez, A. L., Gomes Junior, G. D., & Hernandez, F. (2025). Climate Variability and Atlantic Surface Gravity Wave Variability Based on Reanalysis Data. Journal of Marine Science and Engineering, 13(8), 1536. https://doi.org/10.3390/jmse13081536